

Rev F2, Page 1/39

FEATURES

- ♦ Integrated Hall sensors with automatic gain and offset control
- ♦ For magnetic scales of 1.0 up to 5.0 mm pole width and diametric magnets
- ♦ Current consumption of only 2 µA to 30 µA in typ. applications
- ◆ Tracking speed of up to 24 m/s (1.5 mm poles) or 15 000 rpm (32 pole pairs)
- ♦ Configurable multiturn counting up to 40 bits
- ♦ Adjustable period count per revolution: FlexCount® logic for 1 to 256 pole pairs
- ♦ Serial, parallel and incremental singleturn operating modes
- ♦ SSI multiturn data output with error, warning, parity, and synchronization bits
- ♦ Multiturn preset by pin or command
- ♦ I²C master function for initial boot-up from EEPROM
- ♦ I²C slave function for controller operation
- ♦ Supply voltage of 3.0 V to 5.5 V
- ♦ Automatic low-power operation on backup battery
- ♦ Overspeed, battery and RAM (CRC) monitoring
- ♦ Space-saving 16-pin QFN package

APPLICATIONS

- ♦ Absolute hollow-shaft position encoders
- Absolute on-axis position encoders
- ♦ Gearless revolution counting
- Linear position sensors
- Metering applications
- Battery-powered portable equipment

PACKAGES

QFN16 4 mm x 4 mm x 0.9 mm RoHS compliant

BLOCK DIAGRAM

Rev F2, Page 2/39

DESCRIPTION

iC-PVL is an ultra low power magnetic encoder, used for linear and off-axis multiturn position sensing. On main power shutdown, iC-PVL automatically switches to battery supply and continues scanning the position.

iC-PVL operates with pole wheels or linear scales with a pole width of 1.0 mm up to 5.0 mm. Due to various operating modes, iC-PVL can work with iC-Haus singleturn encoders (e.g. iC-MU Series, iC-MHM, iC-MNF, iC-TW29 etc.), as stand-alone SSI or incremental encoder, or links to embedded controllers via I²C.

The Hall signal processing stage is designed for ultra low power applications and can be configured to support angular accelerations up to 180 000 rad/s² with 16 magnetic periods per revolution. The maximum magnetic signal frequency is 8 000 Hz. This corresponds to a rotational frequency of 30 000 rpm for magnetic scales with 16 pole pairs. With higher demands on acceleration, the power consumption increases. The maximum supported acceleration is configurable, therefore an optimal trade-off between power consumption and supported acceleration can be individually chosen to meet the demands of the target application.

iC-PVL reads its configuration from an external EEP-ROM via an I²C interface with multimaster support. Among others, the bit length for multiturn and synchronization data, the interface mode, the maximum supported acceleration and the usage of error or parity bits can be configured. The configuration read-in is triggered by the preset pin PRE. A pulse on this pin resets the device and reads a new configuration from the EEPROM. The multiturn counter is preset to a configurable value (default 0).

The configuration RAM and multiturn counter value are protected against bit errors by an 8 bit CRC. Additionally, an error is generated on excessive speed or acceleration. An integrated battery monitor is used to signalize an empty battery as error. If an error is detected, it is displayed at output NERR and via the error bit in the SSI communication protocol. Additionally, a low battery voltage is indicated at output NWRN. Optionally, this warning can be transmitted in the serial data stream.

Besides linear position encoding, iC-PVL is also used for off-axis scanning of magnetic pole wheels or on-axis scanning of diametric cylindrical magnets. In these applications, a certain number of magnetic north-south field periods may be interpreted as one mechanical revolution. The FlexCount® circuitry offers this functionality. By electrically emulating the characteristics of a gear box, a transmission is freely programmable. For instance, 1-256 magnetic periods can be interpreted as one mechanical revolution.

The iC-PVL multiturn encoder comes in a space-saving QFN16 package. This allows its integration in existing encoder systems or the design of smaller encoders.

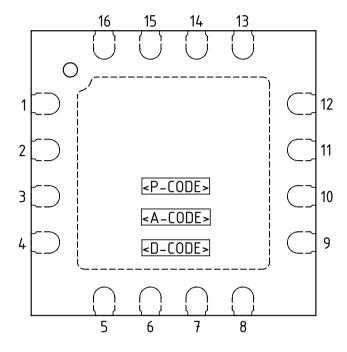
General notice on application-specific programming

Parameters defined in the datasheet represent supplier's attentive tests and validations, but - by principle - do not imply any warranty or guarantee as to their accuracy, completeness or correctness under all application conditions. In particular, setup conditions, register settings and power-up have to be thoroughly validated by the user within his specific application environment and requirements (system responsibility).

The performance of iC-PVL in application is impacted by system conditions like quality of the magnetic target and its adjustment, field strength and stray fields, temperature and mechanical stress.

Rev F2, Page 3/39

CONTENTS


DACKACING INFORMATION	4	I ² C SLAVE MODE	27
PACKAGING INFORMATION PIN CONFIGURATION	4	I-C SLAVE MODE	21
QFN16 4 mm x 4 mm (top view)	4	MAGNETIC FIELD AMPLITUDE MONITORING	27
PACKAGE DIMENSIONS QFN16 4x4	5	ERROR MONITOR, STATUS AND COMMAND	
ABSOLUTE MAXIMUM RATINGS	6	REGISTER	28
	_	Status Register	28
THERMAL DATA	6	STUP_ERR: Startup Error	28
ELECTRICAL CHARACTERISTICS	7	CFG_ERR: Internal Configuration Error CTR_ERR: Internal Counter Error	28 28
OPERATING REQUIREMENTS	10	POS_ERR: Position Error	28
Serial and Parallel Interface	10	BAT_ERR: Battery Error	29
	.0	BAT_WRN: Battery Early Warning	29
CONFIGURATION PARAMETERS	12	PDR: Power Down Reset Detected	29
	40	PRESET: Pin Preset Detected	29
REGISTER MAP (EEPROM)	12	Extended Status Byte	29
REGISTER MAP (iC-PVL during I ² C slave		AMPL_ERR: Amplitude Error	29
mode, ID = 0b1100 001)	13	MAG_ERR: Magnet Error	29
DECICIED MAD ('O DVI) decient 120 dece		NOMAG_L: NoMagnet Working State (latched)	29
REGISTER MAP (iC-PVL during I ² C slave mode, ID = 0b1100 000)	14	Error Output NERR	29
111000, 15 05 1100 000,		Error Output During Startup	29
OPERATING MODE SELECTION	15	Warning Output NWRN	29
DEVICE MODUNO STATES	47	Command Register	29
DEVICE WORKING STATES	17	CURRLY CAMECULAND DATTERY	
STARTUP BEHAVIOR	18	SUPPLY SWITCH AND BATTERY MONITORING	30
MAGNETIC SCALE SELECTION	20	CURRENT CONSUMPTION IN BATTERY	
COMPENSATION OF ACCEMBLY Date Office		MODE	32
COMPENSATION OF ASSEMBLY: Data Offset and Counting Direction	22	Serial Interface Mode (SEL = LOW)	32
and counting birection		Parallel Encoder Mode (SEL = HIGH)	33
SERIAL INTERFACE MODE (SEL = LOW)	23	OSCILLATOR ERFOLIENCY CALIBRATION	22
OUTPUTS N0, P2, N2	24	OSCILLATOR FREQUENCY CALIBRATION	33
001F013 Nu, F2, N2	24	APPLICATION EXAMPLE: iC-PVL as battery	
MULTITURN COUNTER	25	powered revolution counter or metering device	34
PARALLEL ENCODER MODE (SEL = HIGH)	25	DESIGN REVIEW: Notes On Chip Functions	35
I ² C MULTIMASTER INTERFACE AND CRC	26	REVISION HISTORY	36

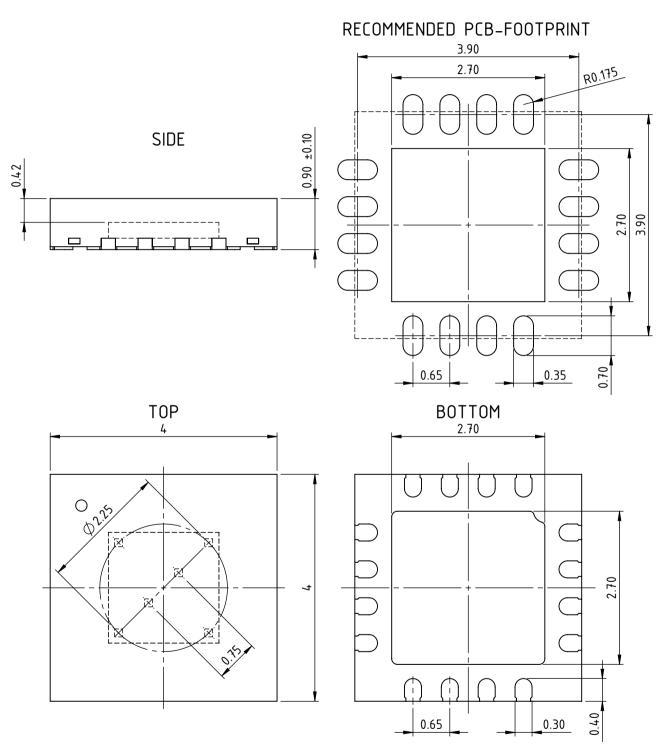
Rev F2, Page 4/39

PACKAGING INFORMATION

PIN CONFIGURATION QFN16 4 mm x 4 mm (top view)

PIN FUNCTIONS No. Name Function

140.	Name	i dilction
1	SEL	Mode Select Input ¹⁾ Low: Battery buffered counter with serial readout High: 3 bit parallel complementary output Shorted to PRE input: I ² C slave mode
2	PRE	Preset Trigger Input
3	NERR	Error Output (active low)
4	SDA	I ² C Interface, Data Line
5	GND	Ground
6	VBAT	Battery Supply Voltage Input (typ. 3.6 V) ²⁾
7	VDDS	Switched Supply Voltage Output
8	VDD	+3.0 V to 5.5 V Main Supply Voltage Input
9	N2	Parallel Position Output MSB, Incremental Output B,
10	P2	Parallel Mode Output Bit 2 (neg. logic) Parallel Position Output MSB-1, Incremental Output A,
11	N0	Parallel Output Bit 2 (pos. logic) Parallel Position Output LSB, Parallel Mode Output Bit 0 (neg. logic)
12	NWRN	Battery Warning Output (active low)
13	DO_P0	Multiturn Interface, Data Output, Parallel Mode Output Bit 0 (pos. logic)
14	CLK_N1	Multiturn Interface, Clock Line, Parallel Mode Output Bit 1 (neg. logic)
15	DI_P1	Multiturn Interface, Data Input, Parallel Mode Output Bit 1 (pos. logic)
16	SCL BP	I ² C Interface, Clock Line Backside paddle ³⁾


IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);

Do not leave pin open.
 Connect pin to VDD if iC-PVL is used without a backup power source (e.g. battery, supercap).
 Connecting the backside paddle is recommended by a single link to GND. A current flow across the paddle is not permissible.

Rev F2, Page 5/39

PACKAGE DIMENSIONS QFN16 4x4

All dimensions given in mm. Tolerances of form and position according to JEDEC MO-220. Tolerance of sensor pattern: ±0.10mm / ±1° (with respect to center of backside pad). dra_qfn16-4x4-4_pvl_0_pack_1, 15:1

Rev F2, Page 6/39

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
G001	V(VDD)	Voltage at VDD		-0.25	6	V
G002	V(VBAT)	Voltage at VBAT	VDD > Von: VBAT < VDD + 1.0 V	-0.25	6	V
G003	V(VDDS)	Voltage at VDDS		-0.25	6	V
G004	V()	Voltage at SCL, SDA, DI_P1, CLK_N1, DO_P0, N0, NERR, NWRN, P2, N2, PRE, SEL		-0.25	6	V
G005	I(VDD)	Current in VDD		-10	50	mA
G006	I(VBAT)	Current in VBAT		-10	50	mA
G007	I(VDDS)	Current in VDDS		-10	50	mA
G008	I(GND)	Current in GND		-50	10	mA
G009	I()	Current in SCL, SDA, DI_P1, CLK_N1, DO_P0, N0, NERR, NWRN, P2, N2, PRE, SEL		-30	30	mA
G010	Vd()	ESD Susceptibility at All Pins	HBM, 100 pF discharged through 1.5 kΩ		2	kV
G011	Tj	Junction Temperature		-40	150	°C
G012	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating conditions:

VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V

Item	Symbol	Parameter	Conditions		Unit		
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package QFN16	-40		125	°C
T02	Rthja		QFN16-4x4 surface mounted to PCB according to JEDEC 51 thermal measurement standards		40		K/W

Rev F2, Page 7/39

ELECTRICAL CHARACTERISTICS

Operating conditions: VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V, $Tj = -40...125 ^{\circ}C$, fslow calibrated to 34 kHz with IBIAS, unless otherwise stated.

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device						
001	V(VDD)	Permissible Main Supply Voltage	VDD must never go below GND - 0.25V	3.0		5.5	V
002	I(VDD)	Supply Current in VDD	Tj = 27 °C, no load	1.5	4.0	6.0	mA
003	V(VBAT)	Permissible Battery Voltage ¹	if VDD > Von: VBAT < VDD + 1 V	3.0	3.6	5.5	V
004	lavg(VBAT)	Average Supply Current in VBAT in Battery State	VBAT = 3.6 V, Tj = 27 °C, VDD < Von depending on fmag and A_MAX, see Table 37	1	10	800	μA
005	lavg(VBAT)	Average Supply Current in VBAT in PowerOn or Sleep State (POWON_ST = 1 or SLEEP_ST = 1)	VBAT = 3.6 V, VDD < Von Tj = 27 °C, Tj = 125 °C,		0.3 1.0	1.0 3.0	μA μA
006	Ispike()	Peak Current in VDD and VBAT	tspike < 5 µs		4.0	10.0	mA
007	Vc()hi	Clamp Voltage hi at All Pins	Vc()hi = V() - VDDS, I() = +1 mA	0.3	0.7	1.6	V
800	Vc()lo	Clamp Voltage Io at All Pins	I() = -1 mA	-1.6	-0.7	-0.25	V
009	tconfig	Power-Up Time After Preset	VDD > 3 V, initializing from EEPROM start address = 0x00, data valid start address = 0xA0, data valid		12 50	20 100	ms ms
010	C(VBAT)	External Bypass Capacitor at Pin VBAT	ceramic capacitor placed as close as possible to the pin	1			μF
011	C(VDDS)	External Bypass Capacitor at Pin VDDS ¹	ceramic capacitor placed as close as possible to the pin	100			nF
012	C(VDD)	External Bypass Capacitor at Pin VDD ¹	ceramic capacitor placed as close as possible to the pin	100			nF
Magne	etic Signal C	conditioning					
101	Hext	Permissible Magnetic Field Strength ¹	at chip surface	10		100	kA/m
102	Bext	Permissible Magnetic Flux Density	at chip surface in air	12.5		125	mT
103	fmag	Magnetic Input Frequency	VDDS = 3.0 V, tested via electrical input			8	kHz
104	frot	Permissible Rotation of Pole Wheel with	16 pole pairs 32 pole pairs 64 pole pairs			30000 15000 7500	rpm rpm rpm
105	vmax	Permissible Movement Speed (Linear)	1.5 mm pole width (3 mm magnetic period)			24	m/s
106	dsens	Diameter of Hall Sensor Circle	measured from center of each Hall plate, ONAX = 1		2.25		mm
107	hpac	Sensor-to-Package-Surface Distance	QFN16		0.4		mm
108	Ht	Differential Magnetic Field Strength Working Threshold for Position Tracking	ATHR = 0x00 ATHR = 0x01 ATHR = 0x02 ATHR = 0x03 device is in NoMagnet working state if field strength (at chip surface) is below this value		2.5 1.25 0.625 5.0		kA/m kA/m kA/m kA/m
109	Bt	Differential Magnetic Flux Density Working Threshold for Position Tracking	ATHR = 0x00 ATHR = 0x01 ATHR = 0x02 ATHR = 0x03 flux value at chip surface in air		3.13 1.56 0.78 6.25		mT mT mT mT
Oscill	ator Freque	i e	,				
301	fslow	Slow Oscillator Frequency	calibrated to 34 kHz with IBIAS	32	34	36	kHz
302	ffast	Fast Oscillator Frequency	fslow calibrated with IBIAS	4.0	6.0	8.0	MHz
Suppl	y and Batter	y Monitoring					
401	Von	Switch to VDD Supply (VDD Power On)	increasing voltage at VDD; VBAT > 3.0 V	2.8	2.9	3.0	V

 $^{^{\}rm 1}$ For iC-PVL X1: Please refer to the design review on p. 35.

Rev F2, Page 8/39

ELECTRICAL CHARACTERISTICS

Operating conditions:

VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V, Tj = -40...125 °C, fslow calibrated to 34 kHz with IBIAS, unless otherwise stated.

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
402	Voff	Switch Back to Battery Supply (VDD Power Off)	decreasing voltage at VDD; VBAT > 3.0 V	2.7	2.8	2.9	V
403	Vhys	Hysteresis (VDD Switch)	Vhys = Von - Voff	25	100	150	mV
404	Vt()err	Battery Monitoring Error Threshold Voltage	BAT_THR = "11" BAT_THR = "10" BAT_THR = "01" BAT_THR = "00"	2.65 2.75 2.85 2.95	2.75 2.85 2.95 3.05	2.85 2.95 3.05 3.15	V V V
405	Vt()wrn	Battery Monitoring Warning Threshold Voltage	BAT_THR = "11" BAT_THR = "10" BAT_THR = "01" BAT_THR = "00"	2.75 2.85 2.95 3.05	2.85 2.95 3.05 3.15	2.975 3.075 3.175 3.275	V V V
406	Vew	Difference Battery Error-to-Warning	ΔVew = Vt()wrn - Vt()err	40	100	175	mV
Digita	Outputs: [DI_P1, CLK_N1, DO_P0, N0, P2, N	12	U .			
501	Vs()hi	Saturation Voltage hi	Vs()hi = VDDS - V(), I() = -1.6 mA	0.05		0.4	V
502	Vs()lo	Saturation Voltage lo	I() = 1.6 mA	0.05		0.4	V
503	lsc()hi	Short-Circuit Current hi	VDDS = 3.0 V, V() = GND	-15		-4	mA
504	lsc()lo	Short-Circuit Current lo	VDDS = 3.0 V, V() = VDDS	4		15	mA
505	tr()	Rise Time	CL = 30 pF			50	ns
506	tf()	Fall Time	CL = 30 pF			50	ns
EEPR	OM Interfac	e: SCL, SDA	1	U			II.
601	Vt()hi	Input Threshold Voltage hi			1.7	2	V
602	Vt()lo	Input Threshold Voltage lo		0.8	1.4		V
603	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo	75	200	500	mV
604	Vs()lo	Saturation Voltage lo	I() = 1.6 mA	0.05		0.4	V
605	lsc()lo	Short-Circuit Current lo	VDDS = 3.0 V, V() = VDDS	8		30	mA
606	lpu()	Pull-Up Current	V() = 0 VVDDS - 1 V	-1000	-300	-30	μA
607	fclk(SCL)	I ² C Output Frequency at SCL			f _{fast} / 128		kHz
Error	Monitoring	Output: NERR, NWRN		"			"
701	Vs()lo	Saturation Voltage lo	I() = 1.6 mA	0.05		0.4	V
702	lsc()lo	Short-Circuit Current lo	VDDS = 3.0 V, V() = VDDS	4		15	mA
Digita	l Inputs: DI	P1, CLK_N1		"			
801	Vt()hi	Threshold Voltage hi			1.7	2	V
802	Vt()lo	Threshold Voltage Io		0.8	1.4		V
803	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	75	200	500	mV
804	lpd()	Pull-Down Current	V() = 1 VVDDS	2	30	100	μA
Mode	Select Inpu	t: SEL					
901	Vt()hi	Threshold Voltage hi			1.7	2	V
902	Vt()lo	Threshold Voltage lo		0.8	1.4		V
903	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	75	200	500	mV
Preset	t Input: PRE	<u> </u>					
A01	Vt()hi	Threshold Voltage hi			60	75	%VDD
A02	Vt()lo	Threshold Voltage lo		30	40		%VDD
A03	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	0.7	1.0	1.4	V
A04	lpd()	Pull-Down Current	V() = 1 VVDDS, SEL = GND	10	120	300	μA
A05	t _{preset}	Length of Preset Pulse on PRE Pin		2			μs
Serial	Interface to	Singleturn Sensor, SSI and Cha	in Mode		-		
B01	tp()	Propagation Delay: Clock Edge vs. DO Output		10		100	ns
B02	tout	Timeout	fslow calibrated via IBIAS	15	25	35	μs

Rev F2, Page 9/39

ELECTRICAL CHARACTERISTICS

Operating conditions:

VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V, Tj = -40...125 °C, fslow calibrated to 34 kHz with IBIAS, unless otherwise stated.

ltem	Symbol	Parameter	Conditions			Unit	
No.				Min.	Тур.	Max.	
Paralle	el Encoder I	Mode					
C01	tprocess	Processing Time (Parallel Output)	see Figure 14		10	30	μs
00.	tp:0000	Tresecting Time (Farance Suspan)	See Figure 11				l

Rev F2, Page 10/39

OPERATING REQUIREMENTS: Serial and Parallel Interface

Operating conditions:

VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V, Tj = -40...125 °C, fslow calibrated to 34 kHz with IBIAS, unless otherwise stated.

Item	Symbol	Parameter	Conditions	1		Unit
No.	-			Min.	Max.	
Serial	Interface S	SI Mode				
1001	t _{wait}	SSI Request after VDD Power-on		10		μs
1002	t _{req}	Request Signal lo Level Duration		250		ns
1003	t _C	Permissible Clock Period	due to Elec. Char. B02	500	$2 \cdot t_{out}$	ns
1004	f_C	Permissible Clock Frequency	missible Clock Frequency due to Elec. Char. B02		2	MHz
1005	t _{L1}	Clock Signal hi Level Duration	ock Signal hi Level Duration			ns
1006	t _{L2}	Clock Signal lo Level Duration		250		ns
1007	t _{frame}	Cyclic Multiturn Data Frame Request Interval		85		μs
I ² C Sla	ve Mode D	irect Access				
I010	t _C	Permissible Clock Period	due to Elec. Char. B02			
1011	t _{wait}	I ² C Request after VDD Power-on		10		μs
1012	f _{scl}	Permissible Input Clock Frequency	I ² C standard mode with timeout Elec. Char. B02	1/(2·t _{out})	100	kHz
Paralle	l Encoder	Mode (SEL = High)				
1013	t _{start}	Length of Start Pulse on PRE Pin	see Figure 14 on Page 25	2		μs
1014	t _{cycle}	Time Between Two Consecutive Sensor Read Cycles	see Figure 14 on Page 25	30		μs
Serial	Interface C	hain Mode				
1015	f_{C}	Permissible Clock Frequency	due to Elec. Char. B02	1/(2·t _{out})	1	MHz
I016	t _C	Permissible Clock Period	due to Elec. Char. B02	1	2·tout	μs
1017	t _{L1}	Clock Signal hi Level Duration		500		ns
1018	t _{L2}	Clock Signal lo Level Duration		500		ns

Figure 1: I/O line signals of the serial interface in SSI mode (INT_MODE = 0)

Rev F2, Page 11/39

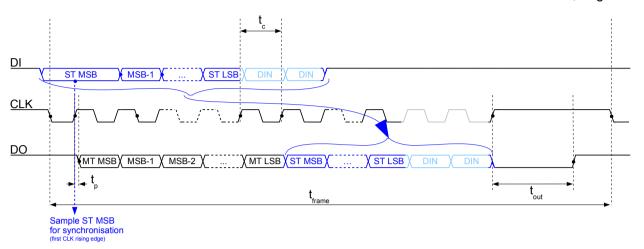


Figure 2: I/O line signals of the serial interface in Chain Mode (INT_MODE = 1). **Note:** Chain Mode can only be used in specific system setups. Extended system requirements apply.

Rev F2, Page 12/39

CONFIGURATION PARAMETERS

Hall Sensor Signal Conditioning

DIR: Code Direction (P. 22)

OS: Electrical Offset Multiturn to Singleturn

(P. 22)

Serial Interface

INT_MODE: Serial Interface Operating Mode (P. 23)
MT_GRAY: Multiturn Output Data Format (P. 23)
ST_GRAY: Singleturn Input Data Format (P. 23)
MT_BW: Bit Width of Multiturn Data and Counter

(P. 23)

SYNC_BW: Synchronization Bit Width (P. 23)
PCR: Period Count per Revolution (P. 21)

PCR OUT: PCR Output Mode (P. 21)

EN_ERR: Error Bit Transmission Enable (P. 24)
EN PAR: Parity Bit Transmission Enable (P. 24)

Bias and Oscillators

IBIAS: Bias Current; Oscillator Frequency

Calibration (P. 33)

A_MAX: Maximum Angle Acceleration (P. 32)

Battery Monitor

BAT_MON: Battery Monitoring Enable (P. 30)
EN_WRN: Low Battery Warning Enable (P. 24)
BAT_THR: Battery Monitor Thresholds (P. 31)

Miscellaneous

POLEWID: Pole Size of Magnetic Scale (P. 20)
ONAX: On-Axis Magnetic Scanning (P. 21)
ABQUAD: AB Quadrature Output (P. 24)

HYS: Hysteresis (P. 24)

I2C_POS: Enable I²C Position Readout (P. 27) MT_PREL: Multiturn Counter Preload Value (P. 25)

CHIP_REL: Chip Release (P. 27)

ATHR: Field Amplitude Threshold Value (P. 28)

NOMAG: NoMagnet Detection (P. 28)

CRC Checksums

CRC CFG: Checksum for Chip Configuration

(0x00-0x05) (P. 26)

CRC CTR: Checksum for MT PREL (0x07-0x0B)

(P. 26)

REGISTER MAP (EEPROM)

OVERV	OVERVIEW										
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Interface	and Hall Sig	nal Processin	ıg								
0x00	EN_	PAR	EN_	ERR	DIR	ST_GRAY	MT_GRAY	INT_MODE			
0x01		os				MT_BW					
0x02	PCR										
Battery	Monitor, Bias	and Oscillato	rs								
0x03	EN_WRN	BAT_MON		A_MAX			IBIAS				
Miscella	Miscellaneous										
0x04	0	NON	ЛAG	AT	HR	ONAX	POLE	EWID			
0x05	I2C_POS	PCR_OUT	SYNC	C_BW	BAT_	_THR	HYS	ABQUAD			
CRC Co	nfiguration (ir	nverted)									
0x06				CRC_C	FG(7:0)						
Multituri	n Counter: Pr	eload Value									
0x07				MT_PR	EL(7:0)						
0x08				MT_PRI	EL(15:8)						
0x09				MT_PRE	EL(23:16)						
0x0A	MT_PREL(31:24)										
0x0B				MT_PRE	EL(39:32)						
CRC Co	unter (inverte	d)									
0x0C				CRC_C	TR(7:0)						

Rev F2, Page 13/39

REGISTER MAP (iC-PVL during I²C slave mode, ID = 0b1100 001)

OVERV	'IEW									
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Interface	e and Hall Sig	nal Processir	ng							
0x00	EN_	PAR	EN_	ERR	DIR	ST_GRAY	MT_GRAY	INT_MODE		
0x01		OS				MT_BW				
0x02				PC	CR					
Battery	Monitor, Bias	and Oscillato	ors							
0x03	EN_WRN	BAT_MON		A_MAX			IBIAS			
Miscellaneous										
0x04	0	NON	MAG	AT	HR	ONAX	POLI	EWID		
0x05	I2C_POS	PCR_OUT	SYNC	C_BW	BAT_	THR	HYS	ABQUAD		
CRC Configuration (inverted)										
0x06 CRC_CFG(7:0)										
Multitur	n Counter: Cu	Counter: Current Count (PCR_OUT = 0) Multiturn Counter: Current Count (PCR_OUT = 1)								
0x07			JNT(7:0)				PCR(7:0)			
0x08		MT_COL					JNT(7:0)			
0x09			NT(23:16)				JNT(15:8)			
0x0A			NT(31:24)				NT(23:16)			
0x0B		MT_COU	NT(39:32)			MT_COU	NT(31:24)			
	unter (inverte	d)								
0x0C		•		CRC_C	TR(7:0)					
-	nization Bits	1								
0x0D	0	0	0	0	0		SYNC(2:0)			
0x0E				Rese	erved					
	lease (I ² C sla	ve mode read	only)							
0x0F				CHIP	_REL					
	s Register (I ² C slave mode only)									
0x10	PRESET	PDR	BAT_WRN	BAT_ERR	POS_ERR	CTR_ERR	CFG_ERR	STUP_ERR		
	nd Register (I	² C slave mod	e write only)							
0x11					0(7:0)					
			ing States an	-	Monitor (I ² C s		1			
0x12	SLEEP_ST	NOMAG_ST	ACTIVE_ST	POWON_ST	Unused	NOMAG_L	MAG_ERR	AMPL_ERR		

Table 6: Register map during I²C slave mode

Rev F2, Page 14/39

REGISTER MAP (iC-PVL during I²C slave mode, ID = 0b1100 000)

OVERV	OVERVIEW											
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Status Register (I ² C slave mode only)												
0x00	PRESET	PDR	BAT_WRN	BAT_ERR	POS_ERR	CTR_ERR	CFG_ERR	STUP_ERR				
Comma	nd Register (I	² C slave mod	e write only)									
0x01				CMD	(7:0)							
Extende	Extended Status Register for Working States and Amplitude Monitor (I ² C slave mode only)											
0x02	SLEEP_ST	NOMAG_ST	ACTIVE_ST	POWON_ST	Unused	NOMAG_L	MAG_ERR	AMPL_ERR				

Table 7: Register map during I²C slave mode

Rev F2, Page 15/39

OPERATING MODE SELECTION

The input SEL defines the operating mode of iC-PVL. For the default application as battery buffered multiturn counter with serial position readout (SSI Interface), it is mandatory to connect the SEL input to GND potential. In case a three bit parallel and differential position output is desired, a high state at SEL input selects a parallel encoder mode. It is mandatory to connect SEL to a defined high or low potential.

IC-PVL

SCL

FC

RAM
SDA

MultiMaster
and Slave

NT_MODE=0

SSI Data Out
DI

SSI Clock In

CLK

PRESETO

PRESETO

PRESETO

Operating Mode Selection

GND

GND

Figure 3: SEL = low: serial interface SSI mode

An additional operating mode is activated when SEL is shorted to input PRE. In this mode, the preset pulse does not trigger an EEPROM readout. iC-PVL now behaves as I²C slave and all registers (configuration, position, status and command registers) are accessible via I²C device ID = 0b1100 001 (see Table 6).

The register layout visible via I²C is shown on page 13 for each particular address. Please note that some addresses are read only.

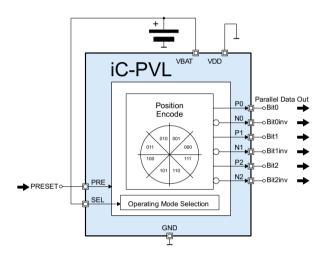


Figure 4: SEL = high: parallel encoder mode

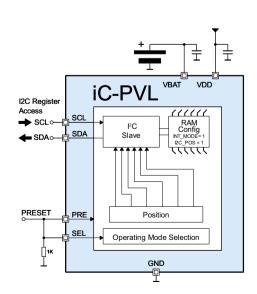


Figure 5: SEL = PRE: I²C slave mode

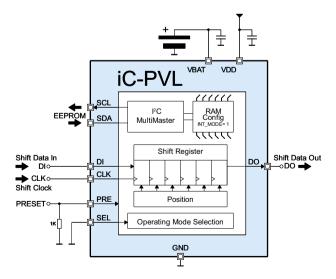


Figure 6: SEL = low: serial interface chain mode.

Note: Chain Mode can only be used in specific system setups. Extended system requirements apply.

Rev F2, Page 16/39

OPERATING	G MODE SELECTION	N				
Operating Mode	Description	Pin SEL	Parameter INT_MODE (see Table 16)	Parameter I2C_POS (see Table 27)	I ² C Slave Function	I ² C Master Function (Read E2P cfg)
SSI Mode (Fig. 3)	Battery buffered counter with serial readout.	low	0	0	yes (without position readout)	only after preset pulse* or I ² C command REBOOT
I ² C Slave mode (Fig. 5)	iC-PVL operates as I ² C slave, ID = 0b1100 001.	Shorted to PRE	0	1	yes (with position readout)	only after I ² C command REBOOT
Parallel Mode (Fig. 4)	3 bit Parallel Encoder Mode, complementary output.	high	-	-	-	-
Chain Mode (Fig. 6)	Battery buffered counter with serial readout.	low	1	0	no	only after preset pulse
	Note: Chain Mode can only be used in specific system setups. Extended system requirements apply.					

Table 8: Operating mode selection, configuration settings, available functions

^{*} For iC-PVL W4 or newer: Please refer to the design review on p. 35.

Rev F2, Page 17/39

DEVICE WORKING STATES

The iC-PVL operates in different working states according to its configuration and the environmental conditions, especially regarding power supply and magnetic field strength. Table 9 and Figure 7 show their main characteristics and the transitions between the states. These working states do not apply to the Parallel Encoder Operating Mode.

Working State	VDD Supply	Description	Position Tracking	Position Readout	Status Indication	I(VDD)	I(VBAT)
PowerOn	Off	Security state after reset/preset	Off	No		0 mA	typ. 300nA, max. 3µA
PowerOn	On	Security state after reset/preset	Off	No	Error	1 mA	0 mA
Active	On	Normal operation using VDD supply, backup battery is connected	High speed Yes 4 mA 0 n		0 mA		
Battery	Off	Backup operation using VBAT supply, current consumption depends on rotational speed and parameter A_MAX	High speed capable	Not possible		0 mA	1-800 μΑ
NoMagnet	On	Low magnetic field amplitude detected	Low speed	Yes	Error	1 mA	0 mA
NoMagnet	Off	Low magnetic field amplitude detected, current consumption defined by parameter A_MAX	Low speed No 0 mA		1-50 μΑ		
Sleep	On	Sleep state activated via command	Off	No	Error	1 mA	0 mA
Sleep	Off	Sleep state activated via command	Off	No		0 mA	typ. 300nA, max. 3µA

Table 9: Definition of device working states

In states were position readout is marked with <no>, the read action via serial interface SSI/I2C is possible, but the read position is invalid. I.e. the interfaces answers with all position bits = '1'. I2C communication for register operation is possible in all states when VDD supply is on (VDD > V_{on}). For values of V_{on} and V_{off} refer to Elec. Char. No. 401 and 402.

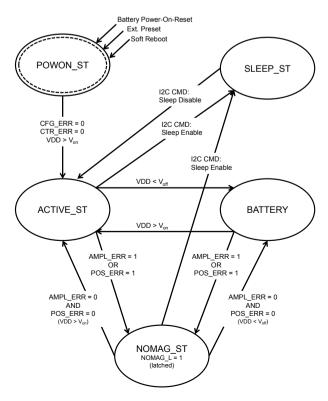


Figure 7: State Diagram

Rev F2, Page 18/39

STARTUP BEHAVIOR

As shown in chapter OPERATING MODE SELECTION, iC-PVL can be booted up in four distinct operating modes. These are the SSI Mode, the Parallel Encoder Mode, the I²C Slave Mode and the Chain Mode, respectively. Via SEL, the operating mode is selected according to Table 8. In case of a faulty startup procedure, an error is indicated at pin NERR.

Figure 8 shows the startup procedure of iC-PVL. The procedure starts when a battery supply is available. This would be the case if a battery is newly attached to the encoder system or the battery supply is switched on by an external microcontroller. Alternatively VDD can be connected first followed by connecting the battery. Active battery errors can be removed using the SCLR command.

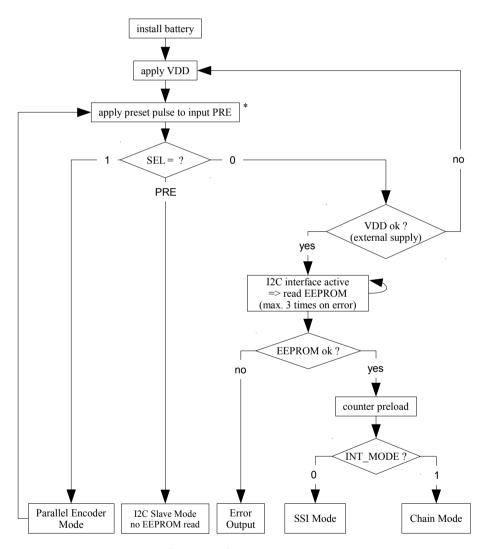


Figure 8: Startup behavior

SSI Mode (SEL = low)

For V(VDD) > V_{on} during the initial startup in SSI mode, a preset pulse is mandatory* and triggers EEPROM readout. VDD supply has to remain above V_{on} for at least t_{config} . The I²C multimaster tries to read the configuration data from an EEPROM connected to SCL and SDA. When the data is read without errors, the iC-PVL

operates in SSI Mode or Chain Mode according to the configuration bit INT_MODE and stays in this operating mode as long as the battery supply is above V_{off} . After a third faulty attempt, EEPROM readout is stopped and an error is indicated at pin NERR. Both serial interface modes are further explained on Page 23.

^{*} For iC-PVL W4 or newer: Please refer to the design review on p. 35

Rev F2, Page 19/39

 I^2C communication is possible in this operating mode, but position readout via SSI or I^2C is exclusive (refer to I^2C SLAVE MODE on Page 27).

I^2C slave mode (SEL = PRE)

For V(VDD) > V_{on} during the initial startup in I²C mode, a preset pulse applied simultaneously to the SEL and PRE pin (refer to Figure 5) will set position readout to I²C (setting of I²C_POS is ignored in this case) and suppress a potential EEPROM readout. If this function-

ality is not required, the preset pulse can be omitted. iC-PVL responds to the I^2C device ID = 0b1100001.

Parallel Encoder Mode (SEL = high)

In Parallel Encoder Mode, an external microcontroller can activate the iC-PVL via the PRE pin in distinct intervals to acquire the current position. The encoded position is valid when all complementary bits have changed their logic value (see Figure 14). After successful position readout, iC-PVL is in ultra low power idle mode. The battery supply may then be switched off.

Rev F2, Page 20/39

MAGNETIC SCALE SELECTION

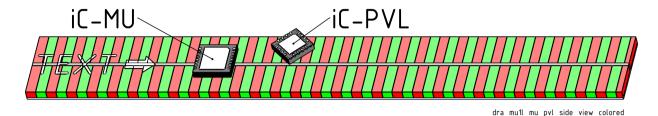


Figure 9: Positioning of iC-PVL on a linear scale (iC-MU nonius type)

iC-PVL is able to scan magnetic pole wheels or linear scales with a pole width of 1 mm to 5 mm. This corresponds to a magnetic period (N-S sequence) of 2 to 10 mm. Due to the diagonal sensor array, iC-PVL is rotated 45° in relation to the magnetic code (see Figures 9, 10, 11).

With the recommended differential scanning mode (POLEWID = 0x00), the measurement is highly tolerant to external common mode magnetic stray fields. The ideal pole width in this operating mode is 1.5 mm, but the device is functional with a pole width range of about 1 to 3 mm. This enables iC-PVL to use the same magnetic scale as a linear or off-axis singleturn sensor (e.g. iC-MU (1.28 mm), iC-MU150 (1.5 mm), iC-MHL200 (2 mm)).

POLEWID	Addr	. 0x04; bit 1:	0
Code	Pole size	Ideal size	Scanning
0x00	1-3 mm	1.5 mm	Off-axis, differential
0x01	4-5 mm	4.5 mm	Off-axis, single-ended
0x02	2-4 mm	3.0 mm	Off-axis, single-ended
0x03	1-3 mm	1.5 mm	Off-axis, single-ended

Table 10: Pole size of magnetic scale

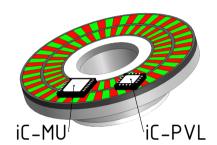


Figure 10: Positioning of iC-PVL on a pole wheel (iC-MU nonius type)

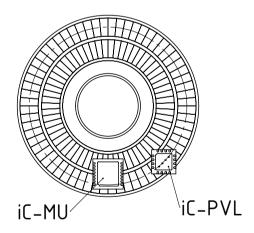


Figure 11: Positioning of iC-PVL on a pole wheel (iC-MU nonius type).

Together with the iC-MU off-axis nonius encoder, a magnetic multiturn encoder can be realized (see iC-PVL AN2) The iC-PVL Hall sensor array is placed over the center line of a magnetic track, e.g. at a radius of 13.375 mm to scan the master track of the MU18S 30-32N magnetic target (see Figure 11). In this case, the corresponding PCR value for 32 magnetic periods (PCR = 0x1F) has to be applied (see Table 11).

In these applications, a certain number of magnetic periods (i.e., north-south pole pairs) may be interpreted as one mechanical revolution. The FlexCount® logic offers this functionality. By electrically emulating the characteristics of a gear box, the gear transmission is freely programmable. 1 to 256 pole pairs can be interpreted as one mechanical revolution. The configuration parameter PCR, period counts per (mechanical) revolution, is used as defined in Table 11.

Rev F2, Page 21/39

PCR	Addr. 0x02; bit 7:0
Code	Period counts per revolution
0x00	1
0x01	2
0x02	3
	Code + 1
0xFE	255
0xFF	256

Table 11: Period counts per (mechanical) revolution

By way of example, assume a magnetic code disc with 32 periods. iC-PVL will make a multiturn count every 32 periods. The synchronization bits are distributed evenly over these 32 periods, i.e. the disc is divided in eight sectors. Therefore, one sector consists of 8 periods. While reading the position information, it looks like the iC-PVL would be placed above a normal diametrically polarized magnet. This scheme is also valid for non-binary, decimal or odd counts per revolution.

PCR_OUT	Addr. 0x05; bit 6		
Code	Mode		
0	No output of PCR in serial data stream		
1	PCR is transmitted as 8 LSBs of MT data (Only for PCR > 0x00)		

Table 12: Period count per revolution output mode

Alternatively, the current magnetic period of the mechanical revolution can be transmitted in the serial data stream with option PCR_OUT = 1. In this mode, the eight LSBs of the multiturn data are used for PCR output. Unused bits are filled with zeroes. As a consequence, the multiturn counter is limited to 32 bits in this mode. The multiturn, PCR and synchronization information give the exact position of the code disc down to one eighth of a magnetic period.

iC-PVL can also be used for on-axis scanning of a diametric cylindrical magnet. The on-axis scanning mode is activated with the configuration bit ONAX = 1. The sensor circle diameter is specified in Elec. Char. 106. In this mode, setting POLEWID to 0x01 is mandatory for differential scanning.

ONAX	Addr. 0x04; bit 2
Code	Magnetic scanning mode
0	Off-axis (default)
1	On-axis, differential (POLEWID = 0x01 required)

Table 13: Use off- or on-axis magnetic scanning

When iC-PVL is used for on-axis scanning the native zero position is shown in Figure 12 below.

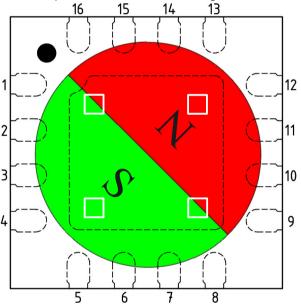


Figure 12: iC-PVL magnet zero position in on-axis mode (ONAX = 1) (top view)

Rev F2, Page 22/39

COMPENSATION OF ASSEMBLY: Data Offset and Counting Direction

Assembled together with a magnetic code disc, code wheel, magnetic tape or diametric cylindrical magnet, the integrated Hall sensor signal processing generates a three bit position word, i.e. eight positions per magnetic period. Therefore, the iC-PVL provides up to three synchronization bits to the singleturn sensor in SSI readout mode.

The position can be electrically manipulated to achieve the desired (leading or trailing) phase shift, regardless of the actual mounting position. This is useful if the phase relationship between an additional singleturn iC and the iC-PVL as multiturn encoder is unknown, or the singleturn sensor takes care of the synchronization (SSI mode) and expects a defined phase relationship. An offset value is added to the digitized Hall sensor position according to parameter OS (see Table 14).

os	Addr. 0x01; bit 7:5	
Code	Phase shift	
000	0°, no shift	
001	+ 45° leading	
010	+ 90 ° leading	
011	+ 135° leading	
100	\pm 180 $^{\circ}$ leading or trailing	
101	- 135 ° trailing	
110	- 90 ° trailing	
111	- 45 ° trailing	

Table 14: Offset multiturn to singleturn

Note: 0° to 180° is the ideal range for tolerated values of phase shift between ST and MT. This range is further reduced due to communication, propagation or

processing delays for the specific application. Typically, it is reduced by a few degrees, but increases with the signal frequency.

DIR	Addr. 0x00; bit 3
Code	Code direction
0	Normal
1	Inverted

Table 15: Code direction

The counting direction can be easily swapped with the configuration bit DIR. The bit would be typically used to invert the counting direction if the iC-PVL is assembled rotated or flipped.

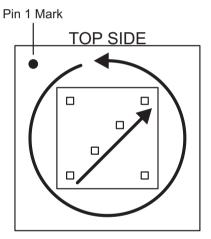


Figure 13: iC-PVL - positive direction of magnet / linear tape movement with DIR = 0. Magnet / linear tape above iC-PVL top side.

Rev F2, Page 23/39

SERIAL INTERFACE MODE (SEL = LOW)

iC-PVL can be connected to a singleturn sensor or interpolator via its serial interface. To ensure compatibility with different devices, iC-PVL's serial interface can operate in two distinct modes: standard SSI or in a chain mode.

In SSI mode, iC-PVL replies to a multiturn data request of an SSI protocol master. The master takes care of data synchronization and calculates a consistent absolute position. Data input DI is not used in this operating mode. iC-PVL is compatible with all iC-Haus optical or magnetic singleturn encoders or interpolators featuring a multiturn or absolute data interface. For details refer to the application note iC-PVL AN2. In SSI mode, iC-PVL can also be used as stand-alone magnetic period counter. The position data is output in an SSI compatible protocol (see Figure 16 on Page 34).

In Chain Mode, a singleturn sensor transmits its singleturn position to the data input DI of iC-PVL. In this mode, iC-PVL takes care of synchronization, calculates a consistent absolute position and outputs at data output DO, comparable to a shift register, with MSB first.

The operating mode is set using parameter INT MODE.

INT_MODE	Addr. 0x00; bit 0	
Code	Mode	
0	Standard SSI readout mode (SSI mode)	
1	Chain Mode*	
Note	*) Chain Mode can only be used in specific system setups. Extended system requirements apply.	

Table 16: Serial interface operating mode

By default, the iC-PVL expects binary data at input DI, and also outputs its counted multiturn position (and PCR) at DO in binary format. In case one data or both data is required in Gray format, this can be configured by setting the ST_GRAY bit or the MT_GRAY bit, respectively.

ST_GRAY	Addr. 0x00; bit 2	
Code	Format	
0	Binary code (default for SSI_MODE = 0)	
1*	Gray code (lock I ² C register access for SSI_MODE = 0)	
Note	*) For I ² C interlock refer to Page 27	

Table 17: Singleturn input data format via port DI (in Chain Mode)

MT_GRAY	Addr. 0x00; bit 1		
Code	Format		
0	Binary code		
1	Gray code		

Table 18: Multiturn and PCR output data format via port DO

The internal multiturn counter is 40 bit wide. In applications where smaller counter depths are sufficient or the bit width of the serial interface is limited, the output length of the counter value can be configured with MT BW as shown in Table 19.

MT_BW	Addr. 0x01; bit 4:0
Code	Bit width
0x00	9 bit
0x01	10 bit
0x1E	39 bit
0x1F	40 bit
Note:	If PCR_OUT = 1 and PCR > 0x00 the 8 LSBs of the MT data are used to transmit the period count information. Thus the MT counter width is reduced by 8 bit in that case.

Table 19: Bit width of multiturn data and counter

Additionally, iC-PVL can transmit up to 3 synchronization bits, according to configuration parameter SYNC BW shown in Table 20.

SYNC_BW	Addr. 0x05; bit 5:4		
Code	Bit width	Tolerable phase shift range	
00	0 bit	no synchronization bit	
01	1 bit	0° 180°	
10	2 bit	0° 270°	
11	3 bit	0° 315°	
Note	*) The values for the tolerable phase shift are typical values and depend on the singleturn iC. Please always consult the singleturn iC specification for the applicable values.		

Table 20: Synchronization bit width and resulting tolerable ideal phase shift

After the transmission of the absolute position and the synchronization information, iC-PVL's serial protocol allows the optional transmission of an error bit, a warning bit and a parity bit.

The error bit signalizes a startup error, a wrong CRC checksum, an empty battery or a position error (e.g. overspeed or magnet loss). Its polarity is configured with parameter EN ERR shown in Table 21.

Rev F2, Page 24/39

The warning bit represents an early battery warning. It indicates a low battery while the system is still functional. The polarity of the warning bit follows the polarity configured with EN_ERR. Details regarding error and status information are explained on Page 28. The optional parity bit finishes the transmission. Its polarity is either even or odd according to parameter EN_PAR.

Finally, the last 8 LSBs of the multiturn data can be used to transmit the period counts revolution in off-axis applications. See Table 12 for details.

The line signals for both interface modes are shown in Figures 1 and 2 on Page 10. Optional bits are greyed-out. The number of transmitted multiturn bits depends on parameter MT BW.

EN_ERR	Addr. 0x00; bit 5:4		
Code	Mode		
00	Communication without error bit		
01	Calibration mode		
10	Communication with additional error bit (negative polarity)		
11	Communication with additional error bit (positive polarity)		

Table 21: Error bit enable

EN_WRN	Addr. 0x03; bit 7	
Code	Mode	
0	Communication without warning bit	
1	Communication with additional warning bit (polarity as configured via EN_ERR)	

Table 22: Warning bit enable

EN_PAR	Addr. 0x00; bit 7:6	
Code	Mode	
00	Communication without parity bit	
01	reserved	
10	Communication with additional parity bit (even polarity)	
11	Communication with additional parity bit (odd polarity)	

Table 23: Parity bit enable

OUTPUTS N0, P2, N2

In serial interface (P. 23) or I²C slave mode (P. 27), the outputs N0, P2, N2 provide either parallel or incremental position information. A magnetic period is divided in eight sectors. By default, these three bits are output in real-time at N0, P2, N2.

ABQUAD Addr. 0		. 0x05; bit 0		
C.	Mode	N2	P2	N0
0	Parallel position	MSB	MSB-1	LSB
1	Quadrature AB	В	Α	none
N.	The output is inverted to the internally generated position.			

Table 24: AB quadrature output

With configuration parameter ABQUAD, a quadrature output can be activated. In this mode, A and B are

output at P2 and N2. One magnetic period is interpolated by a factor of two, i.e., two quadrature periods are observed per period corresponding to eight countable edges per period.

For evaluating these outputs, a hysteresis may be desired. Configuration parameter HYS activates a hysteresis of 45°. When active, the synchronization bits of the serial data output also feature a 45° hysteresis.

HYS	Addr. 0x05; bit 1	
Code	Mode	
0	No angle hysteresis	
1	45° hysteresis on direction change	

Table 25: Angle hysteresis

Rev F2, Page 25/39

MULTITURN COUNTER

In battery buffered serial interface mode (SEL = low) or I^2C slave mode, and as long as the system is powered up correctly (i.e. via battery or main supply), iC-PVL will count the multiturn position. Note that there is no counter overflow handling (positive or negative direction).

The internal counter (MT_COUNT) is 40 bits wide and thus can count up to $2^{40} - 1$ revolutions. In SSI mode, the output bit width is defined by MT_BW, so that $2^{MT_BW} - 1$ revolutions can be counted. Position read-out via SSI or I²C is exclusive, please refer to I²C SLAVE MODE on Page 27.

The counter can be preloaded to a position defined by configuration parameter MT_PREL (Table 26). Refer to Table 19 for the configuration of the counter bit width.

The multiturn counter value as well as the configuration RAM are secured by an eight bit CRC. Refer to chapter I²C MULTIMASTER INTERFACE AND CRC PROTECTION for details.

MT_PREL	Addr. 0x07 - 0x0B;
Code	Value
0x000000000	0
0x000000001	1
0x0000000FF	255
0xFFFFFFFF	$2^{40} - 1$

Table 26: Multiturn preload value

PARALLEL ENCODER MODE (SEL = HIGH)

The input/output signals in parallel encoder mode are described in Figure 14. A start pulse on the PRE line triggers the Hall sensor signal acquisition. The current position is sent as a three bit complementary word via pins P0, N0 to P2, N2. In this mode, the iC-PVL oper-

ates with a single power supply on pin VBAT. Pin VDD must be tied to GND, and the select input SEL must be connected to a logic high level, e.g. VBAT (see circuit in Figure 4).

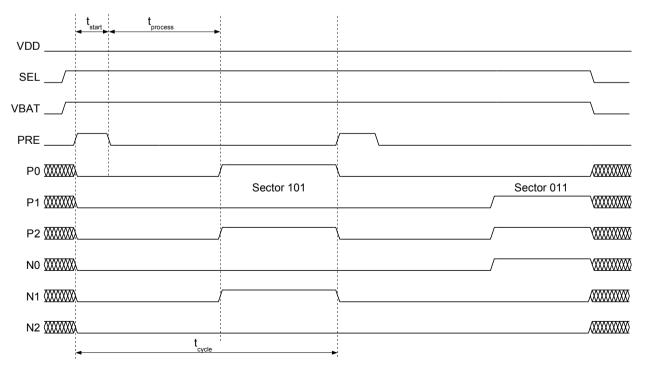


Figure 14: Line signals for parallel encoder mode (3 bit complementary P0-P2 and N0-N2)

Rev F2, Page 26/39

I²C MULTIMASTER INTERFACE AND CRC PROTECTION

Pins SCL and SDA form an interface to read an external EEPROM according to the I²C protocol (with at least 128 bytes, e.g. 24C01, 24C02, 24C08 and maximum 24C16, extended address range is not supported). Writing to the EEPROM is not supported.

By default, this EEPROM is used to store the iC-PVL configuration (at addresses 0x00 to 0x0C) according to the register map on Page 12. The configuration is protected against bit errors by an 8-bit CRC checksum. A checksum failure is displayed at output NERR and via the error bit at the end of the SSI data. The multiturn counter preload value is stored in its own configuration area (0x07 - 0x0B) and is also saved with its own CRC on 0x0C. The CRC of the remaining four configuration bytes (0x00 - 0x05) is stored at address 0x06. Both CRC checksums are generated with the polynomial $X^{8} + X^{5} + X^{3} + X^{2} + X^{1} + 1$ (0x12F). The CRC start value is zero. Note: In order to avoid an EEPROM content of all bytes = 0x00 to be a valid configuration, the CRC checksums in addresses 0x06 and 0x0C are stored inverted.

Example of CRC calculation routine:

```
unsigned char ucDataStream = 0;
int iCRCPoly = 0x12F;
unsigned char ucCRC;
unsigned char Reg[6]

// Calculate configuration CRC for area 0x00 - 0x05

// stored at 0x06

ucCRC = 0; // startvalue = 0
for (int iReg = 0 ; iReg < 6; iReg ++) {
    ucDataStream = Reg[iReg];
    for (int i = 0; i <=7; i ++) {
        if ( (ucCRC & 0x80) != (ucDataStream & 0x80) )
            ucCRC = (ucCRC << 1 ) ^ iCRCPoly;
    else
        ucDataStream = ucDataStream << 1 ;
    }
}
Reg[6] = ~ucCRC; // stored inverted</pre>
```

Since iC-PVL does only read configuration data, writing EEPROM requires an external programming via pins SCL and SDA (I²C protocol). Refer to circuit on Page 34. In applications with a shared EEPROM, e.g. with iC-MU or iC-MHM, the EEPROM programming of the iC-PVL configuration can be done via the *BiSS* interface of the singleturn IC.

If no EEPROM is available or desired in the application, programming the iC-PVL by a microcontroller (MCU) is possible. As described in the subsequent chapter, the I²C slave mode allows direct read/write access to internal configuration and counter. Alternatively, the MCU may emulate an EEPROM (i.e. an I²C slave), since iC-PVL is acting as a bus master by default. At startup, after a short high pulse at pin PRE, the iC-PVL requests addresses 0x00 to 0x0C from the connected I²C slave. This is done in a combined write/read command as shown in Figure 15, repeating 13 times.

The expected slave address here is 0xA0 or "0b 1010 000", the standard I²C EEPROM address.

Notes: In typical applications, the iC-PVL is used in combination with external encoder, line driver or safety ICs. If several devices try to share one common EEP-ROM, the default configuration area of iC-PVL may not be usable (addresses 0x00 to 0x0C).

Therefore, the iC-PVL is capable to **boot from dif- ferent addresses**. The EEPROM is scanned for the unique iC-PVL configuration footprint, i.e. 13 bytes with correct checksums of configuration and counter preload. If no configuration is found at address **0x00 to 0x0C**, the iC-PVL searches at address **0x40 to 0x4C**, then at address **0x80 to 0x8C** and finally at address **0xA0 to 0xAC**.

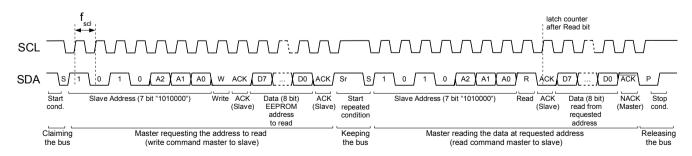


Figure 15: iC-PVL combined write/read command reading one slave address

Rev F2, Page 27/39

I²C SLAVE MODE

Additionally to the I^2C master interface described in the previous section, iC-PVL will always act as an I2C slave during operation (Vdd > V_{on}).

Two I²C device IDs are available:

- At I²C device ID = 0b1100 001 all iC-PVL's internal registers can be addressed according to the register map in Table 6.
- At I²C device ID = 0b1100 000 only the iC-PVL's status and command registers can be addressed according to the register map in Table 7. All other internal registers are not addressable at this I2C device ID.

The I²C communication protocol described in Figure 15 may be used for read and write register access.

Position readout via SSI or I²C is exclusive and defined by parameter I2C_POS. This bit locks position readout to SSI or I2C exclusively.

I2C_POS	Addr. 0x05; bit 7	
Code	Function	
0	SSI readout of MT counter only	
1	I ² C readout of MT counter only	

Table 27: Enable I2C or SSI position readout

iC-PVL also features a pin selectable I²C mode (please refer to Figure 5 on page 15 and chapter "STARTUP BEHAVIOUR"). This mode can be used to ensure that iC-PVL does not attempt to read in an EEPROM via the I2C interface at startup. Position readout is automatically and internally set to I²C. The setting of parameter I2C_POS is ignored in that case.

Whenever I²C access to the internal multiturn counter is enabled, it is readable at address 0x07 to 0x0B and protected with a CRC checksum at address 0x0C. Additionally, the three synchronization bits are readable at address 0x0D.

Note: For a consistent position information, it is necessary to read all these position registers in one burst command. The counter and synchronization bits are latched after each read addressing (i.e. read/not write bit = high). At burst command, the addressing for read is done only once, for the first address 0x07. The effective clock edge is marked in Figure 15. If the seven registers are read in seven separate read instructions, the transmitted position may change during readout time and the transmitted position will be inconsistent.

In SSI or I^2C slave mode the I^2C slave register access can be interlocked. The lock is active if parameter INT_MODE = 0 and parameter ST_GRAY = 1. See also Table 17. Position readout via I^2C remains possible.

For chip release verification purposes an identification value is stored under ROM address 0x0F; a write access to this address is not permitted.

CHIP_REL	Addr. 0x0F, bit 7:0 (ROM)
Code	Chip Release
Note	For all previous versions, address 0x0F is not readable via I2C or answer is 0x00.
0x01	iC-PVL Y
0x02	iC-PVL Y1
0x03	iC-PVL X
0x04	iC-PVL X1
0x05	iC-PVL W
0x06	iC-PVL W1
0x07	iC-PVL W2
0x09	iC-PVL W4

Table 28: Chip Release

MAGNETIC FIELD AMPLITUDE MONITORING

The magnetic field amplitude is monitored and on detection of magnet loss the NoMagnet working state (NOMAG_ST) is entered in order to save battery power. Status Bit MAG_ERR is set as long as the NoMagnet working state is active.

working state on low magnetic field amplitude or invalid position (POS_ERR = 1). This is the recommended setting for the NoMagnet detection.

Parameter NOMAG determines the trigger conditions. The default setting is 0x00 and triggers the NoMagnet

Alternatively, the NoMagnet working state can be entered on invalid position only or be completely deactivated. In case of an invalid configuration or device

Rev F2, Page 28/39

initialization parameter NOMAG is reset to 0x00 by default.

The different working states and transition conditions are described in chapter DEVICE WORKING STATES.

The error bit NOMAG_L is latched and set upon entry of the NoMagnet working state. It can be be cleared by a pin preset or using the status clear (SCLR) or reboot command.

The error bit AMPL_ERR is set whenever the magnetic field amplitude is below the threshold defined by parameter ATHR. Filtering is active, i.e. the bit is set only if the amplitude is low for 8 measurement cycles (approximately 128 ms). This prevents that short (electro-)magnetic interference triggers an error.

ATHR	Addr. 0x04; bit 4:3
Code	Condition
0x00	typ. 2.5 kA/m (default)
0x01	typ. 1.25 kA/m
0x02	typ. 0.625 kA/m
0x03	typ. 5.0 kA/m
Note	see Elec. Char. No. 108

Table 29: Differential field amplitude threshold

NOMAG	Addr. 0x04; bit 6:5
Code	Condition
0x00	NoMagnet state on Low amplitude OR invalid position (default)
0x01	reserved
0x02	NoMagnet state only on invalid position
0x03	NoMagnet detection disabled

Table 30: Behaviour of no NoMagnet detection

ERROR MONITOR, STATUS AND COMMAND REGISTER

The iC-PVL has several error conditions which are stored in the status- and extended status registers. Please also refer to Table 6 and Table 7.

Status Register

Table 31 gives a summary of available error and status bits in the Status Register. All errors except for BAT_WRN are latched and can be acknowledged by overwriting the status byte at the desired position or by sending the SCLR command. If the error is still active, iC-PVL error monitor will set it again immediately, i.e, the error condition is still present.

STATUS	Addr. 0x10; bit 7:0		
Bit	Name	Description	
0	STUP_ERR	Startup error	
1	CFG_ERR	Internal configuration error	
2	CTR_ERR	Internal counter error	
3	POS_ERR	Position error	
4	BAT_ERR	Battery error	
5	BAT_WRN	Battery early warning	
6	PDR	Power down reset detected	
7	PRESET	Pin preset detected, I ² C REBOOT detected, Sleep mode activated	

Table 31: Status byte

STUP_ERR: Startup Error

Erroneous startup procedure, e.g., I²C stuck-at, EEP-ROM read error or invalid CRC checksum stored in the EEPROM. No position acquisition is performed. In-

terfaces are blocked. Please revise configuration and checksums or replace EEPROM. Reboot iC-PVL.

CFG ERR: Internal Configuration Error

This error is raised when:

- The configuration stored in the internal RAM doesn't match the CRC checksum. This can be caused for example by changing the configuration data without updating the checksum accordingly, or an unexpected level flip of one or more bits in the RAM configuration area. Position is invalid. Reboot iC-PVL.
- After writing to RAM configuration via I2C.
 CFG_ERR can be cleared by a SCLR command.

CTR_ERR: Internal Counter Error

This error is raised when:

- The value stored in the internal multiturn counter doesn't match the CRC checksum. This can be caused for example by changing the multiturn counter value without updating the checksum accordingly, or and unexpected level flip of one or more bits in the multiturn counter RAM area. Position is invalid. Reboot iC-PVL.
- After writing to MT_COUNT via I2C. CTR_ERR can be cleared by a SCLR command.

Rev F2, Page 29/39

POS_ERR: Position Error

The position encoding observed an unexpected position jump, caused e.g. by excessive speed or excessive acceleration of the magnetic disc or tape. Alternatively, this error bit is set on weak, disturbed magnetic signals or complete loss of magnet. Position is invalid. Optimize magnet position and cross-check angular velocity/acceleration with Table 36. Reboot iC-PVL.

BAT ERR: Battery Error

Battery undervoltage according to Elec. Char. No. 404. Position is invalid. Change battery. Reboot iC-PVL. Battery monitoring is active during VDD supply.

BAT_WRN: Battery Early Warning

Battery voltage early warning according to Elec. Char. No. 405. Battery may be changed during main supply (VDD) as soon as possible. Alternatively, halt system, read current position and restore it. Switch off system, change battery and restart. Restored position may be set as counter preload. Battery monitoring is active during VDD supply.

PDR: Power Down Reset Detected

A power down reset was performed, caused by undervoltage considerably lower than the battery error threshold. Another reason may be due to insufficient stabilizing capacitors at the supply lines VDD and VBAT. If a power down reset is performed, all internal circuitry is initialized to its default state. Counter position is set to zero and the working state is reset to the POWON State. For power down reset, the voltage at VDDS is relevant. Therefore, it is only performed if both, VDD and VBAT are low. The voltage threshold is typically between 1.5 V and 2.5 V.

PRESET: Pin Preset Detected

This bit is set whenever the chip is coming from a power-down condition or a pin preset has been detected. It may be cleared by issuing a SCLR or RESET command. This can be interpreted as an acknowledgment that the power-down condition or pin preset was intentional. If the bit is set later during field operation, it is most likely unintentional. The cause may have been an external disruption, a short circuit error on the PRE line or a complete loss of power supply (VDD and VBAT). The PRESET bit is also set if the sleep mode has been enabled or an i²C REBOOT has been performed.

Extended Status Byte

Table 32 shows the additionally available extended status register. The four MSBs indicate the current working state of iC-PVL (see Figure 7). Three additional status messages in the four LSBs can be evaluated.

STATUSEX	Addr. 0x12; bit 7:0		
Bit	Name	Description	
0	AMPL_ERR	Amplitude error	
1	MAG_ERR	Magnet error	
2	NOMAG_L	NoMagnet working state (latched)	
3	unused	unused	
4	POWON_ST	iC-PVL in PowerOn working state	
5	ACTIVE_ST	iC-PVL in Active working state	
6	NOMAG_ST	iC-PVL in NoMagnet working state	
7	SLEEP_ST	iC-PVL in Sleep working state	

Table 32: Extended status byte

AMPL_ERR: Amplitude Error

The status bit is set, if the magnetic signal amplitude is below the threshold level configured via ATHR. Filtering is active, i.e. the bit is set only if the amplitude is low for approx. 128 ms.

MAG_ERR: Magnet Error

The status bit is set, if a magnet error is currently detected. The reason can be a low signal amplitude or a position consistency error (see POS_ERR). The condition is set by configuration parameter NOMAG.

NOMAG_L: NoMagnet Working State (latched)

By entering the NoMagnet state, the iC-PVL sets the status bit NOMAG_L. The bit is latched, i.e. it remains set even if the NoMagnet state is left again. Therefore it is possible to determine if the encoder magnetic field was lost once during the devices previous operating life. The status indication can be acknowledged with command SCLR to reset to state 0.

Error Output NERR

A LED may be connected to the error output NERR to signalize errors. The pin is an open drain output driver. If an error is detected, the pin is pulled low. STUP_ERR, CFG_ERR, CTR_ERR, POS_ERR, BAT_ERR, MAG_ERR, NOMAG_L are visible at NERR. Additionally, NERR is pulled low during the iC-PVL startup phase, if the device is in sleep state or a reset condition is currently active.

Error Output During Startup

During startup phase, a low level at NERR is visible, i.e. until complete and correct configuration read-in from the EEPROM. This indicates that iC-PVL is not ready to operate yet and does not answer a position read request. A requesting node must wait until error indication is cleared after successful boot-up.

Warning Output NWRN

Battery early warning BAT_WRN is exclusively output at open drain pin NWRN.

Rev F2, Page 30/39

Command Register

The commands given in Table 33 can be triggered by writing the respective command code to the iC-PVL command register. Please also refer to Table 6 and Table 7.

CMD	Addr. 0x	:11; bit 7:0
Code	Name	Description
0x00	none	Reserved
0x01	none	Reserved
0x02	RESET	Soft reset
0x03	REBOOT	Reboot and preset from EEPROM
0x04	SLEEP ENABLE	Halt iC-PVL position sensing
0x05	SCLR	Clear all status bits
07.00	002.1	ologi dii olalao bilo
0x06	none	Reserved
0x07	SLEEP DISABLE	Restart iC-PVL position sensing
	none	No operation

Table 33: Command register

The **RESET** command reinitializes the internal circuitry. Counter position and configuration remain untouched.

The **REBOOT** command reinitializes the internal circuitry and reloads the new configuration and counter preload value from the EEPROM. A preset pulse at pin PRE may be used as an alternative to the REBOOT command. Using the REBOOT command as a substitute for a preset pulse at pin PRE is not possible, as this will not properly set the operating mode of iC-PVL.

The **SLEEP ENABLE** command stops all position sensing action during battery mode and VDD mode. No position is tracked anymore. Power consumption is reduced to a minimum but interfaces are active during VDD supply. This is useful for the storage of encoders with installed battery.

The **SLEEP DISABLE** restarts the position sensing action during battery mode and VDD mode. The device switches back to active or battery working state.

The **SCLR** command (Status CLEAR) is used to clear all status messages in the status register.

SUPPLY SWITCH AND BATTERY MONITORING

To retain and acquire the absolute position even on main power shutdown, iC-PVL monitors VDD and switches to a battery supply on pin VBAT automatically. The switching point is just below 3 V. So, if the main supply voltage on VDD drops below 3 V, the internal circuitry will be powered by VBAT instead of VDD.

Note: iC-PVL continuously tracks the absolute position even on main power shutdown and during the transition from VDD to battery supply and vice-versa. Special care must be taken during the design of the power supply management of the encoder board. Very fast switching edges, chatter and over- / undershoot on the iC-PVL VDD supply line shall be avoided, resulting in a smooth and continuous charging and discharging ramp for power-on and off. Electrical Characteristics 001 and 008 must be adhered to at all times during the power transition phase.

The supply switch features a built-in hysteresis. The threshold voltages are defined in the Electrical Characteristics: V_{off} (Item No. 402), the voltage at which the circuit switches from VDD supply to VBAT supply, and V_{on} (Item No. 401) for the voltage at which the circuit switches back to VDD supply.

BAT_MON	Addr. 0x03; bit 6		
Code	Function		
0	Battery monitoring off		
1*	Battery monitoring on		
Note	*) Battery monitoring is only active during VDD supply.		

Table 34: Enable battery monitoring

Depending on the power pack, e.g. a 3.6 V battery with 1 Ah capacity, the device can operate for several years. During VDD supply, the iC-PVL monitors the voltage at pin VBAT to detect a low battery voltage. If the supply drops below the error threshold V_{err} voltage (Item No. 404), an error is generated and signalized at pin NERR, by the error bit in the SSI communication protocol, and by the I²C status register. The battery monitoring function can be enabled/disabled with the configuration parameter BAT MON (Table 34).

Additionally an early battery warning message is generated independently of the setting of parameter BAT_MON. The warning threshold is specified in V_{wrn} (Elec. Char. No. 405) and depends on the setting of parameter BAT_THR. If the voltage at pin VBAT drops below this warning threshold, a warning is generated and signalized at pin NWRN and optionally by the warning bit of the SSI data (refer to Table 22).

Rev F2, Page 31/39

The thresholds of $V_{\it err}$ and $V_{\it wm}$ are defined by Elec. Char. 404 and Elec. Char. 405. They can be configured with configuration parameter BAT_THR according to Table 35.

BAT_THR	Addr. 0x05; bit 3:2				
Code	V _{err}	V _{wrn}			
00*	3.05	3.15			
01	2.95	3.05			
10	2.85	2.95			
11	2.75	2.85			
Notes	Nominal values. Refer to for variation. *) BAT_THR = 0x00 is recoming any other setting is discount.	ommended. The usage of			

Table 35: Battery monitor threshold levels

Rev F2, Page 32/39

CURRENT CONSUMPTION IN BATTERY MODE

Serial Interface Mode (SEL = LOW)

Note: In this chapter, all values for angular velocity and acceleration refer to one magnetic period, i.e. one north-south pole pair sequence per 360° mechanical. A velocity of one pole pair per second relates to 360° /s = $1 \text{ Hz} = 60^{1}$ /min. When using a magnetic pole wheel the maximum angular acceleration or velocity that can occur in the application has to be multiplied with the number of magnetic pole pairs in order to choose the correct setting for A_MAX from Table 36.

Parameter A_MAX determines the lower limit of the hall sensor sampling rate of iC-PVL. Whenever movement of the magnetic target is detected, iC-PVL will automatically increase the sampling rate to match the magnetic input frequency if needed. Once the magnetic target is at standstill again, the sampling rate will revert to the frequency determined by parameter A MAX.

Consequently, parameter A_MAX determines the iC-PVL current consumption in battery mode and the maximum permissible angular acceleration from stand-still. The maximum application specific deceleration (braking) is not relevant for the selection of parameter A_MAX. The relationship between maximum permissible acceleration and current consumption is shown in Table 36. For accelerations below $48 \cdot 10^3 rad/s^2$, the typical current consumption is below $10 \, \mu A$.

Note: The value for A_MAX needs to be chosen carefully, considering the precise motion profile during battery mode. Potential external factors like shock and vibration have to be taken into account, as the acceleration caused by such events may exceed the expected maximum system acceleration during normal operation. If A_MAX is chosen too low, counting errors can occur (missed counts) signalled by an active position error (POS_ERR).

For applications where only sporadic motor movement is expected during battery supply, Table 36 mainly defines the current consumed by iC-PVL. Additionally, Table 37 gives typical values in case of enduring movement at a certain angular velocity during battery supply.

Note: A magnetic field according to the specifications should be provided any time (see Elec. Char. No. 102). If a suitable magnetic target can not be provided during shipment or storage, use the sleep command (refer to Table 33), activate the magnetic field amplitude monitoring (refer to Table 29 and 30) or disconnect the battery.

A_MAX	Α	Addr. 0x03; bit 5:3					
Code	$\alpha_{\sf max} \left[rac{\circ}{{\sf s}^2} ight]$	$\alpha_{\sf max} \left[\frac{{\sf rad}}{{\sf s}^2} \right]$	typ f _{min} [Hz]	typ $I_{avg}[\mu A]$	max $I_{avg}[\mu A]$		
000	160 · 10 ⁶	3000 · 10 ³	2000	52	72		
001	40 · 10 ⁶	$760 \cdot 10^{3}$	1000	26	36		
010	10 · 10 ⁶	190 · 10 ³	500	14	18		
011	2.5 · 10 ⁶	48 · 10 ³	250	7	10		
100	625 · 10 ³	12 · 10 ³	125	4	6		
101	160 · 10 ³	$3 \cdot 10^{3}$	63	2.5	4		
110	40 · 10 ³	$0.75 \cdot 10^{3}$	32	2	3		
111	10 · 10 ³	0.2 · 10 ³	16	1.5	2.5		

Table 36: Maximum supported angular acceleration (from shaft halt), minimum sampling frequency and average current consumption on shaft halt or slow angular velocity. V(VBAT) = 3.6 V, V(PRE) < 0.5 V.

Rev F2, Page 33/39

I(VBAT) for a	(VBAT) for angular velocity [RPM]								
f[RPM]	f _{mag} [Hz]	$I_{avg}[\mu A]$							
2-pole magnet	magnetic input freq.	A_MAX=111	A_MAX=110	A_MAX=101	A_MAX=100	A_MAX=011	A_MAX=010	A_MAX=001	A_MAX=000
0	0	1.5	2	2.5	4	7	14	26	52
<125	< 2	1.5	2	2.5	4	7	14	26	52
<250	< 4	2	2	2.5	4	7	14	26	52
<500	< 8	2.5	2.5	2.5	4	7	14	26	52
< 1000	< 16	4	4	4	4	7	14	26	52
< 2000	< 33	7	7	7	7	7	14	26	52
< 4000	< 66	14	14	14	14	14	14	26	52
< 8000	< 133	26	26	26	26	26	26	26	52
< 16000	< 266	52	52	52	52	52	52	52	52
< 32000	< 533	100	100	100	100	100	100	100	100
< 64000	< 1066	200	200	200	200	200	200	200	200
< 128000	< 2133	400	400	400	400	400	400	400	400
< 480000	< 8000	800	800	800	800	800	800	800	800

Table 37: Average current consumption vs. angular velocity. Typical values for V(VBAT) = 3.6 V, T_j = 27 °C and V(PRE) < 0.5 V.

Parallel Encoder Mode (SEL = HIGH)

The current consumption in parallel encoder mode is directly proportional to the sampling frequency, f_s . The typical average current consumption of iC-PVL is calculated as shown below (V(VBAT) = 3.6 V, T_i = 27 °C):

$$I_{avg}[\mu A] = 25 \cdot f_s[kHz]$$

For instance, at a sampling frequency of 1 000 samples per second: f_s = 1 kHz and I = 25 μ A. At 100 samples per second: I = 2.5 μ A.

OSCILLATOR FREQUENCY CALIBRATION

The bias current for the internal oscillator can be configured with parameter IBIAS. An increase or decrease in bias current will directly affect the oscillator frequency. The bias current should be calibrated at the typical battery supply voltage so that the frequency of the oscillator is around 34 kHz (see Elec. Char. No. 301). The clock frequency is observable at output pin DI_P1 in the dedicated calibration mode. The calibration mode is entered by configuring the EN_ERR parameter to "01" (see Table 21).

Note: Calibration mode is only entered if CFG_ERR is not active.

Calibrating the oscillator frequency is not absolutely necessary to ensure iC-PVL operation. Nevertheless,

if left uncalibrated, among others, mainly the values defined in Table 36 and 37 may be out of range.

IBIAS	Addr. 0x03; bit 2:0
Code	Frequency change (typ.)
100	+10 %
101	+ 6 %
110	+ 3 %
111	0 %
000	0 %
001	- 3 %
010	- 6 %
011	-10 %

Table 38: Bias current: Oscillator frequency calibration.

Rev F2, Page 34/39

APPLICATION EXAMPLE: iC-PVL as battery powered revolution counter or metering device

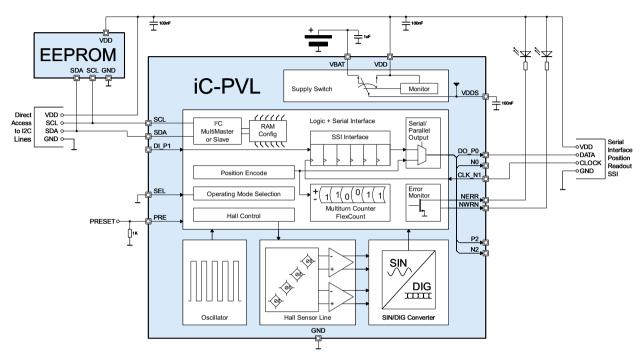


Figure 16: Principle application example. iC-PVL as battery powered multiturn counter, e.g. in a metering application. Interface operating in INT_MODE = 0, readout of the internal counter value via SSI or I²C. VDD supply is only needed during readout, otherwise iC-PVL is battery-powered. Direct access to iC-PVL EEPROM via SCL, SDA.

Note: All circuit examples shown in this chapter are principle wiring diagrams. Further components may be necessary but are omitted for clarification of the application principle.

Rev F2, Page 35/39

DESIGN REVIEW: Notes On Chip Functions

iC-PVL	X1	
No.	Function, Parameter/Code	Description and Application Hints
1	Magnet Assembly, Shipment and Storage	A magnetic field according to the specifications should be provided any time (see Elec. Char. No. 102). If a suitable magnetic target can not be provided during shipment or storage, use the sleep command (refer to Table 33) or disconnect the battery.
2	NOMAG	Configuration parameter NOMAG is not available.
3	ATHR	Configuration parameter ATHR is not available.
4	SLEEP DISABLE	SLEEP DISABLE command is not available. Sleep status is skipped on any I ² C write.
5	STATUSEX	Extended status register STATUSEX is not available.
6	Power cycle on VDD	In case the magnetic field strength (Hext) is smaller than 20 kA/m or V(VBAT) is greater than 3.8V a counter error might occur when power cycling VDD. A position error is raised in that case. In order to avoid this behaviour under these working conditions the external circuitry needs to be modified. Please refer to iC-PVL specification Rev C3, Figure 17.

Table 39: Notes on chip functions regarding iC-PVL chip release X1

iC-PVL W1				
No.	Function, Parameter/Code	Description and Application Hints		
1		None at time of release.		

Table 40: Notes on chip functions regarding iC-PVL chip release W1

iC-PVL W2				
No.	Function, Parameter/Code	Description and Application Hints		
1		None at time of release.		

Table 41: Notes on chip functions regarding iC-PVL chip release W2

iC-PVL W4	iC-PVL W4				
No.	Function, Parameter/Code	Description and Application Hints			
1	Preset Pulse	Implemented auto preset feature at initial start-up. An externally applied preset pulse at pin PRE is not necessary anymore on initial start-up in SSI mode (SEL = low).			

Table 42: Notes on chip functions regarding iC-PVL chip release W4

Rev F2, Page 36/39

REVISION HISTORY

Rel.	Rel. Date [†]	Chapter	Modification	Page
A1	2016-06-09	All	Initial release	All

Rel.	Rel. Date [†]	Chapter	Modification	Page
B1	2016-08-09		Please refer to former datasheet release C3	

Re	l. Rel. Date [†]	Chapter	Modification	Page	
B2	2017-05-12		Please refer to former datasheet release C3		ĺ

Rel.	Rel. Date [†]	Chapter	Modification	Page
В3	2017-08-02		Please refer to former datasheet release C3	

Rel.	Rel. Date [†]	Chapter	Modification	Page
C1	2017-09-14		Please refer to former datasheet release C3	

Rel.	Rel. Date [†]	Chapter	Modification	Page
C2	2017-10-19		Please refer to former datasheet release C3	

Rel.	Rel. Date [†]	Chapter	Modification	Page
C3	2018-01-23		Please refer to former datasheet release E1	

Rel.	Rel. Date [†]	Chapter	Modification	
D1	2018-10-31	PACKAGING INFORMATION	Updated PACKAGE DIMENSIONS QFN16 4x4	5
		ELECTRICAL CHARACTERISTICS	Added Item No. 011 C(VDD)	7
		OPERATING CONDITIONS: Serial and Parallel Interface Corrected item I004 to 4 MHz Max.		9
		OPERATING MODE SELECTION	Correction in Figure 5: Added dot net connection between PRE and SEL	15
		DEVICE WORKING STATES	Updated Table 9	17
		STARTUP BEHAVIOR	Reworded chapter Amended that VDD can also be connected prior to VBAT Refined description of preset pulse by operating mode	18
		MAGNETIC SCALE SELECTION	Added Figure 12	21
		COMPENSATION OF ASSEMBLY: Data Offset and Counting Direction	Added Figure 13	22
SERIAL INTERFACE MOD (SEL = LOW)		SERIAL INTERFACE MODE (SEL = LOW)	Added clarification regarding Chain Mode Table 20 : Note added	23
		I ² C SLAVE MODE	Added chip revision W2 to Table 28	27
		ERROR MONITOR, STATUS AND COMMAND REGISTER	Updated CFG_ERR and CTR_ERR explanation Additional notes on power down reset Updated PRESET and REBOOT description	28
		SUPPLY SWITCH AND BATTERY MONITORING	Correction of battery warning description Table 35 : Note added	30
		CURRENT CONSUMPTION IN BATTERY MODE	Added notes on NoMagnet detection Extended description of parameter A_MAX Added sampling frequency to Table 36 Removed redundant notes in Table 36 and 37	32
		APPLICATION EXAMPLES: Singleturn iCs with multiturn interface (SSI Mode)	Updated Figure 17	31
		DESIGN REVIEW: Notes On Chip Functions	iC-PVL X, added item no.6 iC-PVL X1, updated item no.6 with cross reference to iC-PVL specification C3 Removed Figure 19 Amended chip revision W2	35

Rel.	Rel. Date [†]	Chapter	Modification	Page
D2	2018-11-08	DEVICE WORKING STATES	Corrected Table 9	17
		ELECTRICAL CHARACTERISTICS	Amended Item No. 004 Added Item No. 005	7

Rev F2, Page 37/39

Rel.	Rel. Date†	Chapter	Modification	Page
E1	2019-07-16	-07-16 PACKAGING INFORMATION Added note for pin VBAT : If not used connect to VDD		4
ELECTRICAL Separated Item No. 005 by temperature CHARACTERISTICS		Separated Item No. 005 by temperature	7	
		OPERATING MODE SELECTION	Added footnote regarding chip revision W4	16
		STARTUP BEHAVIOR	Added footnote regarding chip revision W4	18
		SERIAL INTERFACE MODE (SEL = LOW)	Corrected bit range in Table 17 and 19 Added note to Table 19	23
		I ² C SLAVE MODE	Reworked chapter	27
		ERROR MONITOR, STATUS AND COMMAND REGISTER	Reworked chapter	28
		CURRENT CONSUMPTION IN BATTERY MODE	Reworked chapter - Added notes	32
		APPLICATION EXAMPLES: Singleturn iCs with multiturn interface (SSI Mode)	Removed chapter. Application examples now in iC-PVL AN2	

Rel.	Rel. Date [†]	Chapter	Modification	Page
F1	2021-02-22	DESCRIPTION	Added system responsibility disclaimer	2
		ABSOLUTE MAXIMUM RATINGS	Changed items No. G001 - G004	6
		ELECTRICAL CHARACTERISTICS	El. Char. item No. 001 - Added comment	7
		ELECTRICAL CHARACTERISTICS	Added item No. A05, Length of Preset Pulse on PRE pin	8
		OPERATING CONDITIONS: Serial and Parallel Interface	Updated item no. 1002 - 1006	10
		ELECTRICAL CHARACTERISTICS	Changed item No. I012 from 1µs to 2µs	10
		OPERATING CONDITIONS: Serial and Parallel Interface Updated Figure 2 and added comment on Chain Mode		11
		OPERATING MODE SELECTION	Clarification on I2C Device ID in I2C Slave Mode	15
		OPERATING MODE SELECTION Figure 6 and Table 8: Added comment on Chain Mode		15, 16
	COMPENSATION OF ASSEMBLY: Data Offset and Counting Direction SERIAL INTERFACE MODE (SEL = LOW) COMPENSATION OF ASSEMBLY: Updated caption of Figure 13 Table 16: Added comment on Chain Mode. Removed Table 19 and asso		Updated caption of Figure 13	22
			Table 16: Added comment on Chain Mode. Removed Table 19 and associated note	23
		MULTITURN COUNTER	Corrected address range in Table 26	25
		I ² C MULTIMASTER INTERFACE Added CRC calculation code example AND CRC PROTECTION		26
	SUPPLY SWITCH AND BATTERY Added note on VDD requirements during power-up and power-down phase MONITORING		Added note on VDD requirements during power-up and power-down phase	30
		OSCILLATOR FREQUENCY CALIBRATION	Added note: Calibration mode only entered if CFG_ERR is not active	33
		DESIGN REVIEW: Notes On Chip Functions	Removed design review for chip revision X. Please refer to former datasheet release E1	35

Rel.	Rel. Date [†]	Chapter	Modification	Page
F2	2021-02-25	REVISION HISTORY	Corrected Revision History entry under "PACKAGING INFORMATION" for Release E1: pin PRE> pin VBAT.	37

[†] Release Date format: YYYY-MM-DD

Rev F2, Page 38/39

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev F2, Page 39/39

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-PVL	QFN16-4x4		iC-PVL QFN16-4x4
Evaluation kit	61 mm x 64 mm PCB		iC-PVL EVAL PVL1M
iC-PVL GUI		Evaluation software for Windows PC	For download link refer to www.ichaus.com/pvl_gui

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

 iC-Haus GmbH
 Tel.: +49 (0) 61 35 - 92 92 - 0

 Am Kuemmerling 18
 Fax: +49 (0) 61 35 - 92 92 - 192

 D-55294 Bodenheim
 Web: http://www.ichaus.com

 GERMANY
 E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners