

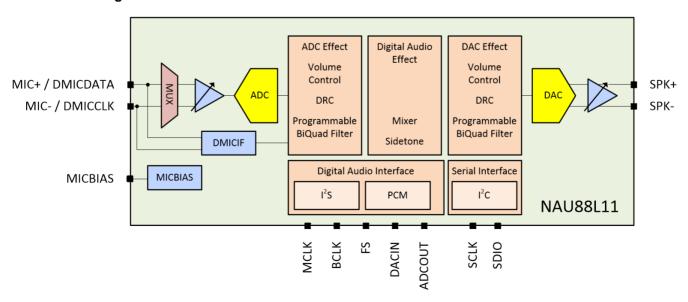
NAU88L11

Ultra-Low Power Audio CODEC With ClassAB Power Amplifier

GENERAL DESCRIPTION

The NAU88L11 is a cost effective ultra-low power high performance MONO audio CODEC. It's suitable for wide range of applications including industrial or portable audio applications. This CODEC includes I2S/PCM interface, Analog/Digital microphone interface, integrated DSP functions, high quality DAC and ADC, and a Class-AB power amplifier. The advanced on-chip digital signal processing features include a dynamic range compressor (DRC) and programmable biquad filter. The NAU88L11 digital and analog voltage can be operated as low as 1.62V, with Speaker Driver voltage operated from 2.5 ~ 3.6V.

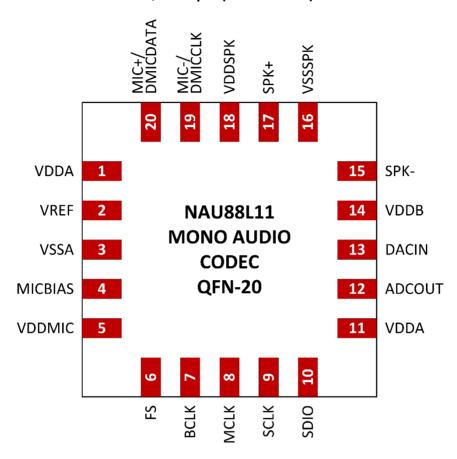
FEATURES


- DAC SNR(A-weighted): 105dB@1.8V, R_L= 8Ω, DAC gain=11dB, THD= -85dB
- ADC SNR(A-weighted): 103dB@1.8V, MIC gain=0dB,Fs=48kHz, THD =-93dB
- Low Noise Microphone PGA SNR: 100dB@+18dB gain, 256x OSR
- Digital I2S/PCM I/O port
- Mono differential analog microphone input, or mono digital microphone input
- Low noise Microphone bias: <10 uV_{RMS} noise between 20~20kHz;
- Class AB Power Amplifier:
 350mW @ 8Ω, 1% THD+N
- Lineout Mode with Pop&Click Noise Suppression during startup
- Sampling rate from 8k to 96kHz

- Integrated DSP with specific functions:
 - o Programmable Biguad filter
 - Dynamic Range Compressor (DRC)
- Package: QFN-20
 Package is Halogen-free, RoHS-compliant and TSCA-compliant

Applications

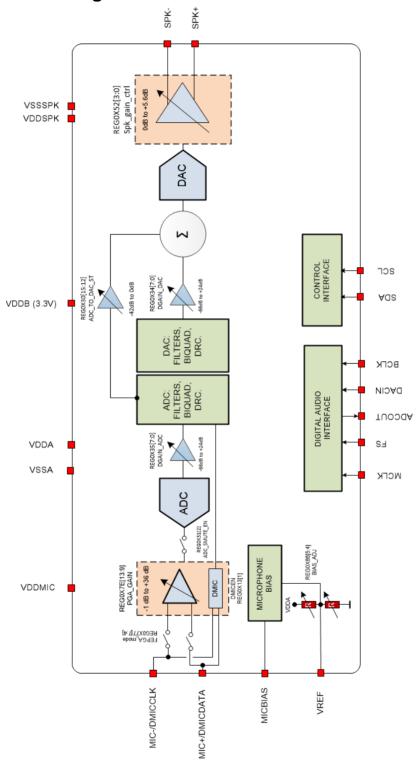
- Intercom
- Doorbell
- Portable Recording Device
- Wireless handsets /headsets
- Surveillance Camera
- Dash CAM
- Sports CAM
- Digital Still Cameras
- Speakerphone


Block Diagram

Pin Diagram:

QFN 20-pin (4mm x 4mm)

Pin Description


Pin #	Name	Туре	Functionality
1	VDDA	Supply	1.8V Analog Supply
2	VREF	Analog I/O	Internal DAC & ADC voltage reference decoupling I/O
3	VSSA	Ground	Analog Ground
4	MICBIAS	Analog Output	Microphone Bias Output
5	VDDMIC	Supply	Microphone supply
6	FS	Digital I/O	Frame Sync input / output for I2S / PCM data
7	BCLK	Digital I/O	Serial data bit clock input / output for I2S / PCM data
8	MCLK	Digital Input	CODEC external Master clock source input
9	SCLK	Digital Input	Serial Data Clock for I2C
10	SDIO	Digital I/O	Serial Data for I2C
11	VDDA	Supply	1.8V Analog Supply
12	ADCOUT	Digital Output	Serial Audio data Output for I2S / PCM data
13	DACIN	Digital Input	Serial Audio data input for I2S / PCM data
14	VDDB	Supply	3.3V Digital I/O supply
15	SPK -	Analog Output	Speaker - channel output
16	VSSSPK	Ground	Speaker Driver Ground
17	SPK+	Analog Output	Speaker + channel output
18	VDDSPK	Supply	Speaker Driver Supply
19	MIC - / DMICCLK	Analog Input	Microphone - channel input / Digital Mic Clock pin
20	MIC + / DMICDATA	Analog Input	Microphone + channel input / Digittal Mic Data Pin

Notes:

- 1. Unused MIC input pins should be left as no-connection.
- 2. Digial Microphone should be power by MICBIAS, with setting to V_{DDA}

Functional Block Diagram

Electrical Characteristics

Conditions: V_{DDA} =1.8V, V_{DDB} = 3.3V; V_{DDSPK} = 3.6V, V_{DDMIC} = 3.6V. R_L = 8 Ω , f = 1KHz, MCLK=12.88MHz, unless otherwise specified. Limits apply for T_A = 25°C

Symbol	Parameter	Conditions	Typical	Limit	Units (Limit)
		V _{DDA}	4	16	
I _{SB}	Standby Current	V _{DDB}	1	5	μA
IQ	Quiescent Current	V_{DDMIC} $f_S = 48kHz$, DAC On, SPK_DRV On, POUT = 0mW. R _L = 8 Ω	20	5	mA
	Speaker D	Priver (V_{DDSPK} = 3.6V, R_L = 8 Ω , BTL)			
	Full-Scale output signal	V _{DDSPK} = 3.6V, R _L =8Ω	2.0	0	V _{RMS}
Po	Output Power	DAC Gain = 0dB, THD+N = 1%	350		mW
THD+N	Total Harmonic Distortion + Noise	F=1020Hz, RL=8Ohm	-85		dB
SNR	Signal to Noise Ratio	VOUT = 2V _{RMS} , SPK_DRV Gain=4.4dB, DAC_Gain = 11dB, A-Weighted	105		dB
PSRR	Power Supply Rejection Ratio	Ripple on V _{DDA} = 200mVpp at 217Hz	80		dB
	Frequency Response	F = 20Hz ~ 20kHz	+0.1/-0.2		dB
		ADC	•	I.	
FS _{ADC}	ADC Full Scale Input Level	V _{DDA} = 1.8V	1		V _{RMS}
TUD: N	Total Harmonic Distortion + Noise	MIC Input=0.8V _{RMS} , MIC GAIN=0dB, f=1KHz, fs = 48kHz, Differential Input	-90		dB
THD+N		MIC Input=0.8V _{RMS} , MIC GAIN=30dB, f=1KHz, fs=16kHz, Differential Input	-90		dB
SNR	Signal to Noise Ratio	A-Weighted, MIC Gain = 0dB, fs = 48kHz, Differential Input	102		dB
SINK		A-Weighted, MIC Gain = 6 dB, fs = 48kHz, Differential Input	100		dB
PSRR	Power Supply Rejection Ratio	Ripple on V _{DDA} = 200mVpp at 217Hz MIC GAIN = 0dB Differential Input	70		dB
CMRR	Common Mode Rejection Ratio	Differential Input 100 mV _{RMS} , PGA gain = 20dB, frequency sweep 20Hz ~ 20KHz	65		dB
	Minimum Input Impedance		10		kOhm
	Frequency Response	f = 20Hz ~ 20kHz	+0.1/-0.2	_	dB
	Power Consumption	No Signal, ADC on $f_s = 44.1 \text{kHz}$	7.9		mW
		MICBIAS			
Іоит	Output Current	Low Noise Mode		4	mA
eos	Output Noise	Low Noise Mode, f = 20Hz ~ 20kHz MICBIAS=2.7V		10	uV _{RMS}

Digital I/O

Parameter	Symbol	Comments/Conditions		Min	Max	Units
Input LOW level	VDDB = 1.8V			0.33* V _{DDB}	V	
input LOW level	V IL	V_{IL} $V_{DDB} = 3.3V$			0.37* V _{DDB}	· ·
Input HIGH level	ViH	V_{DD}	в = 1.8V	0.57* V _{DDB}		
input nigh level	VIH	$V_{DDB} = 3.3V$		0.63* V _{DDB}		V
Output HIGH level	V _{OH}	I _{Load} = 1mA	$V_{DDB} = 1.8V$	0.9* V _{DDB}		٧
Output High Hevel	VOH	ILoad= IIIIA	$V_{DDB} = 3.3V$	0.95* V _{DDB}		V
Output LOW level	ut LOW level VoL ILoads	I _{Load} = 1mA	$V_{DDB} = 1.8V$		0.1* V _{DDB}	V
Output LOW level	VOL	ILoad= IIIIA	$V_{DDB} = 3.3V$		0.05* V _{DDB}	V

Recommended Operating Conditions

Condition	Symbol	Min	Typical	Max	Units
Digital I/O Supply Range	V_{DDB}	1.62	3.3	3.6	V
1.8V Supply Range**	V_{DDA}	1.62	1.8	1.98	V
Speaker Drvier Supply Range	V_{DDSPK}	2.5	3.3	3.6	V
Microphone Bias Supply Voltage	V _{DDMIC}	3.0	3.3	3.6	V
Temperature Range	T _A	-40		+85	°C

^{**} Note: DMIC Supply power should connected to MICBIAS, and set same as V_{DDA} .

Absolute Maximum Ratings

Parameter	Min	Max	Units
Digital I/O Supply Range	-0.3	4.0	V
1.8V Supply Range	-0.3	2.2	V
Speaker Driver Supply Range	-0.3	4.0	V
Microphone Bias Supply Voltage	-0.3	4.0	V
Voltage Input Digital Range	V _{SSD} - 0.3	V _{DDA} + 0.3	V
Voltage Input Analog Range	V _{SSA} - 0.3	V _{DDA} + 0.3	V
Junction Temperature, TJ	-40	+150	°C
Storage Temperature	-65	+150	°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods. Exposure to such conditions may adversely influence product reliability and result in failures not covered by warranty.

Table of Contents

PIN D	DIAGRAM :	2
PIN C	DESCRIPTION	3
	CTIONAL BLOCK DIAGRAM	
	CTRICAL CHARACTERISTICS	
	SENERAL DESCRIPTION	
1.1 1.2	Analog and Digital Inputs	
1.3	ADC, DAC and Digital Signal Processing	
1.4	Digital Interfaces	
	POWER SUPPLY	
2.1	Power on and off reset	
	NPUT PATH DETAILED DESCRIPTIONS	
3.1	Analog Microphone Inputs	
3.2	Digital Microphone Input	
3.3	VREF	
3.4	MIC Bias	13
3.5	MIC detect	13
3.6	Key Detect	13
4. <i>A</i>	ADC DIGITAL BLOCK	14
4.1	ADC Dynamic Range Compressors (DRC)	14
4.	1.1 Level Estimation	14
4.	1.2 Static Curve	15
4.2	ADC Digital Volume Control	17
4.3	ADC Programmable Biquad Filter	17
4.4	Additional ADC Application Notes	18
5. C	DAC DIGITAL BLOCK	19
5.1	DAC Digital Volume Control, Mute and Channel selection	19
5.2	DAC Soft Mute	19
5.3	DAC Auto Mute	
5.4	DAC Programmable Biquad Filter	
5.5	DAC Dynamic Range Control (DRC)	
	5.1 Level Estimation	
	5.2 Static Curve	
5.6	DAC Path with Sidetone	
5.7	Speaker Output	
5.8	Lineout Configuration	
5.9 5.10	Speaker Driver Short Circuit Protection	
	Companding	
_	10.2 A-law	
٥.	10.4 / 1 IUW	20

6. P	OWER UP AND START SEQUENCE	26
6.1	Basic Register Sequence	27
6.2	Clock Detection	29
6.3	MCLK / FS Clock Setting in Slave Mode	30
6.4	ADC/DAC Oversampling Rate	32
7. C	CONTROL INTERFACES	33
7.1	2-Wire-Serial Control Mode (I ² C Style Interface)	33
7.2	2-Wire Protocol Convention	
7.3	2-Wire Write Operation	34
7.4	2-Wire Read Operation	35
7.5	Digital Serial Interface Timing	36
7.6	Software Reset	37
7.7	I ² C Addresses	37
8. D	DIGITAL AUDIO INTERFACES	38
8.1	Right-Justified Audio Data	38
8.2	Left-Justified Audio Data	39
8.3	I2S Audio Data	39
8.4	PCMA Audio Data	39
8.5	PCMB Audio Data	40
8.6	PCM Time Slot Audio Data	40
8.7	TDM I2S Audio Data	41
8.8	TDM PCMA Audio Data	41
8.9	TDM PCMB Audio Data	42
8.10	TDM PCM Offset Audio Data	42
8.11	Digital Audio Interface Timing Diagrams	43
	1 Digital Audio Interface Slave Mode	
9. C	CONTROL AND STATUS REGISTERS	44
10. T	YPICAL APPLICATION DIAGRAM WITH ANALOG	
MICR	OPHONE	59
10.1	Typical Application Diagram with Digital Microphone	60
11. P	PACKAGE INFORMATION	61
12. A	APPENDIX	62
12.1	MCLK/FS Table: Group 1 MCLK_INT/FS ratio of 256	
12.2	MCLK/FS Table: Group 1 MCLK_INT/FS ratio of 400	
12.3	MCLK/FS Table: Group 1 MCLK_INT/FS ratio of 500	
	ORDERING INFORMATION	
	REVISION HISTORY	
IWPO	RTANT NOTICE	67

1. General Description

NAU88L11 is an ultra-low power, highly integrated CODEC, which features mono audio DAC, and mono audio ADC, that supports Analog and Digital Microphone Input. NAU88L11 includes DSP functions including DRCs (Dynamic Range Compression) and programmable biquad filters. The NAU88L11 supports a full range of audio formats including Left-justified, I²S, and multiple PCM formats. The NAU88L11 device is controlled through 2-wire digital control interface. The NAU88L11 digital and analog voltage can be operated as low as 1.62V, with Speaker Driver voltage operated from 2.5 to 3.6V. Mic bias votlage supply is upgraded to support voltages up to 3.6V.

1.1 Analog and Digital Inputs

The NAU88L11 provides an analog input to acquire and process audio signals from a microphone with high fidelity and flexibility. The mono input path that can be used to capture signals from single-ended or a differential source. The channel has a fully differential programmable gain amplifier (PGA). The outputs of the PGA connect to the ADC.

The NAU88L11 also has an input for a digital microphone. The NAU88L11 provides a DMICCLK, (the clock signal) for the digital microphones. Note that the analog and the digital microphone inputs cannot be used simultaneously.

1.2 Analog Output

NAU88L11 has a Class AB speaker driver that is fed by the high quality DAC. The speaker driver has a gain control from 0dB to +5.6dB and Mute. The Speaker driver output can also be used as lineout. The speaker driver is capable of delivering 350mW into 8Ω with 1% THD+N.

1.3 ADC, DAC and Digital Signal Processing

The NAU88L11 has a high quality ADC and DAC. These are high performance 24-bit sigma-delta converters, which are suitable for a very wide range of applications.

The ADC and DAC have functions that individually support digital mixing and routing. The ADC and DAC blocks also support advanced digital signal processing subsystems that enable a very wide range of programmable signal conditioning and signal optimizing functions. All digital processing is done with 24-bit precision to minimize processing artifacts and maximize the audio dynamic range supported by the NAU88L11.

The ADC and DAC digital signal process can support two-point dynamic range compressors (DRCs), programmable biquad filters configurable for low pass filters, high pass filters, Notch filter, Bell, low shelf, and high shelf filters with various gain, Q, and frequency controls. Two-point DRCs can be programmed to limit the maximum output level and/or boost a low output level. The biquad filters can be configured as high pass filters intended for DC-blocking or low frequency noise reduction, such as reducing unwanted ambient noise or "wind noise" on a microphone input.

1.4 Digital Interfaces

Command and control of the device is accomplished by using the I²C interface.

The digital audio I/O data streams transfer separately from command and control using either I²S or PCM audio data protocols These simple but highly flexible interface protocols are compatible with most commonly used serial data protocols, host drivers, and industry standard I²S and PCM devices.

2. Power Supply

This NAU88L11 has been designed to operate reliably using a wide range of power supply conditions and power-on/power-off sequences. Because of this, there are no special requirements for the sequence or rate at which the various power supply pins change. Any supply can rise or fall at any time without harming the device. However, pops and clicks may result from some coditions. For Lineout mode, optimum handling of hardware and software power-on and power-off sequences are described in more detail in the Lineout configuation section.

2.1 Power on and off reset

The NAU88L11 includes a power on reset circuit on chip. The circuit resets the internal logic control at V_{DDA} supply power up and this reset function is automatically generated internally when power supplies are too low for reliable operation. The reset threshold is approximately 0.55Vdc and 1.0Vdc for V_{DDA} . It should be noted that these values are much lower than the required voltage for normal operation of the chip.

The reset is held on while the power levels for both V_{DDA} are below their respective thresholds. Once the power levels rise above their thresholds, the reset is released. Once the reset is released, the registers are ready to be written to. It is also important to note that all the registers should be kept in their reset state for at least $6\mu s$.

An additional internal RC filter based circuit is added which helps the circuit respond for fast ramp rates (~10µs) and generate the desired reset period width (~10µs at typical corner). This filter is also used to eliminate supply glitches which can generate a false reset condition, typically 50ns.

For reliable operation, it is recommended to write **SOFTWARE_RST**, REG 0x00 upon power up. This will reset all registers to the known default state. Note that when V_{DDA} is below the power on reset threshold, then the digital IO pins will go into a tri-state condition.

Note that when V_{DDA} are below the power on reset threshold, then the digital IO pins will go into a tri-state condition.

3. Input Path Detailed Descriptions

NAU88L11 is design with a low noise, high common mode rejection ratio analog microphone differential input. The microphone input MIC+/- are followed by -1dB to 36dB PGA gain stage that has a fixed 12kOhm input impedance.

The input is maintained at a DC bias of approximately ½ of the V_{DDA} supply voltage. Connections to the input should be AC-coupled by means of external DC blocking capacitors suitable for the device application.

The differential microphone input structure is essential in noisy digital systems where amplification of low-amplitude analog signals is necessary such as in portable digital devices.

A differential input is also very useful to reduce ground noise in systems in which there are ground voltage differences between different chips and components. When properly implemented, the differential input architecture offers an improved power-supply rejection ratio (PSRR) and higher ground noise immunity.

3.1 Analog Microphone Inputs

The analog microphone input is routed to a Front End Programmable Gain Amplifier(FEPGA). The input stage can be configured in different modes by using **FEPGA_MODE**. The FEPGA gain can be varied from -1dB to 36dB in 1dB steps. The gain stage has a fixed $12k\Omega$ input impedance and can be individually enabled or disabled using the powerup control signal, **PUPL**, REG 0x7F[15].

As shown below:

The input path control is done through S1~S6. Related Register and configuration is provided in blow input block diagram.

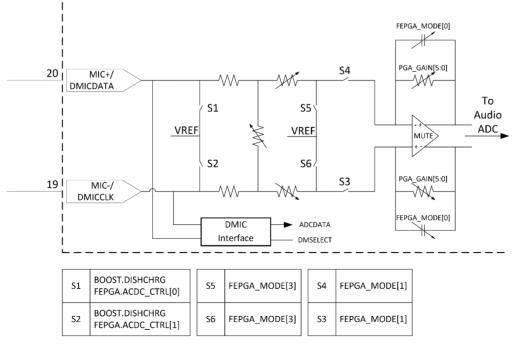


Figure 1: Microphone Input Block Diagram with Registers

3.2 Digital Microphone Input

The MIC- and MIC+ pins can be used for the digital microphone input. MIC- is the clock for the digital microphone and the MIC+ is the data in. DMIC supply voltage must be provided by MICBIAS, and set the same as V_{DDA}.

3.3 VREF

The NAU88L11 includes a mid-supply reference circuit that produces a voltage close to $V_{DDA}/2$. This "VREF" pin should be decoupled to VSS through an external bypass capacitor. Because V_{REF} is used as a reference voltage inside the NAU88L11, a large capacitance is required to achieve good power supply rejection at low frequency. Typically, a value of $4.7\mu F$ should be used. The V_{REF} voltage can be enabled by setting **VMIDEN**, REG 0x66[6] and the output impedance can be set using **VMIDSEL**.

VMIDSEL	VREF Resistor Selection	VREF Impedance
00	Open, no resistor selected	Open, no impedance installed
01	50kOhm	25kOhm
10	250kOhm	125kOhm
11	5kOhm	2.5kOhm

Table 1: VREF Impedance Selection

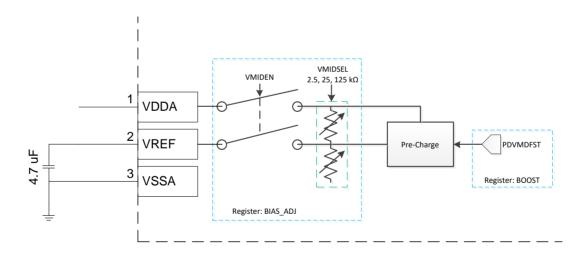


Figure 2: VREF Circuitry

3.4 MIC Bias

The NAU88L11 provides a MICBIAS pin to power an electret type microphone. The MICBIAS pin is the low impedance output of the MIC Bias LDO. An external $2k\Omega$ resistor has to be used if the analog microphone is biased by this pin. This pin can be enabled by using **POWERUP**, REG 0x74[8] and the level can be set by using **MICBIASLVL1**,REG 0x74[2:0].

MICBIAS has three modes of operation selected by **MB_LPMODE**, REG 0x74[4:3]. It can be operated as low noise mode, low power mode or ultra low power mode. See electrical characteristics for expected operating values. Ultra Low Power Mode can be used for Voice wakeup applications. Low power mode is ideally suited for digital MIC applications.

3.5 MIC detect

The MIC detect is used to detect whether a microphone is connected to the MICBIAS output. The detection is made internally to the MICBIAS block by determining current draw from the MICBIAS pin. The status of the Mic detect can be read from IRQ_STATUS.MICDET. Mic detection is triggered when MICBIAS voltage drops 25mV below MICBIAS1 value set by MICBIASLVL1.

3.6 Key Detect

Key detect is used to detect when a key is pressed on the microphone (e.g. to answer/end a call). In this mode, the MICBIAS output is shunted through an external $2k\Omega$ resistor to GND and a key detect inturupt status is set in **IRQ_STATUS.KEYDET** ,REG 0x10[11]. Key detection is triggered at 85mV reference to GND.

4. ADC Digital Block

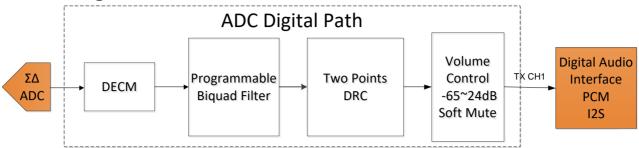


Figure 2 ADC Digital Path

The ADC digital block takes the output of the 24-bit Analog-to-Digital converter and performs signal processing aimed at producing a high quality audio sample stream to the audio path digital interface. The above figure shows the functional blocks associated with the ADC digital path.

This block can be enabled by using **ENA_CTRL.ADCEN**, REG 0x01[12]. Oversampling is used to improve noise and distortion performance without affecting the final audio sample rate. The **ADC_RATE**, REG 0x2B[1:0]can be used to set the ADC OSR and **SMPL_RATE**, REG 0x2B[7:5] should be set to the value closest to the actual sample rate. The polarity of the ADC output signal can be controlled independently. This data management feature can help minimize subsequent audio processing that may be otherwise required, as the data is passed through stages in the system.

The full-scale input level is proportional to V_{DDA} . For example, with a 1.8V supply voltage, the full-scale level is $1.0V_{RMS}$.

4.1 ADC Dynamic Range Compressors (DRC)

The ADC in the digital signal path is design with a a two-point dynamic range compressor (DRC) for advanced signal processing. The DRC can be programmed to limit the maximum output level and/or boost a low output level signal. The DRC function consists of level estimation and static curve control.

4.1.1 Level Estimation

The NAU88L11 uses Peak level estimation that depends on the attack and decay time settings, which can be programmable by register settings as in below table.

Вітѕ	DRC_PK_COEF1_ADC	DRC_PK_COEF2_ADC
0000	Ts	63*Ts
0001	3*Ts	127*Ts
0010	7*Ts	255*Ts
0011	15*Ts	511*Ts
0100	31*Ts	1023*Ts
0101	63*Ts	2047*Ts
0110	127*Ts	4095*Ts
0111	255*Ts	8191*Ts

Table 2: ADC Level Estimation - Attack and Decay Time Register Settings

Please note that Ts is the sampling time given by 1/(Sampling Frequency)

4.1.2 Static Curve

The DRC static curve supports up to five programmable sections as below figure.

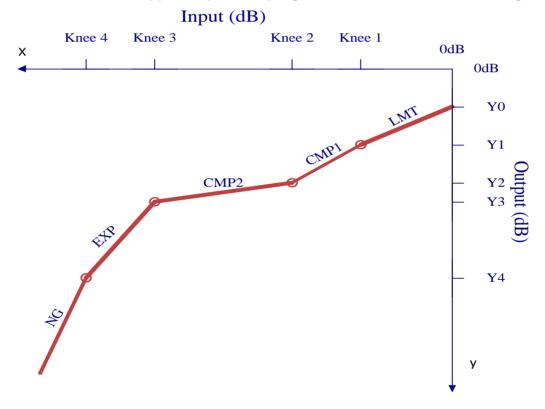


Figure 3 DRC Static Characteristic

Each section on the characteristic (labeled NG, EXP, CMP2, CMP1, and LMT) can be controlled by setting the slope and knee point values, in their respective registers.

The table below provides the corresponding register locations.

Static Curve Section	Slope	Knee Point
LMT	0, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1	
CMP1	0, 1/2, 1/4, 1/8, 1/16, 1	0 to -31dB with -1dB step
CMP2	0, 1/2, 1/4, 1/8, 1/16, 1	0 to -63dB with -1dB step
EXP	1, 2, 4	-18 to -81dB with -1dB step
NG	1, 2, 4, 8 s	-35 to -98dB with -1dB step

Table 3: ADC DRC Static Curve control registers

The output Y values can be determined based on the slopes and knee points selected. Y1 is always equal to Knee 1, as an initial and default condition.

```
Y1 = Knee 1
Y0 = Y1 - (Knee 1) * (LMT Slope)
Y2 = (Knee 2 - Knee 1) * (CMP1 Slope) + Y1
Y3 = (Knee 3 - Knee 2) * (CMP2 Slope) + Y2
Y4 = (Knee 4 - Knee 3) * (EXP Slope) + Y3
```

The attack time and decay time is programmable as shown in the Table 4. And the smooth knee filter can be also enabled by register setting.

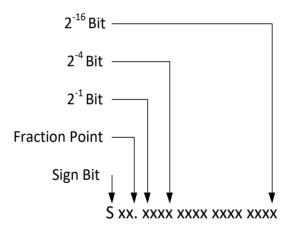
Application Notes:

- The Y axis distance adjusting along curve cannot exceed 36dB.
- Smooth Knee filter function can be enabled by using DRC_SMTH_ENA_ADC, REG 0x36[7].
- The attack time can be set using DRC_ATK_ADC,REG 0x39[7:4].
- The decay time can be set using DRC_DCY_ADC, REG 0x39[3:0]

Вітѕ	DRC_ATK_ADC	DRC_DCY_ADC
0000	Ts	63*Ts
0001	3*Ts	127*Ts
0010	7*Ts	255*Ts
0011	15*Ts	511*Ts
0100	31*Ts	1023*Ts
0101	63*Ts	2047*Ts
0110	127*Ts	4905*Ts
0111	255*Ts	8191*Ts
1000	511*Ts	16383*Ts
1001	1023*Ts	32757*Ts
1010	2047*Ts	65535*Ts
1011	4095*Ts	
1100	8191*Ts	

Table 4: ADC Attack and Decay Time Register Settings

4.2 ADC Digital Volume Control


The digital volume control feature allows adjustment of the audio volume coming from ADC using a two-stage volume control. This allows the gain to be adjusted from -66dB to +24dB in 0.5dB steps. Also included is a mute value that will reduce the output signal of the ADCs to zero To adjust the channel volume controls, use register: **DGAIN_ADC**, **REG 0x35[7:0]**.

4.3 ADC Programmable Biguad Filter

The NAU88L11 has 2 dedicated digital biquad filters. One for the ADC path, and another for the DAC path. The biquad filter is a second-order recursive linear filter with two poles and two zeros. Its transfer function is the Z-domain consists of two quadratic functions:

$$H(z) = \frac{B_0 + B_1 Z^{-1} + B_2 Z^{-2}}{1 + A_1 Z^{-1} + A_2 Z^{-2}}$$

The coefficients A₁, A₂, B₀, B₁, B₂ are represented in the 3.16 format described below

Each Biguad Coefficient has 19 bits in total, as formatted below

- S is the sign bit (1 bit),
- xx are integers (2bits)
- 16 fractional bits (16 bits)

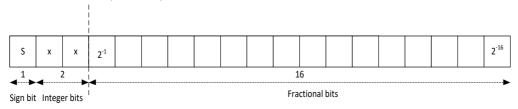


Figure 5: Number format description for biquad filters coefficients.

Application Notes:

- Biquad filter coefficients for the ADC with 3.16 format for A1, A2, B0, B1, and B3 are located in below registers.
 - o BIQ0 COF2.BIQ A1 H and BIQ0 COF1.BIQ A1 L
 - o BIQ0 COF4.BIQ A2 H and BIQ0 COF3.BIQ A2 L
 - o BIQ0 COF6.BIQ B0 H and BIQ0 COF5.BIQ B0 L
 - o BIQ0_COF8.BIQ_B1_H and BIQ0_COF7.BIQ_B1_L
 - o BIQ0_COF10.BIQ_B2_H and BIQ0_COF9.BIQ_B2_L
- To program the biquad filter in the ADC path, write BIQ0_COF1 to BIQ0 COF10 for coefficients.
- To turn on the biquad filter in the ADC path, write '1' to BIQ0 COF10.BIQ0 EN.

4.4 Additional ADC Application Notes

- CLK_ADC_PL, REG 0x03[10] sets the ADC clock polarity
- CLK_ADC_SRC, REG 0x03[7:6] can reduce the clock speed
- ADC_TX_SEL, REG 0x1B[3:2] allows ADC data be placed in selected time slots to output on the I²S interface
- It is recommended to match ADC_RATE, REG 0x2B[1:0] with CLK_ADC_SRC according to the table below

ADC_RATE	CLK_ADC_SRC
00(OSR=32)	11(CODEC 1/8)
01(OSR=64)	10(CODEC1/4)
10(OSR=128)	01(CODEC 1/2)
11(OSR=256)	00(CODEC CLK)

Table 5: ADC RATE and CLK ADC SRC Pairs

5. DAC Digital Block

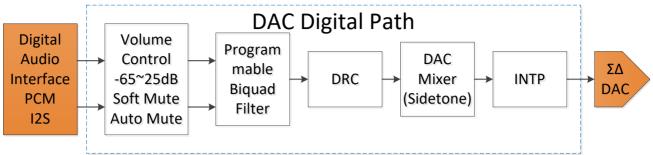


Figure 4 DAC Digital Path

The DAC digital block uses 24-bit signal processing to generate analog audio with a 16-bit digital sample stream input. This block consists of a sigma-delta modulator, programmable biquad filter, and a DRC. The full-scale output level is proportional to V_{DDA} . For example, with a 1.8V supply voltage, the full-scale level is 1.0 V_{RMS} . The oversampling feature of the DAC can be changed from 32x to 256x for improved audio performance at higher power consumption. The DAC output signal polarity can be changed using register setting. This can help minimize any audio processing that may be required as the data is passed from other stages of the system. The DAC channel is enabled by **DACEN**, REG 0x01[13]

5.1 DAC Digital Volume Control, Mute and Channel selection

The DAC has a digital volume controls that allow the user to adjust the gain from -66dB to +24dB in 0.5dB steps. **DGAIN_DAC**, REG 0x34[7:0]. Also included is a mute setting that will reduce the path gain to a minimum, control is through register DGAIN DAC. When using full scale input or DGAIN DAC above 0dB, it is performance recommended for best to set the DAC control bit. DAC_CTRL1.CICCLP_OFF as 0, and set DAC_CTRL1.CIC_GAIN_ADJ for optimal output amplitude.

5.2 DAC Soft Mute

The soft mute function works for both the DAC and the ADC and gradually attenuates the volume of the signal to zero. The soft mute ramps the DAC digital volume down to zero when enabled by register **SMUTE_EN**, REG0X31[9]. When disabled, the volume increases to the specified volume level. This soft mute feature provides for pop and click reduction in DAC signal path when the chip powers up.ADC soft mute features is controlled by **ADC_SMUTE_EN**.

5.3 DAC Auto Mute

This feature is implemented for DAC in NAU88L11. In the automatic mode, first the signal **AMUTE_EN**, REG 0x31[11] needs to be enabled. When 1024 consecutive zeros samples are detected, the analog mute signal is asserted and its status is written to **ANALOG_MUTE**, REG 0x59[10]. As soon as the first non-zero sample is detected, analog mute signal is de-asserted. If at any time there is a non-zero sample value, the DAC will be unmuted, and the 1024 count will be reinitialized to zero.

5.4 DAC Programmable Biquad Filter

Application Notes:

- Biquad filter coefficients for the DAC with 3.16 format for A1, A2, B0, B1, and B3 are located in below registers.
 - o BIQ1 COF2.BIQ A1 H and BIQ1 COF1.BIQ A1 L
 - o BIQ1 COF4.BIQ A2 H and BIQ1 COF3.BIQ A2 L
 - o BIQ1_COF6.BIQ_B0_H and BIQ1_COF5.BIQ_B0_L
 - BIQ1_COF8.BIQ_B1_H and BIQ1_COF7.BIQ_B1_L
 - o BIQ1_COF10.BIQ_B2_H and BIQ1_COF9.BIQ_B2_L
- To program the biquad filter in the DAC path, write BIQ1_COF1 to BIQ1_COF10 for coefficients.

To turn on the biquad filter in the DAC path, write '1' to **BIQ1_COF10.BIQ1_EN**.

5.5 DAC Dynamic Range Control (DRC)

The DAC DRC functions in the same way as the ADC DRC explained in Section 4.1. However, different control registers are used.

5.5.1 Level Estimation

The Table 6 shows the attack and decay times for the peak level estimation. And, the time constant Ts is the the sampling time given by 1/(Sampling Frequency).

Вітѕ	DRC_PK_COEF1_ADC	DRC_PK_COEF2_ADC
0000	Ts	63*Ts
0001	3*Ts	127*Ts
0010	7*Ts	255*Ts
0011	15*Ts	511*Ts
0100	31*Ts	1023*Ts
0101	63*Ts	2047*Ts
0110	127*Ts	4095*Ts
0111	255*Ts	8191*Ts

Table 6: DAC Level Estimation Attack and Decay Time Register Settings

5.5.2 Static Curve

The DRC static curve supports five programmable sections, and slope and knee points can be configured as shown in the Table 7.

Static Curve Section	Slope	Knee Point
LMT	0, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1	
CMP1	0, 1/2, 1/4, 1/8, 1/16, 1	0 to -31dB with -1dB step
CMP2	0, 1/2, 1/4, 1/8, 1/16, 1	0 to -63dB with -1dB step
EXP	1, 2, 4, 8	-18 to -81dB with -1dB step
NG	1, 2, 4, 8	-35 to -98dB with -1dB step

Table 7: DAC DRC Static Curve Control Registers

The Table 8 shows the attack and decay time for DRC. And, it needs to be carefully used combination with cross talk function because DRC is the last blocks in the path after mixer. Small cross-talk signal might be filtered out by DRC. The smooth knee function can be also enabled by register setting.

Вітѕ	DRC_ATK_DAC	DRC_DCY_DAC
0000	Ts	63*Ts
0001	3*Ts	127*Ts
0010	7*Ts	255*Ts
0011	15*Ts	511*Ts
0100	31*Ts	1023*Ts
0101	63*Ts	2047*Ts
0110	127*Ts	4095*Ts
0111	255*Ts	8191*Ts
1000	511*Ts	16383*Ts
1001	1023*Ts	32757*Ts
1010	2047*Ts	65535*Ts
1011	4095*Ts	
1100	8191*Ts	

Table 8: DAC Static Curve Attack and Delay Time Register Settings

Application Notes:

- Smooth Knee function can be enabled by DRC_SMTH_ENA_DAC, REG 0x3A[7].
- The attack time can be set using DRC_ATK_DAC, REG 0x3D[7:4].
- The decay time can be set using DRC_DCY_DAC, REG 0x3D[3:0].
- DRC needs to be carefully used combination with cross talk function because DRC is the last blocks in the path after mixer. Small cross-talk signal might be filtered out by DRC.

5.6 DAC Path with Sidetone

The ADC input channel and I2S channel are capable of being mixed into the output of the DAC. The figure below shows a block diagram of how this works along with the related registers

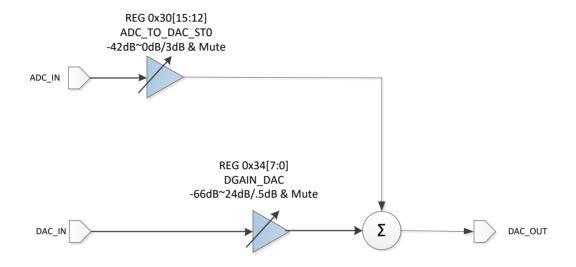


Figure 5 DAC Path Digital Mixer with Sidetone

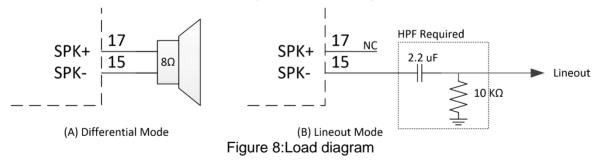
DAC channel sidetone calculation:
DAC Mixer = DAC Data * DGAIN_DAC + ADC Data * ADC_TO_DAC_ST0

5.7 Speaker Output

The NAU88L11 features a differential speaker output (SPKOUT+ and SPKOUT-). The speaker amplifier is designed to drive a load differentially; a configuration referred to as Bridge-Tied Load (BTL). The gain of the speaker driver can be controlled in steps of 0.4dB from 0 to 5.6dB using **SPK_GAIN_CNTRL**, REG 0x52[3:0].

The differential speaker outputs can drive a single 8Ω speaker or two headphone loads of 16Ω or 32Ω or a line output. Driving the load differentially doubles the output voltage. The output of the speaker can be manipulated by changing attenuation and the volume (loudness of the output signal).

The output stage is powered by the speaker supply, VDDSPK, which are capable of driving up to $2.0 V_{RMS}$ signals (equivalent to $4 V_{RMS}$ into a BTL speaker). The speaker outputs can be controlled and can be muted individually. The output pins are at reference DC level when the output is muted.



5.8 Lineout Configuration

The Class AB amplifier includes a control circuit used in Lineout mode to precharge the amplifier output to the common mode voltage VCM (default 1.65V @ 3.3V). The precharge control smoothly charges the amplifier output towards VCM with negligible pop noise. Below is the code sequence to enable the precharge control and charge the output to VCM level with minimum pop noise.

Step	REG	Value	Comments
1	0076	2000	[13] = 1 to keep slow rising V _{REF}
2	002C	0072	[7:4] = 0x7 to turn on CIC and set CIC_GAIN_ADJ = x7, OSR128
	DELAY		//600ms by I ² C dummy write
3	0073	1108	[12] = 1 to enable DAC, [8] = 1 to enable DAC clock, [3:2] = 2'b10 to select DAC V_{REF} = 1.61 V
4	0066	0062	[6] = 1 to enable VMID, [5:4]= 1,0 VMID tie-off selection options
5	0076	3000	[13] = 1 to keep slow rising V _{REF} ; [12] = 1 for global bias enable
6	0051	0220	[9:6] VCM = 1.65V, [5] = 1 to enable VCM buffer, [4] = 0 to enable precharge, [3:2] = 2'b00 R-bias
7	DELAY		//600ms by I ² C dummy write
8	0001	3FC2	enable DAC, ADC in digital domain
9	8000	8000	[15] = 1 to power up the V _{REF} buffer
10	0052	00A0	[5] = 1 to power up the main speaker driver, [3:0] = 0 for gain
11	0051	220	[4] = 1 to disable precharge

Table 9 Lineout configuration for minimizing pop/click noise

With the above sequence,the rise time is a function of C_{ext} and can be approximated by the equation $t_{rise} = 1 + 27*10^{4*}C_{ext}$ (example: for $C_{ext} = 2.2 uF$, $R_L = 10 k$, the rise time is ~ 1.6 secs).

5.9 Speaker Driver Short Circuit Protection

The short circuit protection is enabled by default with **DISABLE_SHRT_DET**, REG 0x76[6] set to 0.

When a ground short is detected, the chip starts limiting the short circuit current locally in the output driver. If FS clock is running and there is a short present, the **APR_EMERGENCY_SHUTDOWN** will be generated and the output driver will be in shut-down mode. If FS is not running, then the output driver will stay in the limiting mode when there is a short. A short to VDD will also activate the limiting-mode protection and may trigger an interrupt flag. INT will only be generated if MCLK is running.

When a short is detected, a short_detect signal is generated and sent to the APR digital block. After T1(2.FS) cycles, the apr_em_shutdown is generated and turns off the output driver. Then a counter is started and the driver is kept in the power-down mode for T2(2048.FS) cycles. The counter time is a function of FS clock frequency which is from 8KHz (min) to 96kHz (max). At the end of time T2, if a short is still present, the operation will restart the timer and the cycle is repeated. The user can read the APR_EMRG_SHTDWN, REG 0x10[9], short detect interrupt flag status bit. After reading, the interrupt flag the status can be cleared by writing to register INT CLR KEY STATUS[9].

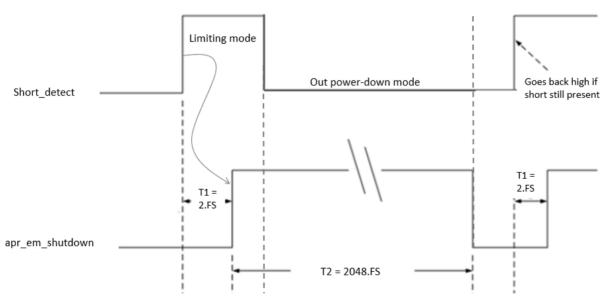


Figure 6 Speaker driver short-circuit protection timing

5.10 Companding

Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit rates using non-linear algorithms. The NAU88L11 supports the two main telecommunications companding standards on both transmit and receive sides: A-law and μ -law. The A-law algorithm is primarily used in European communication systems and the μ -law algorithm is primarily used by North America, Japan, and Australia.

Companding converts 14 bits (μ -law) or 13 bits (A-law) to 8 bits using non-linear quantization resulting in 1 sign bit, 3 exponent bits and 4 mantissa bits. When the companding mode is enabled, 8 bit word operation must be enabled.

Below two subsections contain the compression equations set by the ITU-T G.711 standard and implemented in the NAU88L11.

Both NAU88L11 ADC, DAC path supports companding format control.

- ADC: I2S PCM CTRL1. ADCCM0
- DAC: I2S_PCM_CTRL1.DACCM0

5.10.1 μ -law

$$F(x) \qquad -1 < x < 1$$

$$= \frac{\ln(1 + \mu \times |x|)}{\ln(1 + \mu)},$$

$$\mu = 255$$

5.10.2 A-law

$$F(x)$$

$$= \frac{A \times |x|}{(1 + \ln(A))'}$$

$$F(x)$$

$$= \frac{(1 + \ln(A \times |x|)}{(1 + \ln(A))}, \qquad \frac{1}{A} \le x \le 1$$

$$A = 87.6$$

6. Power Up and Start Sequence

The power up sequence to bring up the analog blocks smoothly is illustrated below and involves three different time segments (T1 - T3). The power supply ramp rate depends on a number of factors such as the power source drive strength, board parasitics and the decopling capacitor size on the supply line. Typically, a power supply ramp time can be as fast as 5mS or as slow as 200mS.

During time T1, the power supply ramps-up. The internal PORB reset is generated when V_{DDA} is lower than 1.1V for reliable maintenance of internal logic circuits. While PORB signal is low, it clears internal digital flops. Most of the flops will be cleared to '0' while some flops can be set to '1' during the PORB pulse depending on the required default state of the register.

After time T1, wait another time 1mS so that the power supply is stable before writing to the registers. During time T2, the chip is in stand-by mode and all registers are in a default state. In stand-by, the chip only consumes leakage current and all analog blocks are turned-off. At time T3, the user can start to write data into the registers via the I2C serial bus to setup the chip for their application.

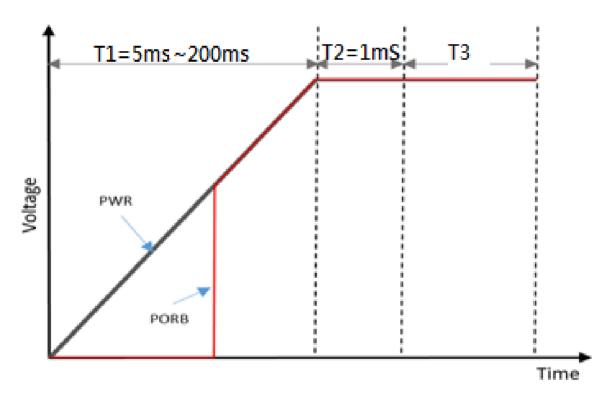


Figure 7 Power Up Sequence

6.1 Basic Register Sequence

The following register sequence in the table below is a general guide to help setup the NAU88L11. This can be done after time T3 shown in Figure above following the power up sequence.

Below sequence is based on MCLK = 12.288MHz, FS=48KHz, with MIC enabled to ADC, Sidetone to DAC/SPK, and I2S to DAC/SPK features enabled.

Function	Register Name	REG	Value	Config Comment	Default Setting		
	Power Up						
Power Setting	SOFTWARE RST 0000 000000 Software Reset				0x0000		
	MCU	delay 10	ms				
ADC Path	MUTE_CTRL	0x31	0x0200	SMUTE_EN =1 (ADC soft-mute)	0x0000		
DAC Path	DAC_CTRL1	0x2C	0x0072	CIC_GAIN_ADJ = 3b'111 (fine tuning DAC output glich)	0x0082		
			ADC	C/DAC Path			
DAC Path	VCM_BUF	0x51	0x0230	PDB_VCMBUF = 1 (VCM buffer Power Up) VOUT_PRECHG_ DISABLE = 1 (Output VCM precharge disable)	0x0210		
DAC Path	SPK_DRV	0x52	0x00AB	PUP_MAIN_DRV = 1 (main speaker driver Power Up) SPK_GAIN_CNTRL = 4b'1011 (SPK 4-bit gain = 4.4dB)	0x0080		
ADC Path	BIAS_ADJ	0x66	0x0060	VMIDEN=1 (VMID enable) VMIDSEL=2b'10 (VMID 125k ohm)	0x0000		
DAC Path	SPARE_ ANALOG1	0x69	0x0020	THD_BOOST = 1 (thd_boost path enable)	0x0000		
ADC Path	ANALOG_ADC_2	0x72	0x0140	PDNOT = 1 (ADC Power Up)	0x0100		
DAC Path	DAC	0x73	0x1108	DAC_EN = 1 (DAC enable) CLK_DAC_EN = 1 (DAC clock enable)	0x0008		
ADC Path	MIC_BIAS	0x74	0x0104	POWERUP = 1 (MICBIAS Power Up)	0x0004		
Power Setting	BOOST	0x76	0x3040	STG2_SEL = 1 (PGA in class A mode) PDVMDFST = 1 (VMID Pre-charge disable) BIASEN = 1 (Global Analog Bias enable)	0x0040		
ADC Path	PGA_GAIN	0x7E	0x0B00	PGA_GAIN = 6b'001011 (PGA gain 10dB)	0x0000		
ADC Path	POWER_ UP_ CONTROL	0x7F	0x8000	PUPL = 1 (PGA Power Up)	0x0000		

Function	Register Name	REG	Value	Config Comment	Default Setting
Audio System Control System					
Power Setting	ENA_CTRL	0x01	0x3FC6	DACEN = 1 (DAC enable) ADCEN = 1 (ADC enable) DCLK_ADC_EN = 1 (ADC clock enable) DCLK_DAC_EN = 1 (DAC clock enable) CLK_BIST_EN = 1 (BIST clock Enable) CLK_I2S_EN = 1 (I2S clock enable) CLK_DRC_EN = 1 (DRC clock enable) MCLK_RNG_SEL = 3b'000 (15.74MHz or lower frequency) SYSCLK_SEL = 0 (SYSCLK = 1*MCLK)	0x03FE
Clock Setting	CLK_DIVIDER	0X03	0x0050	CLK_ADC_SRC = 2b'01 (Scaling for ADC clock from MCLK_INT – div by 1) CLK_DAC_SRC = 2b'01 (Scaling for DAC clock from MCLK_INT – div by 1) MCLK_DIV = 3b'000 (Scaling for MCLK_INT from SYSCLK_SRC – div by 1)	0x0050
ADC Path	ADC_DGAIN_CTRL	0x30	0xF000	ADC_TO_DAC_ST0 = 4b'1111 (ADC to DAC Sidetone = 0dB)	0x0000
ADC Path	MUTE_CTRL	0x31	0x0000	SMUTE_EN =0 (ADC soft-unmute)	0x0000

Table 10 Reference Setup Sequence

6.2 Clock Detection

The NAU88L11 includes a Clock Detection circuit that can be used to enable and disable the audio path, based on an initialized audio path setting. If MCLK is detected on the input, a status flag in **MCLK_DET_INT**, REG 0x10[5] will be set, when MCLKDETECT signal going active, as described by the block diagram below.

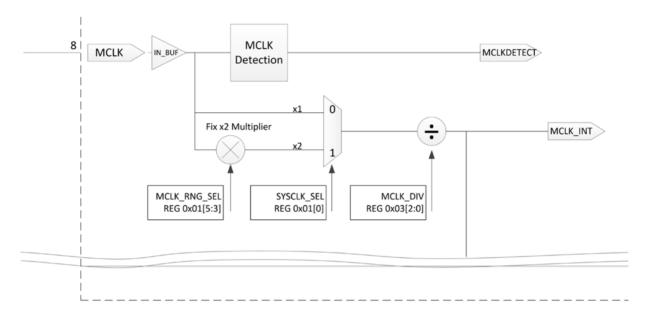


Figure 8 NAU88L11 Clock Detection

For MCLK/FS input pin in slave mode, the range of input frequency are defined here.

Input Signal	Pin Name	Min	Max	Unit
Frame Sync	FS	8	96	kHz
Master Clock	MCLK	2.048	24.576	MHz

Table 11 Range of MCLK/FS for Slave Mode

System design should be checked that MCLK/FS adhere to the frequency range, then follow the later section to pick out the correct setting, and supported combinations.

From MCLK input pin, the MCLK signal can be routed for two path, controlled by SYSCLK_SEL, REG 0x01[0]. Aside from the direct path (x1), the multipler path applies a fix multiplier to double the MCLK frequency. In order to adjust for 50% duty cycle, MCLK_RNG_SEL, REG 0x01[5:3] is a required frequency range setting while the multipler path is selected. The MCLK input frequency range is divided into three band, from 2.048MHz~ 15.74MHz, 15.74MHz ~ 21.6MHz, 21.6MHz to 24.576MH by setting MCLK_RNG_SEL.

6.3 MCLK / FS Clock Setting in Slave Mode

For slave mode, the NAU88L11 can accept exteral clocks from MCLK/FS input pin. Based on the MCLK and FS input with internal logic to derive MCLK_INT, and CLK_DAC, CLK_ADC for related internal ADC/DAC, DSP, Digital Audio Interface and other internal subsystems.

The figure below provides the full clock distribution diagram, and the key registers are liste here:

- MCLK_DIV, REG 0x03[2:0]
- CLK)CODEC_SRC, REG 0x03[13]
- CLK_ADC_SRC, REG 0x03[7:6]
- CLK DAC SRC, REG 0x03[5:4]

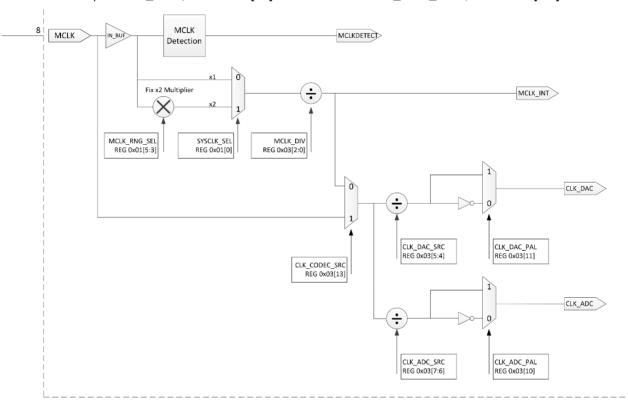


Figure 9 NAU88L11 MCLK and Clock Distribution

The NAU88L11 Clock distribution and subsystem is design to minize design effort with simplified setting. The relationship of MCLK/FS input frequency combianations will be described in details below.

The MCLK/FS input frequency range is described in previous section where MCLK input frequency should be between 2.048MHz ~ 24.567MHz. And, FS should be between 8KHz ~ 96KHz.

The internal clock distribution of NAU88L11 is designed support 3 MCLK_INT/FS ratios, which are 256, 400, 500. Please note MCLK_INT refers to the internal MCLK frequency after MCLK Divider. This means the MCLK/FS input frequency combation should consider the Multiplier/direct path selected by **SYSCLK_SEL**, and also the **MCLK_DIV** divider.

Below table are the key criterion for MCLK/FS input frequencies supported organized by the MCLK INT/FS Ratio into 3 group.

Group1: MCLK_INT/FS Ratio of 256	
SYSCLK_SEL set x1 path	
Target FS	8/16/2444.1/96KHz
MCLK	Target FS * MCLK_DIV*256
Register Related	MCLK_DIV, SYSCLK_SEL
SYSCLK_SEL set x2 path	
Target FS	8/16/2444.1/96KHz
MCLK	Target FS * MCLK_DIV*256/2
Register Related	MCLK_DIV, MCLKSEL, SYSCLK_SEL
Group2: MCLK_INT/FS Ratio of 400	
SYSCLK_SEL set x1 path	
Target FS	8/16/2444.1/96KHz
MCLK	Target FS * MCLK_DIV*400
Register Related	MCLK_DIV, SYSCLK_SEL CLK_ADC_SRC, CLK_DAC_SRC must set as 1/4
SYSCLK_SEL set x2 path	
Target FS	8/16/2444.1/96KHz
MCLK	Target FS * MCLK_DIV*400/2
Register Related	MCLK_DIV, MCLKSEL, SYSCLK_SEL CLK_ADC_SRC, CLK_DAC_SRC must set as 1/4
Group 3: MCLK_INT/FS Ratio of 500	
SYSCLK_SEL x1/x2	
Notes	 Support list is provided in appendix No need to set CLK_DAC_SRC, CLK_DAC_SRC is fixed
Register Related	MCLK_DIV, MCLKSEL, SYSCLK_SEL

Table 12 Criterion for supported MCLK/FS for slave mode

Following above table, one more limit is added, which is from generating CLK_ADC, CLK_DAC, which should be less than or equal to 6.144MHz.

- CLK_DAC = MCLK_INT * CLK_DAC_SRC
- CLK_ADC = MCLK_INT * CLK_ADC_SRC

Following the above 3 group of criterion to pick out the correct MCLK/FS combinations is essential for system design. A full list of supported MCLK/FS combinations and related settings can be found in the apptediex section for Group 1~3.

6.4 ADC/DAC Oversampling Rate

ADC/DAC Oversample rate setting is used in the NAU88L11 ADC/DAC blocks beyond the CLK_DAC, CLK_ADC signal described in previous clock distribution figure.

The the conditions to set **OSR_ADC_RATE**, **OSR_DAC_RATE** for MCLK_INT/FS ratio of 256 is listed below.

- CLK_ADC = OSR_ADC_RATE * FS (<=6.144MHz)
- CLK DAC = OSR DAC RATE * FS (<=6.144MHz)

For MCLK_INT/FS ratios of 400/500, oversample rate is fixed as 100, therefore no need to set OSR_ADC_RATE/OSR_DAC_RATE

Example 1:

MCLK=24.576MHz, FS=96KHz

- The Ratio here is picked as 24.576MHz = 256 * 96KHz
 - SYSCLK_SEL can be set either x1 or x2 path
 - For x1 path, MCLK_DIV is set as divid by 1, MCLK_INT=24.576MHz
 - For x2 path, MCLK_DIV is set as divid by 2, MCLK_INT=24.575MHz
- Based on CLK_ADC = MCLK_INT * CLK_ADC_SRC (<=6.144MHz)
 - Avialble OSR_ADC_RATE option for each CLK_ADC_SRC are listed below in Green for each CLK_ADC
 - For CLK_ADC as 6.144MHz, the ORS_ADC_RATE should be set as 64, so the clock would match as below table in green
 - For CLK_ADC as 3.072 MHz, the ORS_ADC_RATE should be set as 32, so the clock would match as below table in green

		CLK_ADC=MCLK_INT*CLK_ADC_SRC (<=6.144MHz)				
		24.576	12.288 6.144			
Hz)	32	-	-	3.072	3.072	
FS*OSR (<=6.144MHz)	64	-	-	6.144	6.144	
	128	-	-	12.288	12.288	
	256	-	-	24.576	24.576	

Example 2:

MCLK=19.2MHz, FS=32KHz

- The Ratio here is picked as MCLK_INT 12.8MHz = 400 * 32KHz
 - SYSCLK_SEL is set as x2 path
 - For x2 path, MCLK_DIV is set as divid by 3, MCLK_INT=12.8MHz
- With MCLK INT/FS Ratio of 400.
 - o CLK_ADC_SRC/CLK_DAC_SRC must be set as divid by 4.
 - No need to set OSR_ADC_RATE/OSR_DAC_RATE

7. Control Interfaces

The NAU88L11 includes a serial control bus that provides access to all the device control registers, it may be configured as a 2-wire interface that conforms to industry standard implementations of the I²C serial bus protocol.

7.1 2-Wire-Serial Control Mode (I²C Style Interface)

The 2-wire bus is a bidirectional serial bus protocol. This protocol defines any device that sends data onto the bus as a transmitter (or master), and any device receiving data as the receiver (or slave). The NAU88L11 can function only as a slave when in the 2-wire interface configuration.

7.2 2-Wire Protocol Convention

All 2-Wire interface operations must begin with a START condition, which is a HIGH-to-LOW transition of SDIO while SCLK is HIGH. All 2-Wire interface operations are terminated by a STOP condition, which is a LOW to HIGH transition of SDIO while SCLK is HIGH. A STOP condition at the end of a read or write operation places the device in a standby mode.

An acknowledge (ACK), is a software convention used to indicate a successful data transfer. To allow for the ACK response, the transmitting device releases the SDIO bus after transmitting eight bits. During the ninth clock cycle, the receiver pulls the SDIO line LOW to acknowledge the reception of the eight bits of data.

Following a START condition, the master must output a device address byte. This consists of a 7-bit device address, and the LSB of the device address byte is the R/W (Read/Write) control bit. When R/W=1, this indicates the master is initiating a read operation from the slave device, and when R/W=0, the master is initiating a write operation to the slave device. If the device address matches the address of the slave device, the slave will output an ACK during the period when the master allows for the ACK signal.

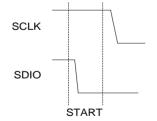


Figure 10 Valid START Condition

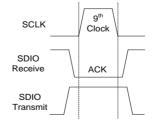


Figure 11 Valid Acknowledge

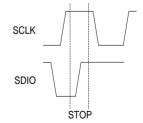


Figure 12 Valid STOP Condition

Please Note:

Sometimes, I²C needs to use level shifter between different supplies domains.
During Acknowledge as below figure, receiver side (CODEC) will pull low, and
transmit side (MCU) is disable and pull high by pull high resistor. Because
NAU88L11 SDIO can sink 2mA by default setting (maximum up to 8mA,) shown
as below Error! Reference source not found., RPU1 and RPU2 need to be select

such that total current V_{DDB}/R_{PU1}+ VDD_MCU/R_{PU2} during Acknowledge should not be too large to exceed SDIO sinking capability.

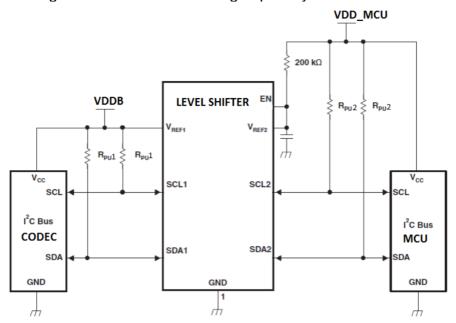


Figure 13 Typical I2C level shifter circuit

7.3 2-Wire Write Operation

A Write operation consists of a three-byte instruction followed by one or more Data Bytes. A Write operation requires a START condition, followed by a valid device address byte with R/W=0, a valid control address byte, data byte(s), and a STOP condition. The Device Address of the NAU88L11 is fixed to 0x1B. If the Device Address matches this value, the NAU88L11 will respond with the expected ACK signaling as it accepts the data being transmitted to it.

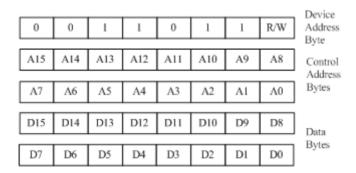


Figure 14 Slave Address Byte, Control Address Byte, and Data Byte

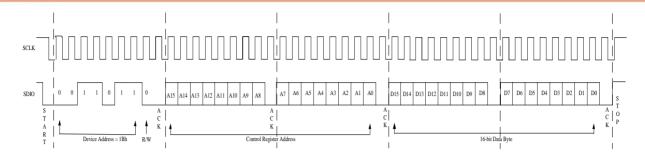


Figure 15 2-Wire Write Sequence

7.4 2-Wire Read Operation

A Read operation consists of a three-byte Write instruction followed by a Read instruction of one or more data bytes. The bus master initiates the operation issuing the following sequence: a START condition, device address byte with the R/W bit set to "0", and a Control Register Address byte. This indicates to the slave device which of its control registers is to be accessed.

If the device address matches this value, the NAU88L11 will respond with the expected ACK signaling as it accepts the Control Register Address being transmitted into it. After this, the master transmits a second START condition, and a second instantiation of the same device address, but now with R/W=1.

After again recognizing its device address, the NAU88L11 transmits an ACK, followed by a two byte value containing the 16 bits of data from the selected control register inside the NAU88L11.

During this phase, the master generates the ACK signaling with each byte transferred from the NAU88L11. If there is no STOP signal from the master, the NAU88L11 will internally auto-increment the target Control Register Address and then output the two data bytes for this next register in the sequence.

This process will continue as long as the master continues to issue ACK signaling. If the Control Register Address being indexed inside the NAU88L11 reaches the value 0xFFFF (hexadecimal) and the value for this register is output, the index will roll over to 0x0000. The data bytes will continue to be output until the master terminates the read operation by issuing a STOP condition.

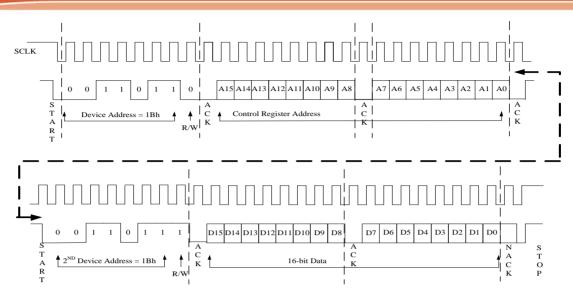


Figure 16 Two-wire Read Sequence

7.5 Digital Serial Interface Timing

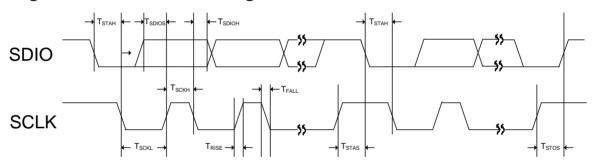


Figure 17 Two-wire Control Mode Timing

Symbol	Description	min	typ	max	unit
Тѕтан	SDIO falling edge to SCLK falling edge hold timing in START / Repeat START condition	600	-	-	ns
TSTAS	SCLK rising edge to SDIO falling edge setup timing in Repeat START condition	600	-	-	ns
T _{STOS}	SCLK rising edge to SDIO rising edge setup timing in STOP condition	600	-	-	ns
Тѕскн	SCLK High Pulse Width	600	-	-	ns
Tsckl	SCLK Low Pulse Width	1,300	-	-	ns
T _{RISE}	Rise Time for all 2-wire Mode Signals	-	1	300	ns
T _{FALL}	Fall Time for all 2-wire Mode Signals	-	ı	300	ns
T _{SDIOS}	SDIO to SCLK Rising Edge DATA Setup Time	100	ı	-	ns
T _{SDIOH}	SCLK falling Edge to SDIO DATA Hold Time	0	-	600	ns

Table 13 2-Wire Serial Interface Timing

7.6 Software Reset

The NAU88L11 and all of its control registers can be reset to "default", initial conditions by writing any value to REG 0x00 using the two-wire interface mode.

7.7 I²C Addresses

The NAU88L11 has 7 bits assigned to the device for I²C address, the eighth bit of the command byte is a R/W bit. The 7 I²C address bits are hard coded by metal layer internal to the device. The default set for read and write is shown below:

	Bit<6>	Bit<5>	Bit<4>	Bit<3>	Bit<2>	Bit<1>	Bit<0>	R/W
Read Address	0	0	1	1	0	1	1	1
Write Address	0	0	1	1	0	1	1	0

Table 14 I²C Adress Table

8. Digital Audio Interfaces

The NAU88L11 can be configured as either the master or the slave, by setting register **MS0**, in REG 0x1D[3], to 1 for master mode and to 0 for slave mode. Slave mode is the default if this bit is not written. In master mode, NAU88L11 outputs both Frame Sync (FS) and the audio data bit clock (BCLK) and has full control of the data transfer. In the slave mode, an external controller supplies BCLK and FS. Data is latched on the rising edge of BCLK; SDO clocks out ADC data, while SDI clocks in data for the DACs.

When not transmitting data, SDO pulls LOW in the default state. Depending on the application, the output can be configured to pull up or pull down. When the time slot function is enabled (see below), there are additional output state modes including controlled tristate capability. NAU88L11 supports five audio formats; left justified, I2S, PCMA, PCMB, and PCM Time Slot. Below table shows digital audio interface modes

PCM Mode	I2S_PCM_CTRL1.AIFMT0 REG 0x1C[1:0]	I2S_PCM_CTRL1.LRP0 REG 0x1C[6]	I2S_PCM_CTRL2.PCM_TS_EN0 REG 0x1D[10]
Left Justified	01	0	0
I ² S	10	0	0
PCMA	11	0	0
PCMB	11	1	0
PCM Time Slot	11	Don't care	1

Table 15 Digital Audio Interface Support Modes

8.1 Right-Justified Audio Data

In right-justified mode, the LSB is clocked on the last BCLK rising edge before FS transitions. When FS is HIGH, channel_0 data is transmitted and when FS is LOW, channel_1 data is transmitted. This can be seen in the image below.

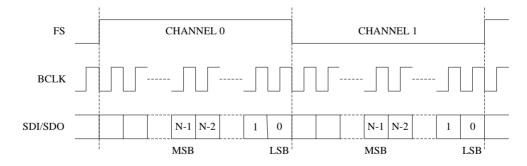


Figure 18 Right-Justified Audio Interface

8.2 Left-Justified Audio Data

In left-justified mode, the MSB is clocked on the first BCLK rising edge after FS transitions. When FS is HIGH, channel_0 data is transmitted and when FS is LOW, channel_1 data is transmitted. This can be seen in the figure below.

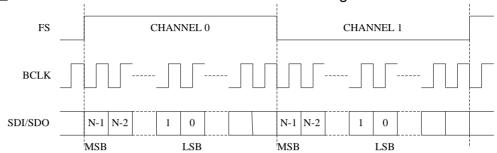


Figure 19 Left-Justified Audio Interface

8.3 I2S Audio Data

In I²S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, left channel data is transmitted and when FS is HIGH, right channel data is transmitted. This can be seen in the figure below.

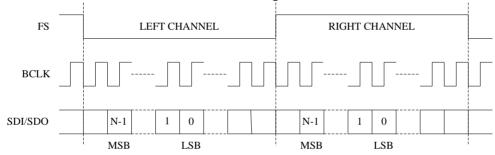


Figure 20 I2S Audio Interface

8.4 PCMA Audio Data

In the PCM A mode, channel 0 data is transmitted first followed immediately by channel 1 data. The channel 0 MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and channel 1 MSB is clocked on the next BCLK after the left channel LSB. This can be seen in the figure below.

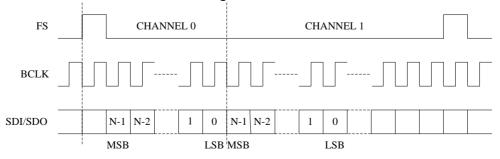


Figure 21 PCMA Audio Interface

8.5 PCMB Audio Data

In the PCMB mode, channel_0 data is transmitted first followed immediately by channel_1 data. Channel 0 MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and channel_1 MSB is clocked on the next BCLK after channel_0 LSB. This can be seen in the figure below.

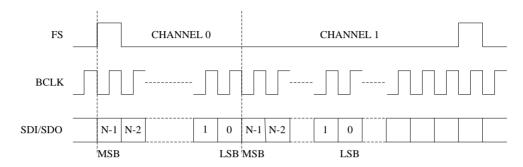


Figure 22 PCMB Audio Interface

8.6 PCM Time Slot Audio Data

The PCM time slot mode is used to allocate different time slots for ADC and DAC data. This can be useful when multiple NAU88L11 chips or other devices are sharing the same audio bus. This will allow each chip audio to be delayed around each other without interference.

Normally, the DAC and ADC data are clocked immediately after the Frame Sync (FS), however, in the PCM time slot mode; the audio data can be delayed by left / right channel PCM time slot start value in the registers.

These delays can be seen before the MSB in the figure below.

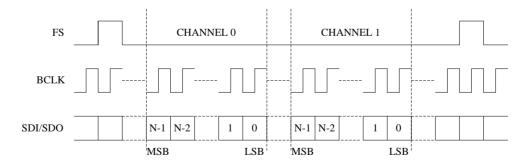


Figure 23 PCM Time Slot Audio Interface

The PMC time slot mode can be also used to swap channel 0 and channel 1 audio or cause both channels to use the same data. When using the NAU88L11 with other driver chips, the SDO pin can be set to pull up or pull down or high impedance during no transmission. Tri-stating on the negative edge allows the transmission of data by multiple sources in adjacent timeslots with reduced risk of bus driver contention.

8.7 TDM I2S Audio Data

In I²S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, channel_0 then channel_2 data is transmitted and when FS is HIGH, channel_1 then channel_3 data is transmitted. This is shown in the figure below.

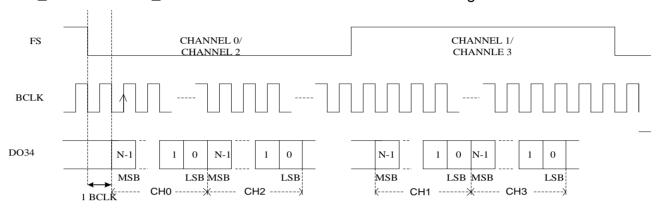


Figure 24 TDM I2S Audio Format

8.8 TDM PCMA Audio Data

In the PCMA mode, channel_0 data is transmitted first followed sequentially by channel_1, 2, and 3 immediately after. The channel_0 MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and the subsequent channel's MSB is clocked on the next BCLK after the previous channel's LSB. This is shown in the figure below.

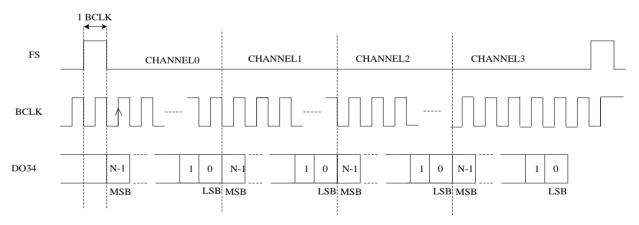


Figure 25 TDM PCMA Audio Format

8.9 TDM PCMB Audio Data

In TDM PCMB mode, channel_0 data is transmitted first followed immediately by channel_1 data. The channel_0 MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and channel_1 MSB is clocked on the next SCLK after channel_0 LSB.

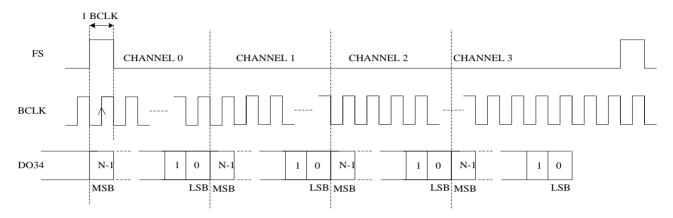


Figure 26 TDM PCMB Audio Format

8.10 TDM PCM Offset Audio Data

The PCM offset mode is used to delay the time at which DAC data is clocked. This increases the flexibility of the NAU88L11 to be used in a wide range of system designs. One key application of this feature is to enable multiple NAU88L11 or other devices to share the audio data bus, thus enabling more than four channels of audio. This feature may also be used to swap channel data, or to cause multiple channels to use the same data.

Normally, the DAC data are clocked immediately after the Frame Sync (FS). In this mode audio data is delayed by a delay count specified in the device control registers. The channel 0 MSB is clocked on the BCLK rising edge defined by the delay count set in .This can be seen in the figure below.

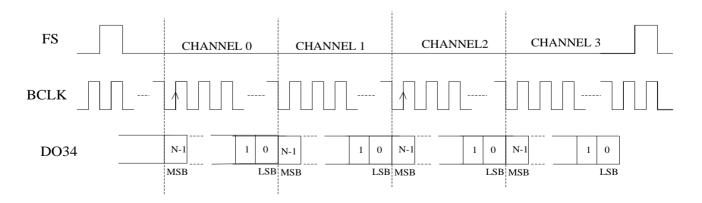


Figure 27 TDM PCM Offset Audio Format

8.11 Digital Audio Interface Timing Diagrams

8.11.1 Digital Audio Interface Slave Mode

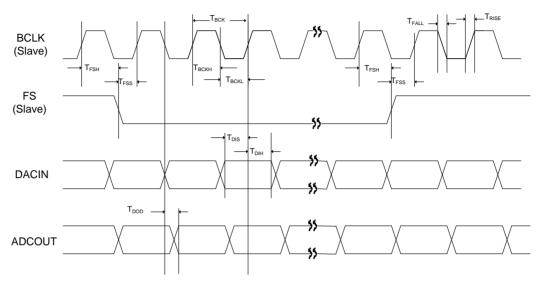


Figure 28 Audio Inteface Mode Slave Timing

Symbol	Description	min	typ	max	unit
T _{BCK}	BCLK Cycle Time in Slave Mode	50	-	-	ns
Твскн	BCLK High Pulse Width in Slave Mode	20	-	-	ns
T _{BCKL}	BCLK Low Pulse Width in Slave Mode	20	-	-	ns
T _{FSS}	FS to BCLK Rising Edge Setup Time in Slave Mode	20	-	-	ns
T _{FSH}	BCLK Rising Edge to FS Hold Time in Slave Mode	20	-	-	ns
T _{RISE}	Rise Time for All Audio Interface Signals	-	-	0.135Твск	ns
T _{FALL}	Fall Time for All Audio Interface Signals	-	-	0.135Твск	ns
T _{DIS}	DACIN to BCLK Rising Edge Setup Time	15	-	-	ns
T _{DIH}	BCLK Rising Edge to DACIN Hold Time	15	-	-	ns
T _{DOD}	BCLK Falling Edge to ADCOUT Delay Time (Master Node)	-	-	20	ns
	BCLK Falling Edge to ADCOUT Delay Time (Slave Node)	-	-	30	ns

Table 16 Audio Interface Slave Mode Timing Parameters

9. Control and Status Registers

										Bi	t							Description
REG	Function	Name	[1	15	.12	ı		11.	8]			[7	4]			[3	0]	
0	SOFTWARE_RST	SOFTWARE_RESET																Software Reset (Write any value once to reset all the registers.)
		CMLCK_ENB																PGA Common Mode Lock Enable Control 0 = Enable (DEFAULT) 1 = Disable
		CLK_DAC_INV																DAC Clock Inversion In Analog Domain Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DACEN																DAC Enable Control 0 = Disable (DEFAULT) 1 = Enable
		ADCEN																ADC Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DCLK_ADC_EN																ADC Clock Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DCLK_DAC_EN																DAC Clock Enable Control 0 = Disable (DEFAULT) 1 = Enable
1	ENA_CTRL	CLK_BIST_EN																BIST Clock Enable Control 0 = Disable 1 = Enable (DEFAULT)
		CLK_I2S_EN																I2S Clock Enable Control 0 = Disable 1 = Enable (DEFAULT)
		CLK_DRC_EN									1							DRC Clock Enable Control 0 = Disable 1 = Enable (DEFAULT)
		MCLK_RNG_SEL																MCLK Pin Input Frequency Range Select 000 = 15.74MHz or lower frequency 100 = 15.74 - 21.6MHz 111 = 21.6 - 24.576 MHz (DEFAULT)
		SYSCLK_SEL																Master Clock Source Select 0 = MCLK (DEFAULT) 1 = 2*MCLK (Clock multiplier path - MCLKSEL 0x01[5:3] setting required)
		DEFAULT	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 (0x03FE
		CLK_CODEC_SRC																ADC & DAC Clock Source Select 0 = From internal MCLK (DEFAULT) 1 = From MCLK Pin#8
		CLK_DAC_PL																DAC Clock Polarity 0 = Non-inverted (DEFAULT) 1 = Inverted
		CLK_ADC_PL																ADC Clock Polarity 0 = Non-inverted (DEFAULT) 1 = Inverted
3	CLK_DIVIDER	CLK_ADC_SRC																Scaling Divider For ADC Clock From CODEC_SRC 00 = 1 01 = 1/2 (DEFAULT) 10 = 1/4 11 = 1/8
		CLK_DAC_SRC																Scaling Divider For DAC Clock From CODEC_SRC 00 = 1 01 = 1/2 (DEFAULT) 10 = 1/4 11 = 1/8

										Bi	t								Description
REG	Function	Name	ſ	15	12		1	11.	8]	ı		[7	.4]			[3.	.01		
3	CLK_DIVIDER	MCLK_DIV																	Scaling Divider For MCLK From SYSCLK_SEL Output 000 = 1 (DEFAULT) 001 = 1 and inverted 010 = 1/2 011 = 1/3 100 = 1/4 110 = 1/6
		DEFAULT	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0x0050
8		PDB_DAC RESERVED DEFAULT	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DAC V _{REF} Buffer Power Enable Control 0 = Disable 1 = Enable (DEFAULT) RESERVED 0x4000
		DELAGET		_	_	<u> </u>	-	_	_	_	_	_	_	•	Ľ	_	_	_	
		APR_EMRGENCY_ SHTDWN1_INTP_MASK																	APR Emergency Shutdown Interrupt Mask 0 = Unmask (DEFAULT) 1 = Mask the interrupt
		KEY_RELEASE_INTP_ MASK																	Key Release Interrupt Mask 0 = Unmask (DEFAULT) 1 = Mask the interrupt
F	INTERRUPT_MASK	KEY_INTP_MASK																	Key Pressed Interrupt Mask 0 = Unmask (DEFAULT) 1 = Mask the interrupt
		MCLKDET_INTP_MASK																	Missing MCLK Detection Interrupt Mask 0 = Unmask (DEFAULT) 1 = Mask the interrupt
		MIC_DET_INTP_MASK																	MIC Detection Interrupt Mask 0 = Unmask (DEFAULT) 1 = Mask the interrupt
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		POWERUP																	Mirror Of 0x74[8] MICBIAS1 Power Enable Control (For use with polling)
		KEYDET																	Key Detection IRQ Status (Unlatched)
		MICDET																	MIC Detection IRQ Status (Unlatched)
10	IRQ_STATUS	APR_EMRG_SHTDWN																	APR Emergency Short Circuit Shutdown IRQ Status
		KEY_RELEASE_INT	H	\sqcup	1	-			_	_				H					Key Release For Key Detection IRQ Status
		KEY_PRESS_INT	H	H	\dashv	\dashv				\dashv	+			H					Key Press For Key Detection IRQ Status
		MCLK_DET_INT MIC_DET_INT		\vdash	1	-				1	-	+					_		Missing MCLK Detection IRQ Status MIC Detection IRQ Status
		DEFAULT	Х	Х	Х	х	Х	Х	Х	Х	х	Х	Х	Х	х	Х	Х	Х	Read Only
11	INT_CLR_ KEY_STATUS	INT_CLR_KEY_STATUS																	Write Operation To Clear IRQ Status (Write 1s to bit[15:0] to clear related IRQ_STATUS [15:0].)
		DEFAULT	X	X	Χ	X	X	X	X	X	Х	X	X	X	Х	X	X	X	Read/Write

										Bi	t								Description
REG	Function	Name	[15.	.12]		[11.	8]			[7	4]			[3.	.0]		
		APR_EMRG_ SHTDWN_INT_DIS																	APR Emergency Short Circuit Shutdown Interrupt Disable Control 0 = Enable 1 = Disable (DEFAULT)
		KEY_INT_DIS																	Key Release Interrupt Disable Control 0 = Enable 1 = Disable (DEFAULT)
12	INTERRUPT_DIS_CTRL (WRITE MODE)	MCLKDET_INT_DIS																	Missing MCLK Detection Interrupt Disable Control 0 = Enable 1 = Disable (DEFAULT)
		MIC_DET_INT_DIS																	MIC Detection/Headset Configuration Interrupt Disable Control 0 = Enable 1 = Disable (DEFAULT)
		DEFAULT	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0xFFFF
		DMIC_DS																	DMIC Drive Current Select (For high <i>Cload</i> > 20pF, enable high drive current.) 0 = Low drive current (DEFAULT) 1 = High drive current
13	DMIC CTRL	DMIC_SLEW																	DMIC Slew Rate Select (For high Cload > 20pF, use faster slew rate.) 000 = Slowest slew rate (DEFAULT) 111 = Fastest slew rate
13	DINIO_OTILE	CLK_DMIC_SRC																	DMIC Clock Speed Select 00 = ADC clock (DEFAULT) 01 = ADC clock / 2 10 = ADC clock / 4 11 = ADC clock / 8
		DMICEN																	Digital Microphone Mode Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0x0F00
		TDM																	TDM Enable Control 0 = Disable (DEFAULT) 1 = Enable
		PCM_OFFSET_MODE_ CTRL																	PCM Offset In TDM Enable Control 0 = Disable (DEFAULT) 1 = Enable
		ADCPHS0																	ADC Audio Data Left-right Ordering Select 0 = Left ADC data in left phase of LRP (DEFAULT) 1 = Left ADC data in right phase of LRP (left-right reversed)
1B	TDM_CTRL	DACPHS0																	DAC Audio Data Left-right Ordering Select 0 = Left DAC data in left phase of LRP (DEFAULT) 1 = Left DAC data in right phase of LRP (left-right reversed)
		DAC_SEL																	DAC Left Channel Source Under TDM Mode 12S: 000: From Slot 0 (DEFAULT) 010: From Slot 2 100: RESERVED 110: RESERVED 111: RESERVED PCM: 000: From slot 0 (DEFAULT) 010: From slot 2 100: From slot 2 111: From slot 1 (DEFAULT) 010: From slot 2 110: From slot 3 100: From slot 4 110: From slot 5 111: From slot 7

												Bi	t								Description
REG	Function	Name		[1	5	12]		[1	1	8]			[7.	.4]			[3	30]	
1В	TDM_CTRL	ADC_TX_SEL																			DAC Right Channel Source Under TDM Mode 12S: 000 : From Slot 0 001: From Slot 1 (DEFAULT) 010 : FROM Slot 2 011: From Slot 3 100 : RESERVED 101: RESERVED 111: RESERVED 110: RESERVED 111: RESERVED PCM: 000: From slot 0 001: From slot 1 (DEFAULT) 010: From slot 2 011: From slot 3 100: From slot 4 101: From slot 5 110: From slot 6 111: From slot 7
		DEFAULT	C)	0	0	0	0	C) (0	0	0	0	0	0	0	C	0	0	0x0000
		DACCM0																			DAC Companding Mode Select 00 = Off (DEFAULT - Normal linear operation) 01 = RESERVED 10 = μ-law companding 11 = A-law companding
		ADCCM0																			ADC Companding Mode Select 00 = Off (DEFAULT - Normal linear operation) 01 = RESERVED 10 = µ-law companding 11 = A-law companding
		ADDAP0																			ADC Output Data Stream Directly Routed To DAC Input Data Path Enable Control 0 = Disable (DEFAULT) 1 = Enable
		CMB8_0																			8-bit Word For Companding Mode Of Operation Enable Control 0 = Normal operation (DEFAULT - No companding) 1 = 8-bit operation for companding mode
1C	I2S_PCM_CTRL1	UA_OFFSET																			uLaw Offset Select 0 = 1's complement (DEFAULT) 1 = 2's complement
		BCP0																			Bit Clock Phase Inversion Option For BCLK 0 = Non-inverted (DEFAULT) 1 = Inverted
		LRP0																			PCMA & PCMB Left/right Word Ordering Select 0 = Right Justified/Left Justified/I2S/PCMA mode (DEFAULT) 1 = PCMB Mode Enable: MSB is valid on 1st rising edge of BCLK after rising edge of FS
		WLEN0																			Word Length of Audio Data Stream Select 00 = 16-bit word length 01 = 20-bit word length 10 = 24-bit word length (DEFAULT) 11 = 32-bit word length
		AIFMT0																			Audio Interface Data Format Select 00 = Right justified 01 = Left justified 10 = Standard I2S format (DEFAULT) 11 = PCMA or PCMB audio data format option
		DEFAULT	()	0	0	0	0	0) (0	0	0	0	0	0	1	C	1	0	0x000A

									Bit	1							Description
REG	Function	Name	[15′	12]	l	[11	8]		[74	1]	Ī	[[30)]	
		I2\$_TRI				Ī											12S Tri State Enable Control 0 = Normal mode
		I2S_DRV															1 = Output high Z (DEFAULT) I2S Drive Enable Control 0 = Normal mode (DEFAULT) 1 = Always out
		LRC_DIV															LRC(FS) Divider From BCLK Frequency 00 = 1/256 (DEFAULT) 01 = 1/128 10 = 1/64 11 = 1/32
		PCM_TS_EN0															PCM Time Slot Function Enable Control (Only PCM_A_MODE or PCM_B_MODE (STEREO Only) can be used when PCM Mode is selected.) 0 = Disable time slot function for PCM mode (DEFAULT) 1 = Enable time slot function for PCM mode
		TRI0															Without TDM Mode 0 = Drive the full clock of LSB (DEFAULT) 1 = Tri-state the 2nd half of LSB
1D	I2S_PCM_CTRL2	PCM8BIT0															PCM 8 Bit Select 0 = Use I2S PCM_CTRL.WLEN to select word length (DEFAULT) 1 = PCM select 8-bit word length
		RESERVED															RESERVED
		ADCDAT0_PE															ADCDAT IO Pull Enable Control 0 = Disable (DEFAULT) 1 = Enable
		ADCDAT0_PS															ADCDAT IO Pull Up/Down Enable Control 0 = Pull down (DEFAULT) 1 = Pull up
		ADCDAT0_OE															ADCDAT IO Output Enable Control 0 = ADCDAT not always out (when no data out, ADCOUT pin becomes high.) 1 = ADCDAT always out (DEFAULT)
		MS0															Master/Slave Mode Enable Control 0 = Slave mode (DEFAULT) 1 = Master mode
		BCLKDIV															BCLK Divider From MCLK Frequency 000 = 1 (DEFAULT) 001 = 1/2 010 = 1/4 011 = 1/8 100 = 1/16 101 = 1/32
		DEFAULT	1	0	0 0	0	0	0	0	0 (0 0	0	1 (0	0 (0	0x8010
		FS_ERR_CMP_SEL															Triggers Short Frame Sync Signal (If frame sync is less than) 00 = 252 x MCLK (DEFAULT) 10 = 254 x MCLK 11 = 255 x MCLK
1E	LEFT_TIME_SLOT	DIS_FS_SHORT_DET															Short Gram Sync Detection Logic Enable Control 0 = Enable (DEFAULT) 1 = Disable
		TSLOT_L0														П	Left channel PCM Time Slot Start Value / PCM TDM Offset Mode Slot Start Value
		DEFAULT	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 (0	0x0000
		BIQ0_A1_L			Ì				T			Ī	Ì				Program ADC BIQ0_A1 Parameter Bit[15:0]
21	BIQ0_COF1	DEFAULT	0	0	0 0	0	0	0	0	0	0 (0	0	0	0 (0	0x0000
22	BIQ0_COF2	BIQ0_A1_H								Ţ		Ţ					Program ADC BIQ0_A1 Parameter Bit[18:16]
		DEFAULT	0	0	0	0	0	0	0	0 (0 0	0	0	0	0 (0	0x0000
23	BIQ0_COF3	BIQ0_A2_L		0				0									Program ADC BIQ0_A2 Parameter Bit[15:0] 0x0000
\vdash		DEFAULT	U	U	υ <u> </u> υ	T	U	U	٧	υ <u> </u>	υ (ין ע	<u>ا ت</u>	v	<u>ا</u> ر	, 0	
24	BIQ0_COF4	BIQ0_A2_H DEFAULT	0	0	0 0	0	0	0	0	0 (0 (0	0 0	0	0 (0	Program ADC BIQ0_A2 Parameter Bit[18:16] 0x0000
		BIQ0_B0_L				Ī						Ī	İ				Program ADC BIQ0_B0 Parameter Bit[15:0]
25	BIQ0_COF5	DEFAULT	0	0	0 0	0	0	0	0	0	0 (0	0	0	0 (0	0x0000

										В	Bit								Description
REG	Function	Name	[15.	12	2]		[11	8]		[7.	.4]			[3.	0]		
		BIQ0_B0_H							Г				Π		Ī		Ī		Program ADC BIQ0_B0 Parameter Bit[18:16]
26	BIQ0_COF6	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		BIQ0_B1_L																	Program ADC BIQ0_B1 Parameter Bit[15:0]
27	BIQ0_COF7	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
	5100 0050	BIQ0_B1_H																	Program ADC BIQ0_B1 Parameter Bit[18:16]
28	BIQ0_COF8	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
29	DIOS COES	BIQ0_B2_L																	Program ADC BIQ0_B2 Parameter Bit[15:0]
29	BIQ0_COF9	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		BIQ0_EN																	BIQ0 ADC Path Enable Control 0 = Disable (DEFAULT) 1 = Enable
2A	BIQ0_COF10	BIQ0_B2_H																	Program ADC BIQ0_B2 Parameter Bit[18:16]
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000 R/W
2В	ADC_RATE	ADC_SRC																	ADC Channel Source Select (NAU88L11 generates mono analog data in the left channel and no data in the right channel.) In Non-DMIC Mode 0 = Latch left channel analog data input into the left channel filter (DEFAULT) 1 = Latch right channel analog data input into the left channel filter In DMIC Mode 0 = Left channel in rising edge (DEFAULT) 1 = Left channel in falling edge
		SMPL_RATE																	Generating 2.048MKHz based on Sample Rates 000 = 48K (DEFAULT) 001 = 32K 110 = 96K 111 = 192K
		GAINCMP OSR_ADC_RATE																	RESERVED ADC SINC Down Select 00 = Down 32 01 = Down 64 10 = Down 128 11 = Down 256
		DEFAULT	_	_	•	0	_	_	_	_	Ļ	_	_	_	_	Ļ	4		(DEFAULT)
		DEFAULT	U	0	U	U	U	U	0	U	0	U	0	0	U	U	1	U	0x0002
2C	DAC_CTRL1	CICCLP_OFF CIC_GAIN_ADJ OSR_DAC_RATE																	0 = (DEFAULT) For fine tuning the DAC output for glich and noise, Please set 0x7 value for best performance DAC Oversample Rate Select 000 = 64 001 = 256
																			010 = 128 (DEFAULT) 100 = 32
		DEFAULT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0x0082
		RESERVED										_	_				L		RESERVED Bit Numbers Of Dithering On SD Modulator
2D	DAC_CTRL2	SDMOD_DITHER																	(Each level increments dithering by 1 bit.) 00000 = No dithering (DEFAULT) 00001 = 1 00010 = 2 00011 = 3 00100 = 4 00101 = 5 00110 = 6 00111 = 7 01000 = 8 01001 = 9 01010 = 10 01011 = 11 01100 = 12 01110 = 13 01110 = 14 01110 = 15

											Bit								Description
REG	Function	Name	ı	15	12	 21	l	[1	18	81	T	ſ	74	 41	Ī		[30	 D1	·
		RESERVED	<u> </u>		l	Ī	Ħ	T	T	-,	Ť	Ì		1	i	T		T	RESERVED
		RESERVED													1				RESERVED
		DEFAULT	0	0	0	0	0	0	0)	0 () (0	0	0	0	0	0 0	0x0000
30	ADC_DGAIN_CTR	ADC_TO_DAC_ST0																	ADC to DAC Sidetone Select (Step size is 3dB.) 0x00 = Mute (DEFAULT) 0x01 = -42dB V 0x0E = -3dB 0x0F = 0dB
		DEFAULT	0	0	0	0	0	0	0	ו	0 () (0	0	0	0	0	0 0	0x0000
		RESERVED																	RESERVED
		DAC_SLOW_UM																	DAC Slow Soft Unmute Enable Control 0 = Disable (16 MCLK per step soft unmute) (DEFAULT) 1 = Enable (512 MCLK per step soft unmute)
		DAC_ZC_EN																	DAC Zero Crossing Enable Control 0 = Disable (DEFAULT) 1 = Enable
		AMUTE_EN																	Auto Mute Enable Control (Generate null output to analog circuitry when 1024 consecutive zeros are detected. De-assert as soon as first non-zero sample is detected.) 0 = Disable (DEFAULT) 1 = Enable
31	MUTE_CTRL	AMUTE_CTRL																	Auto Mute Control 0 = Both DAC channels must have 0 values for 1024 samples before AMUTE turns on (DEFAULT) 1 = Either Ch0 or Ch1 must have 1024 consecutive zero samples
		SMUTE_EN																	Soft Mute Enable Control 0 = Gradually increase DAC volume to volume register setting (DEFAULT) 1 = Gradually lower DAC volume to zero
		ADC_ZC_EN																	ADC Zero Crossing Enable Control 0 = Disable (DEFAULT) 1 = Enable
		ADC_SMUTE_EN																	ADC Soft Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	0	0	0	ֹ	0 () (0	0	0	0	0	0 0	0×0000
		RESERVED																	RESERVED
																			DAC Volume Control (Step size is 0.5dB.) 0XFF = +24dB 0XFE = +23.5dB VCF = 0dB (DEFAULT)
34	DAC_ DGAIN_CTRL	DGAIN_DAC																	V 0x4B = -66dB 0x4A = RESERVED V 0x0F = RESERVED 0x0E = Mute
		DEFAULT	1	1	0	0	1	1	1 1	1	1 .		1	0	0	1	1	1 1	0x00 = Mute 0xCFCF
35	ADC_DGAIN_CTRL	RESERVED			Ī	Ī				j	Ť	$\frac{\perp}{1}$	<u> </u>	<u>- 1</u>	-	-	1	<u> </u>	RESERVED
33	ADG_DGAIN_CTRL	NEGERVED																L_	NEGERALD

										В	it								Description
REG	Function	Name	[1	15	.12]		[11	8]			[7	.4]			[3.	.0]		·
		DGAIN_ADC DEFAULT	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	ADC Volume Control (Step size is 0.5dB.) 0xFF = +24dB 0xFE = +23.5dB v 0xCF = 0dB (DEFAULT) v 0x4B = -66dB 0x4A = RESERVED v 0x0F = RESERVED 0x0F = Mute 0x00 = Mute 0xCFCF
																			DRC ADC Channel Enable Control
		DRC_ENA_ADC DRC_KNEE2_IP_ADC																	0 = Disable (DEFAULT) 1 = Enable DRC ADC Knee Point 2 Select (Step size is 1dB.) 0x00 = 0dB 0x01 = -1dB ▼ 0x14 = -20dB (DEFAULT) ▼ 0x3E = -62dB 0x3F = -63dB
36	ADC_DRC_KNEE_IP12	DRC_SMTH_ENA_ADC																	DRC ADC Smooth Filter Enable Control 0 = Disable 1 = Enable (DEFAULT)
		DRC_KNEE1_IP_ADC	0	•		1		1	•	0	4		0	9		4	1	0	DRC ADC Knee Point 1 Select (Step size is 1dB.) 0x00 = 0dB 0x01 = -1dB ▼ 0x06 = -6dB (DEFAULT) ▼ 0x1E = -30dB 0x1F = -31dB 0x1486
		DEFAULT	U	U	U	'	۳	' 	U	U	•	U	U	U	_	_	'	U	DRC ADC Knee Point 4 Select
		DRC_KNEE4_IP_ADC																	Ox0E = -97dB Ox3E = -98dB
37	ADC_DRC_KNEE_IP34	DRC_KNEE3_IP_ADC																	DRC ADC Knee Point 3 Select (Step size is 1dB.) 0x00 = -18dB 0x01 = -19dB ▼ 0x12 = -36dB (DEFAULT) ▼ 0x3E = -80dB 0x3F = -81dB
		DEFAULT	0	0	0	0	1	1	1	1	0	0	0	1	0	0	1	0	0x0F12
38	ADC_DRC_SLOPES	DRC_NG_SLP_ADC DRC_EXP_SLP_ADC																	DRC ADC Noise Gate Slope
		DRC_CMP2_SLP_ADC																	010 = 1:4

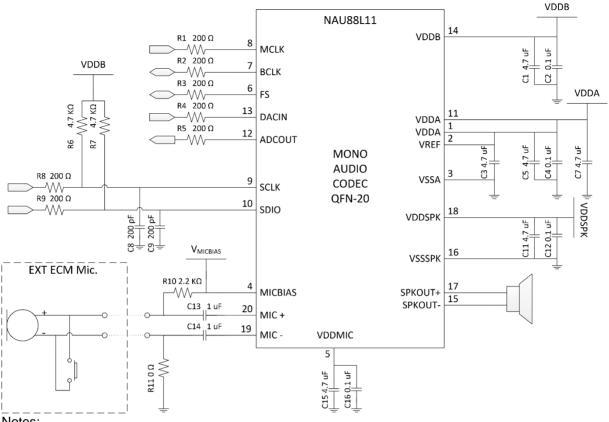
		_									Bit								Description
REG	Function	Name	[15	12	2]	l	[1	18	3]		[7	4]		l	[3	30)]	
		DRC_CMP1_SLP_ADC							Ī		Ī								DRC ADC Compressor Slope (Higher Region) 000 = 0 001 = 1:2 010 = 1:4 011 = 1:8 100 = 1:16 101-110 = RESERVED 111 = 1 (DEFAULT)
		DRC_LMT_SLP_ADC																	DRC ADC Limiter Slope 000 = 0
		DEFAULT	0	0	1	0	0	1	0	1	1	1	1	1	1	1	1	1	0x25FF
		DRC_PK_COEF1_ADC																	DRC ADC Peak Detection Attack Time (Ts = 1/SMPL_RATE) 0000 = Ts 0001 = 3*Ts 0010 = 7*Ts 0011 = 15*Ts (DEFAULT) 0100 = 31*Ts 0110 = 127*Ts 0111 = 255*Ts 1001 = 511*Ts
		DRC_PK_COEF2_ADC																	DRC ADC Peak Detection Release Time (Ts = 1/SMPL_RATE) 0000 = 63*Ts 0001 = 127*Ts 0010 = 255*Ts 0011 = 511*Ts 0100 = 1023*Ts 0101 = 2047*Ts (DEFAULT) 0110 = 4095*Ts 0111 = 8191*Ts 1001= 16383*Ts
39	ADC_DRC_ATKDCY	DRC_ATK_ADC																	DRC ADC Attack Time (Ts = 1/SMPL_RATE) 0000 = Ts 0011 = 15*Ts 0100 = 31*Ts 0101 = 63*Ts (DEFAULT) 0110 = 127*Ts 0101 = 255*Ts 1000 = 511*Ts 1011 = 4095*Ts 1100 = 8191*Ts
		DRC_DCY_ADC																	DRC ADC Decay Time (Ts = 1/SMPL_RATE) 0000 = 63*Ts
		DEFAULT	0	0	1	1	0	1	0	0	0	1	0	1	0) 1	1	1	0x3457
		DRC_ENA_DAC																	DRC DAC Channel Enable Control 0 = Disable (DEFAULT) 1 = Enable DRC DAC Knee Point 2 Select
		DRC_KNEE2_IP_DAC																	(Step size is 1dB.) 0x00 = 0dB 0x01 = -1dB 0x14 = -20dB (DEFAULT) 0x3E = -62dB 0x3F = -63dB
3A	DAC_DRC_KNEE_IP12	DRC_SMTH_ENA_DAC			ſ		ľ												DRC DAC Smooth Filter Enable Control 0 = Disable 1 = Enable (DEFAULT)
		DRC_KNEE1_IP_DAC																	DRC DAC Knee Point 1 Select (Step size is 1dB.) 0x00 = 0dB 0x01 = -1dB

		_	T							Bi									Description
REG	Function	Name		15.	12)]		11	8]	ī		7	<u>4</u> 1	-		[3.	01		2000/pilon
		DEFAULT	_						_				÷	0		-	÷	0	0x1486
		DRC_KNEE4_IP_DAC																	DRC DAC Knee Point 4 Select (Step size is 1dB.) 0x00 = -35dB 0x01 = -36dB ▼ 0x0F = -50dB (DEFAULT) ▼ 0x3E = -97dB 0x3F = -98dB
3B	DAC_DRC_KNEE_IP34	DRC_KNEE3_IP_DAC																	DRC DAC Knee Point 3 Select (Step size is 1dB.) 0x00 = -18dB 0x01 = -19dB ▼ 0x12 = -36dB (DEFAULT) ▼ 0x3E = -80dB 0x3F = -81dB
		DEFAULT	0	0	0	0	1	1	1	1	0	0	0	1	0	0	1	0	0x0F12
		DRC_NG_SLP_DAC																	DRC DAC Noise Gate Slope 00 = 1:1
		DRC_EXP_SLP_DAC																	10 = 4:1 (DEFAULT) 11 = 8:1 DRC DAC Expansion Slope 00 = 1:1 01 = 2:1 10 = 4:1 (DEFAULT) 11 = 8:1
		DRC_CMP2_SLP_DAC																	DRC DAC Compressor Slope (Lower Region) 000 = 0 001 = 1:2 010 = 1:4 011 = 1:8 100 = 1:16 101-110 = RESERVED 111 = 1 (DEFAULT)
3C	DAC_DRC_SLOPES	DRC_CMP1_SLP_DAC																	DRC DAC Compressor Slope (Higher Region) 000 = 0 001 = 1:2 010 = 1:4 011 = 1:8 100 = 1:16 101-110 = RESERVED 111 = 1 (DEFAULT)
		DRC_LMT_SLP_DAC																	DRC DAC Limiter Slope 000 = 0 001 = 1:2 (DEFAULT) 010 = 1:4 011 = 1:8 100 = 1:16 101 = 1:32 110 = 1:64 111 = 1
		DEFAULT	0	0	1	0	0	1	0	1	1	1	1	1	1	0	0	1	0x25F9
3D	DAC DBC ATKDCY	DRC_PK_COEF1_DAC																	DRC DAC Peak Detection Attack Time (Ts = 1/SMPL_RATE) 0000 = Ts
35	DAC_DRC_ATKDCY	DRC_PK_COEF2_DAC																	DRC DAC Peak Detection Release Time (Ts = 1/SMPL_RATE) 0000 = 63*Ts
3D	DAC_DRC_ATKDCY	DRC_ATK_DAC																	DRC DAC Attack Time (Ts = 1/SMPL_RATE) 0000 = Ts

										Bit								Description
REG	Function	Name	ſ	15.	.12]	Ī	[1	18	81	Ī	[7	4]			[3.	.01		
		DRC_DCY_DAC														.01		DRC DAC Decay Time (Ts = 1/SMPL_RATE) 0000 = 63*Ts
		DEFAULT	0	0	1	1 (0 1	0	0	0	1	0	1	0	1	1	1	0x3457
41	BIQ1_ COF1	BIQ1_A1_L																Program DAC BIQ1_A1 Parameter Bit[15:0]
		DEFAULT	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0x0000
42	BIQ1_COF2	BIQ1_A1_H DEFAULT	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	Program DAC BIQ1_A1 Parameter Bit[18:16] 0x0000
43	BIQ1_COF3	BIQ1_A2_L DEFAULT	0	0	0	0 (0 0) (0	0	0	0	0	0	0	0	0	Program DAC BIQ1_A2 Parameter Bit[15:0] 0x0000
44	BIQ1_COF4	BIQ1_A2_H DEFAULT	0	0	0	0 (0 0) (0	0	0	0	0	0	0	0	0	Program DAC BIQ1_A2 Parameter Bit[18:16] 0x0000
45	BIQ1_COF5	BIQ1_B0_L DEFAULT	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	Program DAC BIQ1_B0 Parameter Bit[15:0] 0x0000
46	BIQ1_COF6	BIQ1_B0_H DEFAULT	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	Program DAC BIQ1_B0 Parameter Bit[18:16] 0x0000
47	BIQ1_COF7	BIQ1_B1_L DEFAULT	0	0	0	0 (0 0	0	0 0	0	0	0	0	0	0	0	0	Program DAC BIQ1_B1 Parameter Bit[15:0] 0x0000
48	BIQ1_COF8	DEFAULT BIQ1_B1_H DEFAULT				Ţ	ļ		ļ									Program DAC BIQ1_B1 Parameter Bit[18:16]
			0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0x0000
49	BIQ1_COF9	BIQ1_B2_L DEFAULT	0	0	0 (0	0 0	0	0 0	0	0	0	0	0	0	0	0	Program DAC BIQ1_B2 Parameter Bit[15:0] 0x0000
4A	BIQ1_COF10	BIQ1_EN				Ì												BIQ1 DAC Path Enable Control 0 = Disable (DEFAULT) 1 = Enable
		BIQ1_B2_H																Program DAC BIQ1_B2 Parameter Bit[18:16]
		DEFAULT	0	0	0 (0 (0 0	0	0 0	0	0	0	0	0	0	0	0	0x0000
4C	IMM_MODE_CTRL	RESERVED DEFAULT	0	0	0 (,	0 0) () 0		0	0	0	0	0	0	0	RESERVED 0x0000
			Γ			<u>T</u>	T		T	T	Ī	Γ	Γ	ľ		Ĭ		VCM Buffer Gain Control
		VCM_GAIN_CTRL PDB_VCMBUF								Ī		١						1000 = 1.65V (DEFAULT) VCM Buffer Enable Control 0 = Disable (DEFAULT)
		VOUT_PRECHG_DISABLE								l								1 = Enable Output VCM Pre-charge Enable Control 0 = Enable 1 = Disable (DEFAULT)
51	VCM_BUF	VOUT_PRECHG_DISABLE PRECHG_IB_CTRL																Comparison
		DEFAULT	0	0	0	0	0 0) 1	1 0	0	0	0	1	0	0	0	0	
		MUTE_SPK				Ī												Speaker Driver Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
52	SPK_DRV	MDRV_IB_SEL																Class AB amplifier Bias Current Select 00 = No current 01 = 0.5uA 10 = 1.0uA (DEFAULT) 11 = 1.5uA

										Ві	it								Description
REG	Function	Name	T.	15	12	1		[11.	81			[7	⊿ 1			[3	.0]		Seconput
			L	13	. 12	·J			0]		=	[/	·+J			<u>၂</u> ၂	.∪]	-	Main Speaker Driver Power Enable Control
		PUP_MAIN_DRV																	0 = Disable (DEFAULT) 1 = Enable
		SPK_GAIN_CNTRL																	SPK Gain Select (Step size is 0.4dB.) 0000 = 0dB (DEFAULT) 0001 = 0.4dB ▼ 1110 = 5.2dB
		DEFAULT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1111 = 5.6dB 0x0080
		CAL_SGN																	Class-AB Offset Trim Sign
53	SPG_AMP_OFFSETDEC	EN_CAL																	Enable Class-AB Amplifier Offset Trim
		OFFSET_CAL0																	Class-AB Amplifier Input 3bit Offset Trim
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		RAM_TEST_START																	Ram Test Control 0 = Disable (DEFAULT) 1 = Enable
55	MISC_CTRL	D2A_LOOP																	ADC Decimation Filter Output To DAC Filter Input Loop Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		I2C_DEVICE_ID																	I2C Device ID Read In [0x1B]
58	I2C_DEVICE_ID	SILICON REVISION ID																	Silicon Revision Bits
		DEFAULT	X	0	0	1	1	0	1	1	1	1	X	X	X	X	X	X	Read Only
		RATM_TEST_FINISH																	RAM Test Status Bit 0 = Test not finished 1 = Test finished
59	SARDOUT_RAM_ STATUS	RAM_TEST_FAIL																	RAM Test Result Bit 0 = Test passed 1 = Test failed
	om.io	ANALOG_MUTE																	Analog Mute Flag Bit 0 = Disable 1 = Enable
		DEFAULT	X	X	X	X	X	Χ	X	X	X	X	X	X	X	X	X	X	Read Only
		MUTE																	PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
		TESTDAC																	DAC Test Only
		RESERVED								Ц									RESERVED
		VMIDEN																	VMID Enable Control 0 = Disable (DEFAULT) 1 = Enable
66	BIAS_ADJ	VMIDSEL																	VMID Tie-off Impedance Select 00 = Open 01 = 25k Ohm (DEFAULT) 10 = 125k Ohm 11 = 2.5k Ohm
		RESERVED																	RESERVED
		RESERVED															Ĺ	Ĺ	RESERVED
		BIASADJ																	PGA Master Bias Current Power Select 00 = Normal operation (DEFAULT) 01 = 9% reduced bias current from normal 10 = 17% reduced bias current from normal 11 = 11% increased bias current from normal
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
69	SPARE_ANALOG1	PULL_SPKR_DWN																	Class AB Output To GND Pull down Enable Control 0 = Disable (DEFAULT) 1 = Enable

										Bi	t								Description
REG	Function	Name	[15	12	ı		11.	8]	ī		[7	.4]			[3.	0]		
		PRECHG_CURR_BOOST																	Increase Pre-charge Slew Rate 2X For Cout=4.7uF 0 = Disable (DEFAULT) 1 = Enable
		PRECHG_TURBO_BOOST																	Increase Pre-charge Slew Rate 4X For Cout=4.7uF 0 = Disable (DEFAULT) 1 = Enable
		THD_BOOST																	Signal To Boost THD Enable Control 0 = Disable (DEFAULT) 1 = Enable
		TESTDACIN																	DAC Test Signal 00 = GND (DEFAULT) 01 = HIGH 10 = LOW 11 = GND
		CAP																	DAC Reference Decoupling Capacitor
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		MUTE_N																	MICN Input To PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
6B	MUTE_CTRL	MUTE_P																	MICP Input To PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		RESERVED																	RESERVED
		TRIM_MIC																	Mic Detect Threshold Control (Step size is 10uA.) 000 = (DEFAULT - Imic_det = 35uA)
71	ANALOG_ADC_1	TRIM_BUTTON																	Key Detect Threshold Control (Step size is 100uA.) 000 = (DEFAULT - Ikey_det = 500uA)
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		RESERVED																	RESERVED
		RESERVED																	RESERVED
		ADC_UP																	PGA Bias Current Increase Enable Control (For driving ADC at high sample rates) 0 = Disable (DEFAULT) 1 = Enable
72	ANALOG ADC 2	BIAS																	ADC Bias Current Select 00 = Nominal 01 = Double (DEFAULT) 10 = Half 11 = Quarter
		VREFSEL																	ADC VREF Select 00 = 1.8V
		RESERVED								П									RESERVED
		PDNOT																	Signal ADC Power Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0x0100
		DAC_EN																	DAC Enable Control 0 = Disable (DEFAULT) 1 = Enable
73	DAC_CTRL	CLK_DAC_EN																	DAC Clock Enable Control 0 = Disable (DEFAULT) 1 = Enable
		FC_CTR																	DAC Smoothing Filter On Output Enable Control 0 = Disable (DEFAULT) 1 = Enable
		CLK_DAC_DELAY																	DAC Clock Delay Setting

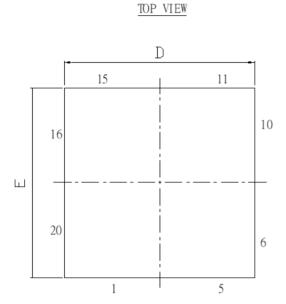

			Bit [1512] [118] [74] [30]									Description									
REG	Function	Name	[15	12]	ı		[11	8]		[7.	.4]			[3.	.0]				
		DACVREFSEL																	DAC Full Scale Reference Voltage Select (By setting this value, it will change DAC full scale output. For best performance, use default value.) 00 = 1.8V 01 = 1.56V 10 = 1.61V (DEFAULT) 11 = 1.75V		
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0x0008		
		POWERUP																	MICBIAS1 Power Enable Control (Mirror in REG0x0A) 0 = Disable (DEFAULT) 1 = Enable		
		MB_LPMODE																	Low Power / Low Noise Mode Select 0 = Low power mode (DEFAULT) 1 = Low noise mode		
74	MIC_BIAS	MICBIASLVL1																	MICBIAS1 Output Level Select 000 = VDDA 001 = 1.1 x VDDA 010 = 1.2 x VDDA 011 = 1.3 x VDDA 100 = 1.4 x VDDA (DEFAULT) 101 = 1.53 x VDDA		
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0x0004		
		CLR_APR_EMRGENCY_ SHTDWN																	Clear Headset Short Circuit Shut Down IRQ 0 = (DEFAULT) 1 = Reset (Momentary) PGA In Class-A Mode Of Operation Enable		
		STG2_SEL																	Instead Of Class-AB Enable Control 0 = Disable (DEFAULT) 1 = Enable		
		PDVMDFST																	VMID Pre-charge Disable Control 0 = Disable (DEFAULT) 1 = Enable		
76	BOOST	BIASEN																	Global Analog Bias Enable Control 0 = Disable (DEFAULT) 1 = Enable		
		DISCHRG																	Charge Input Enable Control (Based on ACDC_CTRL) 0 = Disable (DEFAULT) 1 = Enable		
		RST_SHRT_IRQ																	Reset IRQ Short-det Register After 100ms		
		DISABLE_SHRT_DET																	Automatic Short-circuit Detection Disable Control 0 = Disable 1 = Enable (DEFAULT)		
		DEFAULT	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0x0040		
		ACDC_CTRL																	Input Pin DC State Enable Control (Effective when DISCHRG = 1) 0 = Disable (DEFAULT) 1 = Enable Bit0 = Charges MICP to VREF Bit1 = Charges MICN to VREF		
		CMLCK_ADJ																	PGA Common Mode Threshold Lock Adjust 00 = (DEFAULT)		
		IB_LOOP_CTR																	PGA Current Trim 0 = (DEFAULT)		
77	FEPGA	IBCTR_CODE																	PGA Current Trim		
		PGA_MODE																PGA Cutrent Him 000 = (DEFAULT) PGA Mode Select 0 = Disable (DEFAULT) 1 = Enable MODE[0] = Anti-aliasing filter adjust MODE[1] = Disconnects MICP & MICN MODE[2] = No function MODE[3] = Shorts the inputs and terminates 12kOhm differentially			
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000		
7E	PGA_GAIN	PGA_GAIN																	PGA Gain Control (Step size is 1dB.)		

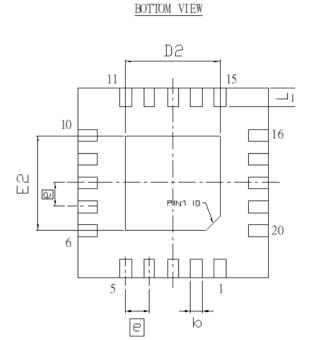
REG	Function	Name	[15.	1:	2]		[1	11.	.8]		Bit	[7.	.4]			[;	30]	Description
		DEFAULT	0	0	0	0		0	0	0	0	0	0	0	0	0		0 () 0	0x00 = -1dB (DEFAULT) 0x01 = 0dB ▼ 0x24 = 35dB 0x25 = 36dB 0x0000
7F	POWER_UP_CONTROL	PUPL																		PGA Power Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
82	GENERAL STATUS	RESERVED																		RESERVED
32	GENERAL_STATOS	DEFAULT	Х	X	Х	X	þ	X	x	X	X	X	X	X	Х	Х	(()	X	Read Only

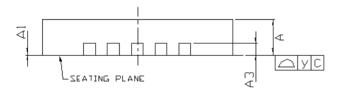
10. Typical Application Diagram with Analog Microphone

- Notes:
 - All non-polar capacitors are assumed to be low ESR type parts, such as with MLC construction or similar. If capacitors are not low ESR, additional 0.1uF and/or 0.01uF capacitors may be necessary in parallel with the bulk 4.7uF capacitors on the supply rails. (C1, C3, C5, C7, C11, 4.7uF must be added. Optional C2, C4, C12 depends on Low ESR Cap used.)
 - 2. Unused MIC input pins should be left as no-connection.
 - Damping Resistor R1~R5, the resistance may vary by different PCB.
 - I2C Low pass filter cut-off frequency should be 8MHz to 33MHz
 - For ECM Microphone type, MIC- should be routed to a quiet ground reference near the VREF capacitor. Customer may omit the 0ohm placed in schematic, but should not route this pin through Thermal pad, but route directly to the VREF Cap.
 - 6. VDDA on Pin 11 must have a separate capacitor to ground. (C7 must be added)

10.1 Typical Application Diagram with Digital Microphone


Notes:


- 1. All non-polar capacitors are assumed to be low ESR type parts, such as with MLC construction or similar. If capacitors are not low ESR, additional 0.1uF and/or 0.01uF capacitors may be necessary in parallel with the bulk 4.7uF capacitors on the supply rails. (C1, C3, C5, C7, C11, 4.7uF must be added. Optional C2, C4, C12 depends on Low ESR Cap used.)
- 2. Digital Microphone power should be connected to MICBIAS, and set same voltage as VDDA
- 3. Damping Resistor R1~R5, the resistance may vary by different PCB.
- 4. I2C Low pass filter cut-off frequency should be 8MHz to 33MHz
- 5. VDDA on Pin 11 must have a separate capacitor to ground. (C7 must be added)



11. Package Information

20-lead plastic QFN20; 4X4mm2, 0.5mm lead pitch

Controlling Dimension : Millimeters

SYMBOL	DI	MENS][] (MM)	N	D	IMENSI (Inch	
2111000	M] N.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.70	0.75	0.80	0.02756	D.02953	0.03150
Al	0	0.02	0.05	D	D.0079	0.00197
A3		D.203 RE	F		0.0079 R	EF
b	B1.0	0.25	0.30	0.00709	0.00984	0.01181
D	3.9D	4.00	4.10	0.1535	0.1575	0.1614
D5	1.90	2.00	2.10	0.074B	0.0787	0.0827
E	3.9D	4.00	4.10	0.1535	0.1575	0.1614
E5	1.90	2.0D	2.10	1.174B	0.0787	0.0827
P	•	0.50 850).01969 B	20
L	0.30	0.40	0.50	0.01181	0.01574	0.01969
У		0.08			0.00315	

Note.D2,E2 by die size difference .

12. Appendix

12.1 MCLK/FS Table: Group 1 MCLK_INT/FS ratio of 256

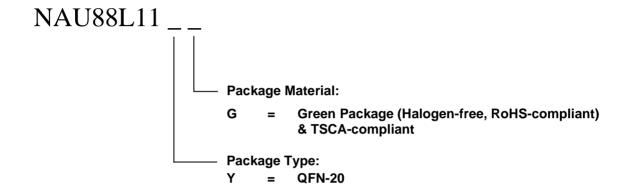
MCLK (MHz)	FS (KHz)	SYSCLK_SEL REG0x1[0]	MCLKSEL REG0x1[5:3]	MCLK_DIV REG0x3[2:0]	MCLK_INT (MHz)
2.048	8	0	-	1	2.048
4.096	16	0	-	1	4.096
6.144	24	0	-	1	6.144
8.192	32	0	-	1	8.192
11.2896	44.1	0	-	1	11.2896
12.288	48	0	-	1	12.288
22.5792	88.2	0	-	1	22.5792
24.576	96	0	-	1	24.576
4.096	8	0	-	2	2.048
8.192	16	0	-	2	4.096
12.288	24	0	-	2	6.144
16.384	32	0	-	2	8.192
22.5792	44.1	0	-	2	11.2896
24.576	48	0	-	2	12.288
6.144	8	0	-	3	2.048
12.288	16	0	-	3	4.096
18.432	24	0	-	3	6.144
24.576	32	0	-	3	8.192
8.192	8	0	-	4	2.048
16.384	16	0	-	4	4.096
24.576	24	0	-	4	6.144
12.288	8	0	-	6	2.048
24.576	16	0	-	6	4.096
2.048	16	1	b'000	1	4.096
3.072	24	1	b'000	1	6.144
4.096	32	1	b'000	1	8.192
5.6448	44.1	1	b'000	1	11.2896
6.144	48	1	b'000	1	12.288
11.2896	88.2	1	b'000	1	22.5792
12.288	96	1	b'000	1	24.576
2.048	8	1	b'000	2	2.048
4.096	16	1	b'000	2	4.096
6.144	24	1	b'000	2	6.144
8.192	32	1	b'000	2	8.192
11.2896	44.1	1	b'000	2	11.2896

MCLK (MHz)	FS (KHz)	SYSCLK_SEL REG0x1[0]	MCLKSEL REG0x1[5:3]	MCLK_DIV REG0x3[2:0]	MCLK_INT (MHz)
12.288	48	1	b'000	2	12.288
22.5792	88.2	1	b'111	2	22.5792
24.576	96	1	b'111	2	24.576
3.072	8	1	b'000	3	2.048
6.144	16	1	b'000	3	4.096
9.216	24	1	b'000	3	6.144
12.288	32	1	b'000	3	8.192
16.9344	44.1	1	b'100	3	11.2896
18.432	48	1	b'100	3	12.288
4.096	8	1	b'000	4	2.048
8.192	16	1	b'000	4	4.096
12.288	24	1	b'000	4	6.144
16.384	32	1	b'100	4	8.192
22.5792	44.1	1	b'111	4	11.2896
24.576	48	1	b'111	4	12.288
6.144	8	1	b'000	6	2.048
12.288	16	1	b'000	6	4.096
18.432	24	1	b'100	6	6.144
24.576	32	1	b'111	6	8.192

12.2 MCLK/FS Table: Group 1 MCLK_INT/FS ratio of 400

MCLK (MHz)	FS (KHz)	SYSCLK_SEL REG0x1[0]	MCLKSEL REG0x1[5:3]	MCLK_DIV REG0x3[2:0]	MCLK_INT (MHz)
3.2	8	0	-	1	3.2
6.4	16	0	-	1	6.4
9.6	24	0	-	1	9.6
12.8	32	0	-	1	12.8
17.64	44.1	0	-	1	17.64
19.2	48	0	-	1	19.2
6.4	8	0	-	2	3.2
12.8	16	0	-	2	6.4
19.2	24	0	-	2	9.6
9.6	8	0	-	3	3.2
19.2	16	0	-	3	6.4
12.8	8	0	-	4	3.2
19.2	8	0	-	6	3.2
3.2	16	1	b'000	1	6.4
4.8	24	1	b'000	1	9.6

6.4	32	1	b'000	1	12.8
8.82	44.1	1	b'000	1	17.64
9.6	48	1	b'000	1	19.2
3.2	8	1	b'000	2	3.2
6.4	16	1	b'000	2	6.4
9.6	24	1	b'000	2	9.6
12.8	32	1	b'000	2	12.8
17.64	44.1	1	b'100	2	17.64
19.2	48	1	b'100	2	19.2
4.8	8	1	b'000	3	3.2
9.6	16	1	b'000	3	6.4
14.4	24	1	b'000	3	9.6
19.2	32	1	b'100	3	12.8
6.4	8	1	b'000	4	3.2
12.8	16	1	b'000	4	6.4
19.2	24	1	b'100	4	9.6
9.6	8	1	b'000	6	3.2
19.2	16	1	b'100	6	6.4


12.3 MCLK/FS Table: Group 1 MCLK_INT/FS ratio of 500

MCLK (MHz)	FS (KHz)	SYSCLK_SEL REG0x1[0]	MCLKSEL REG0x1[5:3]	MCLK_DIV REG0x3[2:0]	MCLK_INT (MHz)
4	8	0	-	1	4
8	16	0	-	1	8
12	24	0	-	1	12
16	32	0	-	1	16
22.05	44.1	0	-	1	22.05
24	48	0	-	1	24
4	16	1	b'000	1	8
6	24	1	b'000	1	12
8	32	1	b'000	1	16
11.025	44.1	1	b'000	1	22.05
12	48	1	b'000	1	24

13. ORDERING INFORMATION

Part Number	Dimension	Package	Package Material
NAU88L11YG	4x4 mm	QFN-20	Green

14. REVISION HISTORY

REVISION	DATE	DESCRIPTION
1.4	Feb 19, 2021	Initial Release
1.5	Mar 3, 2021	Update type error
1.6	Nov 18, 2021	Update register table format
1.7	Feb 1, 2023	Update Halogen-free, RoHS-compliant and TSCA-compliant description
1.8	Oct 30, 2023	Update TDOD description

IMPORTANT NOTICE

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners