NO.: RD20220822011

APPROVAL SHEET No.: T-0615A

Series No.: MRH

Halogen-Free RoHS2.0

APPROVAL SHEET

FOR AL. ELECTROLYTIC CAPACITORS

No.	(Customer No.)	(Koshin Part No.)	Description	ФОх С
1		MRH-450V2R2MF125-T/R	450V2.2μF	8X12.5

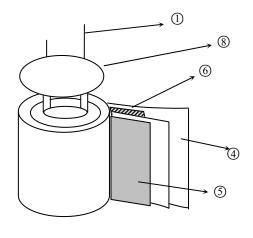
APPROVED BY:

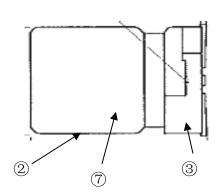
Specification No.:

PLEASE SIGN RETURN US ONE COPY OF THE APPROUAL SHEET.

DESIGNED BY:TANGJINGLING CHECKED BY:JUANGYUANYUAN APPROVED BY: HAUNGXUEHUI

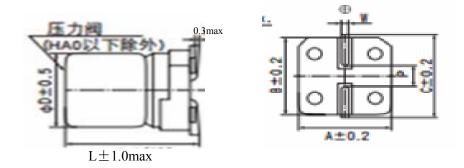
DATE: 2022-8-22




DJS-DS-0013

TO: Ozdisan

1. Inner conformation drawing and inner constitute parts(curtness drawing):



No:	Composing part	Material
①	Lead wire	Fe+Al+Cu+Sn
2	Case	Aluminum
3	Base plate	PPA
4	Paper	Cellulose
(3)	Anode foil	Aluminum foil
6	Cathode foil	Aluminum foil
7	Chemical liquid	GBL
8	Seal	Rubber

Standard Size map:

Lead spacing and Diameter Unit: mm \mathbf{W} ΦD L A В \mathbf{C} P±0.2 8 12.5 8.3 8.3 9.0 0.7-1.1 3.1

Coefficient of Frequency for Ripple Current

Frequency (Hz) Capacitance(μ F)	120	1K	10K	100K
3.3-33	1.00	1.50	1.75	1.80
47-60	1.00	1.30	1.40	1.50

Series MRH Capacitor

1. Our part No.:

For example

2 Marking:

Include company's brand series code, rated voltage, capacitance and polarity

3. Specifications:

3.1 Temperature range : -40 ~+125℃

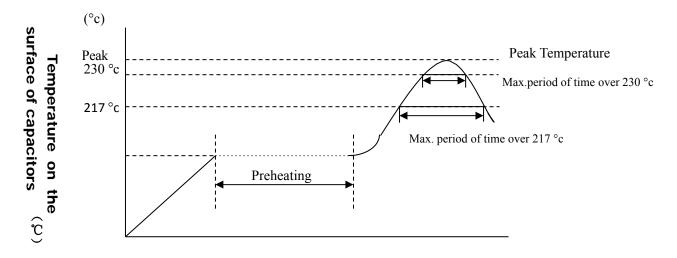
3.2 Electrical characteristics

3.2.1 Capacitance tolerance : $\pm 20\%$

3.2.2 Tangent of loss angle (tan δ): (at 20°C, 120Hz)

Rated voltage(V)		10	16	25	35	50	63	100
tan δ (max.)	B057-G105	0. 24	0. 20	0. 16	0. 14	0. 14	0. 12	0. 10
	H135-K215	0. 22	0. 18	0. 16	0. 14	0. 12	0. 14	0. 10

Note: 0.02 is added to each $1000\,\mu\,F$ increase over $1000\,\mu\,F$


3.2.3 Leakage current (µA):

	Rated voltage (VDC)	6.3-100	160-450
Leakage Current (µ A)	6.3X5.7-10X10.5	Less than 0.01CV or 3 µ A, whichever is large (at 20°C, 2 minutes)	
(PA)	12.5X13.5-18X21.5	Less than 0.03CV or 4 µ A ,whichever is large (at 20°C, 1 minutes)	0.04CV +100 µ A (at 20℃,1 minutes)

RECOMMEDED SOLDERING CONDITIONS FOR ALUMINIUM SURFACE MOUNT TYPE

-Air or Infrared reflow soldering

Time(Sec)

SMDshape	size	voltage	preheating	Time	Time	Peak	Reflow
				maintained	maintained	temperature	number
				over 217 °c	over 230 °c		
	B52~E87	4~63V		≤90 Sec	≤60 Sec	≤260 °c	≤2 times
		63V,80V		≤60 Sec	≤40 Sec	≤250 °c	≤2 times
	F63~G100	4~50V		≤60 Sec	≤30 Sec	≤245 °c	≤2 times
		63V~100,	150-180C	≤30 Sec	≤20 Sec	≤240 °c	≤2 times
		400V	≤120Sec.				
	H135~K215	6.3~50V		≤30 Sec	≤20 Sec	≤240 °c	≤2 times
		63~450V		≤20 Sec	-	≤230 °c	≤2 times

Remark: Reflow number cannot over 2 times. After first time reflow , must be ensure that the temperature of capacitors became cold to room temperature(5 \sim 35 $^{\circ}$ C) ,then continue second flow.

1. Scope:

This specification applies to aluminum electrolytic capacitor ,used in electronic equipment.

2. Electrical characteristics:

TEST METHOD 1. Measuring frequency: 120Hz ± 12Hz	,	SPECIFICATION Voltage range ,
1 Managering fraggionaly 120Hz ± 12Hz		Valtaga ranga
2. Measuring voltage: ≤0.5Vrms+0.5VDC 3. Measuring circuit: (~2.0VDC	capacitance range ,see specification of this series
application of the DC rated working voresistor at 20 °C $ \begin{array}{c} S1 & R \\ \hline & & & \\ \hline &$	Switch witch for protect of current meter	Dissipation factor, leakage current, see specification of this series.
P TEMPERATURE $ \begin{array}{cccccccccccccccccccccccccccccccccc$	balance after 2 hours.	Step2. Low temperature impedance stability Less than specified value. Step4. Capacitance change: within ± 10% of the initial measured value. Dissipation factor: Less than specified
	DC leakage current shall be measu application of the DC rated working volvesistor at 20°C S1 R R: $1000^{\circ}\Omega$ $100^{\circ}\Omega$ S1:S A: DC current meter S2:S V: DC voltage meter Cx: T STE P TEMPERATURE 1 $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ 2 $-40^{\circ}\text{C} \pm 3^{\circ}\text{C}$ 3 $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ 4 $125^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Step1. Measure the impedance. (Z , 20°C $120\text{Hz}\pm 2$ Step2. Measure the impedance at thermal 10° (Z , 20°C $120\text{Hz}\pm 2$ Step2. Measure the impedance at thermal 10° (Z , 20°C $120\text{Hz}\pm 2$ Step2. Measure the impedance at thermal 10° (Z , 20°C $120\text{Hz}\pm 2$ Hz)	DC leakage current shall be measured after $1\sim 2$ minutes application of the DC rated working voltage through the $1000~\Omega$ resistor at $20^{\circ}\mathrm{C}$ S1 R R: $1000~\Omega$ $100~\Omega$ S1: Switch A: DC current meter S2: Switch for protect of V: DC voltage meter current meter Cx: Testing capacitor STE P TEMPERATURE STORAGE TIME 1 $20^{\circ}\mathrm{C} \pm 2^{\circ}\mathrm{C}$ 30minutes 2 $-40^{\circ}\mathrm{C} \pm 3^{\circ}\mathrm{C}$ 2hours 3 $20^{\circ}\mathrm{C} \pm 2^{\circ}\mathrm{C}$ 2hours 4 $125^{\circ}\mathrm{C} \pm 2^{\circ}\mathrm{C}$ 2hours Step1. Measure the impedance. ($ Z $, $20^{\circ}\mathrm{C}$ $120\mathrm{Hz} \pm 2\mathrm{HZ}$) Step2. Measure the impedance at thermal balance after 2 hours.

NO	ITEM	TEST METHOD	SPECIFICATION
2.6	Surge test	Rated surge voltage shall be applied (switch on)for 30 ± 5 second and then shall be applied (switch off) with discharge for 5.5min at room temperature. This cycle shall be repeated for 1000 cycles. Duration of one cycle is 6 ± 0.5 minutes	Capacitance change: within \pm 15% of the initial specified value.
			Dissipation factor: Less than specified value.
			Leakage current: Within initial specified value.

3.Mechanical characteristics

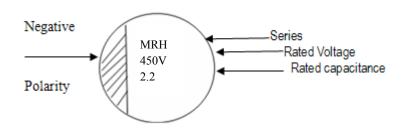
	hanical charact	CHSUCS				
NO	ITEM		TES	T METHOD		SPECIFICATION
NO 3.1	ITEM Lead strength	specified bety	ength: inal: ≤ 0.5 0. 5 shall with ween the	$ \begin{array}{c c} 0.5 < d \le 0.8 \\ \hline 1.0 \end{array} $	0.8 < d ≤ 1.25 2.0 tant tensile force ch lead for 10 mechanical or	SPECIFICATION When the capacitance is
		specified axia rotated slowly position, back opposite dire	inal: 60.5 citor in a lly to eacy from to the vection and of capacity	0.5 < d≤0.8 0.5 vertical position the vertical position deck the other shall not here.	0.8 < d ≤ 1.25 1.0 In apply the load apacitor shall be the horizontal The 90° in the riginal position. have change and	measured, there shall be no intermittent contacts, or open-or short-circuiting. There shall be no such mechanical damage as terminal damage etc.

NO.	ITEM	TEST METHOD	SPECIFICATION
3.2	Vibration resistance	The frequency of the vibration shall vary uniformly within the range 10 to 55 Hz with the amplitude of 0.75 mm, completing the cycle in the internal of one minute. The capacitor shall be securely mounted by its leads with hold the body of capacitor.	Capacitance change: within ± 5% of initial measured value.
		The capacitor shall be vibrated in three mutually perpendicular directions for a period of 2 hours in each direction.	Appearance: no abnormal.
3.3	Solder ability	The leads are dipped in the solder bath of Sn at 235 °C \pm 5 °C for 2 \pm 0.5 seconds. The dipping depth should be set at 1.5~2.0 mm.	The solder alloy shall cover the 95% or more of dipped lead's area.

4. Reliability

:

NO	ITEM	TEST METHOD	SPECIFICATIO
4.1	Soldering heat resistance	The leads immerse in the solder bath of Sn at 260°C±5°C for 30±1seconds until a distance of 1.5~2.0 mm from the case. After the capacitors are removed from the hot plate and then restored to standard atmospheric conditions for 1 to 2 hours, the capacitors shall meet the right requirements.	No visible damage or leakage of electrolyte.
4.2	Damp head (steady state)	Subject the capacitor to $40^\circ\!$	Capacitance change: Within \pm 15% of the initial measured value Tan δ : Less than 1.2 specified value. Leakage current: Less than specified value Impedance: Less than 1.2 specified value.


NO.	ITEM	TEST METHOD	SPECIFICATION
4.3	Load life	The following specifications shall be satisfied when the capacitors are restores to $20^{\circ}\!$	Capacitance change: (4-6.3VDC) within±30% of the initial specified value. (10-100VDC) within±25% of the initial specified value. (160-450VDC) within±20% of the initial specified value.
4.4	Shelf life	The following specifications shall be satisfied when the capacitors are restores to 20°C after exposing them for 500 hours at125°C without voltage applied. The rated voltage shall be applied to the capacitors for a minimum for 30 minutes, at least 24 hours and not more than 48 hours before the measurements	Dissipation factor: (4-100VDC) Less than 300% of the initial specified value. (160-450VDC) Less than 200% of the initial specified value. Leakage current: The initial specified value or
4.5	Storage at low temperatur e	The capacitor shall be stored at temperature of -40 °C \pm 3 °C for 16 hours, during which time be subjected to standard atmospheric conditions for 16 hours or more. After which measurements shall be made.	less. Capacitance change: Within ±10% of the initial value. Tan δ :less than specified value Leakage current: Less than specified value. Appearance: no Abnormal.
4.6	Pressure relief	AC test: Applied voltage: AC voltage not exceeding 0.7 times of the rated direct voltage or 250V AC whichever is the lower. Frequency: 50Hz or 60Hz. Series resistor: refer to the table below	AC test circuit S R C S S R S S S S S S S S S S S S S

NO.	ITEM	TEST METHOD	SPECIFICATION			
4.6	Pressure relief	DC test: Send the following electricity while applying the inverse voltage. Where case size: D≤22.4mm:1 A d.c. max D > 22.4mm:10 A d.c. max Note: 1.This requirement applies to capacitors with a diameter of 8 mm or more. 2. When the pressure relief device does not open even 30 minutes after commencement of test, the test may be ended.	DC test circuit S: Switch S: Switch Cx: DC current meter Cx: testing capacitor The pressure relief device shall open in such a way as to avoid any damage of fire or explosion of capacitor elements (terminal and metal foil etc.) or cover.			
4.7	Temp cycle	LSL temperature(°C):-40 \pm 3 time(H): 0.5H/timeX5 times USL temperature(°C):125 \pm 2 time(H): 0.5H/timeX5 times Judgement: CAP: \triangle C/C \leq \pm 10%, Appearance no Abnormal. No electrolyte leakage.				
4.8	Thermal shock	dry heat temperature (°C): 125 ± 2 time(H): 16 moist heat ter cold temperature(°C): -40 ± 2 time(H): 2/ moist heat temper Judgement: CAP, \triangle C/C $\le\pm10\%$, Tan δ :Less than 1.2 specific than specified value. Appearance no Abnormal. No electrolyte less than 1.2 specific than specified value.	rature(°C): 55 time(H): 24 : ed value, Leakage current: Less			

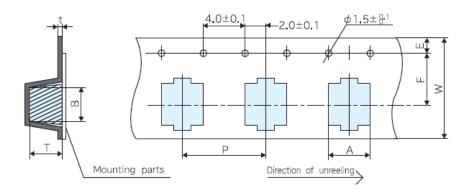
5. Marking For example:

5.1. Marking on capacitors include:

- 1>. Series
- 2>. Rated voltage
- 3>. Rated capacitance (u F)
- 4>. Polarity

5.2. Marking color: Blue

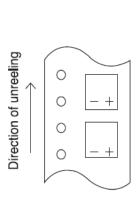
Detergent needing attention

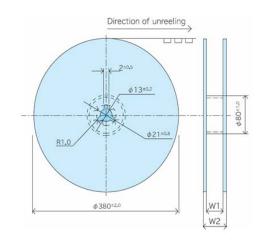

Hydrogen carbide liquid and halogen liquid can cause Aluminum Electrolytic Capacitor to corrode. Some of Safe and Unsafe detergent are as follows

Safe	Unsafe
Dimethylbenzene	1,1,2-trichloroethane
Ethanol	
Butanol	1,2,2- trichloroethane
Dutanoi	
	Tetrachloroethylene
Methanol	
	Chloroform(colorless volatilizable liquid)
Propanol	
	Dichloromethane
Detergent	Trichloroothylano
	Trichloroethylene

Carrier Pack Taping Specification:

Fig.1




Product size table Unit: mm

Dimensi on Size Code	A	В	W	F	E	P	t	Т
Ф8Х12.5	8.7±0.2	8.7±0.2	24	11.5	1.75±0.1	16	0.6max	14±0.2

Polarity:

Package for SMD Type:

Size Code	W1(mm)	W2(mm)	Q'ty(pcs/reel)	Q'ty(pcs/reel)
Φ8	26±0.5	30.5 ± 1.0	1200	12000

Series	MRH	450 V	2.2 μ F		Part N	0.	MRH-450V2R2MF125-T/R	
Customer No.					Case si	.ze	ФD8 X L12.5	
	Items				Standard			
	Operating temperature range			ge	- 40 ~ + 125 °C			
	Capacitance tolerance				±20% (20℃ ,120Hz)			
Specification	Dissipation factor (MAX)				(Less than) 25% (20 ℃ ,120Hz)			
	Leakage current (MAX)				(Less than)39.6μA (20 °C 450 V 2 min)			
	Impedance(MAX)				/			
	Ripple current (MAX)			20mArms (100KHz ,125℃)				
	Load life				4000 hrs			
	Marking color				Blue			
					(Dimensions)			
Outline	0.3max L±1.0max							
	ФІ	D L	A	В	С	W	(unit):mm P±0. 2	
	8	12. 5	8.3	8. 3	9. 0	0. 7-1. 1	3. 1	
Recorder	(The fi	rst editio	n):2022-	8-22				

(Issue No.): DJJ-2875