

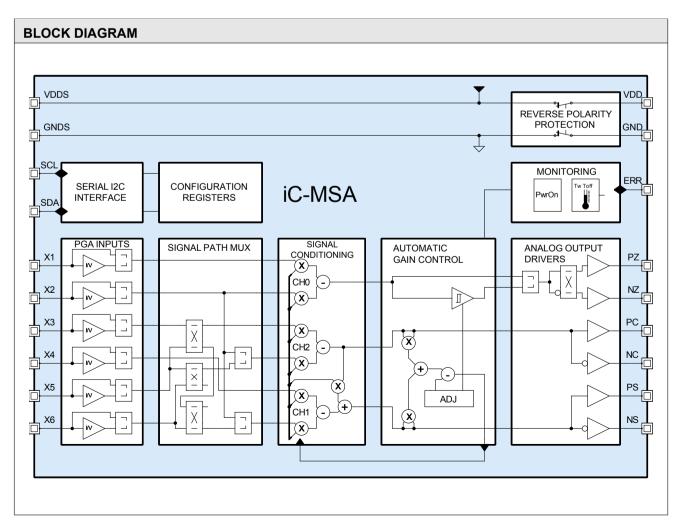
Rev B1, Page 1/32

FEATURES

- PGA inputs for differential and single-ended sensor signals up to 20 kHz
- Selectable adaptation to voltage or current signals
- Flexible signal assignment due to input multiplexers
- Sine/Cosine signal conditioning for offset, amplitude and phase
- Separate index signal conditioning
- Short-circuit-proof and reverse polarity tolerant output drivers (1 Vpp to 100 Ω)
- Stabilized output signal levels due to automatic gain control
- Signal and system monitoring with configurable alarm output
- Supply voltage monitoring with integrated switches for reversed-polarity-safe systems
- Excessive temperature protection with sensor calibration
- ♦ I²C multi-master interface
- Supply from 4.3 to 5 V, operation within -40 °C to +115 °C
- Verifyable chip release code
- Pin compatible with iC-MSB and iC-MSC

 Programmable sensor interface for optical and magnetic position

Linear gauges and incremental


APPLICATIONS

sensors

encoders

Linear scales

٠

DESCRIPTION

iC-MSA is a signal conditioner with analog line drivers for sine/cosine sensors which are used to determine positions in linear and angular encoders, for example.

Programmable instrumentation amplifiers with selectable gain levels permit differential or referenced input signals; at the same time the modes of operation differentiate between high and low input impedance. This adaptation of the iC to voltage or current signals enables MR sensor bridges or photosensors to be directly connected up to the device.

The integrated signal conditioning unit allows signal amplitudes and offset voltages to be calibrated accurately and also any phase error between the sine and cosine signals to be corrected. Separate zero signal conditioning settings can be made for the gain and offset; data is then output either as an analog or a differential square-wave signal (low/high level analogous to the sine/cosine amplitude).

For the stabilization of the output levels a signal is generated from the conditioned and calibrated input signals which controls the gain of all channels. Temperature and aging effects can be compensated for and the set signal amplitude is maintained with absolute accuracy. At the same time the control circuitry monitors both whether the sensor is functioning correctly and whether it is properly connected; signal loss due to wire breakage, short circuiting, dirt or aging, for example, is recognized when control thresholds are reached and indicated at alarm output ERR.

iC-MSA is protected against a reversed power supply voltage; the integrated voltage switch for loads of up to 20 mA extends this protection to cover the overall system. The analog output drivers are directly cable-compatible and tolerant to false wiring; if supply voltage is connected up to these pins, the device is not destroyed.

The device configuration and calibration parameters are CRC protected and stored in an external EEP-ROM; they are loaded automatically via the I2C interface once the supply voltage has been connected up.

General notice on application-specific programming

Parameters defined in the datasheet represent supplier's attentive tests and validations, but - by principle - do not imply any warranty or guarantee as to their accuracy, completeness or correctness under all application conditions. In particular, setup conditions, register settings and power-up have to be thoroughly validated by the user within his specific application environment and requirements (system responsibility).

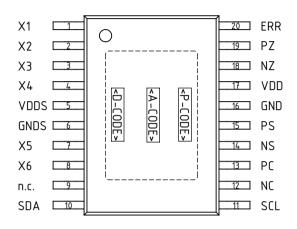
For magnetic sensor systems: The chip's performance in application is impacted by system conditions like the quality of the magnetic target, field strength and stray fields, temperature and mechanical stress, sensor alignment and initial calibration. For optical sensor systems: The chip's performance in application is impacted by system conditions like the quality of the optical target, the illumination, temperature and mechanical stress, sensor alignment and initial calibration.

Rev B1, Page 3/32

PACKAGING INFORMATION	4
PIN CONFIGURATION TSSOP20-TP	
PACKAGE DIMENSIONS : TSSOP20-TP	5
ABSOLUTE MAXIMUM RATINGS	6
THERMAL DATA	6
ELECTRICAL CHARACTERISTICS	7
PROGRAMMING	11
CONFIGURATION REGISTERS	12
SERIAL I ² C INTERFACE	14
EEPROM Device Selection	14
Device Startup	15
Configuration Data Checksum	15
I ² C Slave Mode (ENSL = 1)	16
BIAS SOURCE AND TEMPERATURE SENSOR CALIBRATION	17
OPERATING MODES	18
Calibration Op. Modes	18
Special Device Test Functions	18
Signal Filter	18
TEST MODE	19
PGA INPUTS CONFIGURATION	20

CONTENTS

GA INPUTS CONFIGURATION						
Current Signals	20					
Voltage Signals	20					


SIGNAL PATH MULTIPLEXING	22
SIGNAL CONDITIONING CH1, CH2	23
Gain Settings CH1, CH2	23
Offset Calibration CH1, CH2	24
Phase Correction CH1 vs. CH2	24
SIGNAL CONDITIONING CH0	25
Gain Settings CH0	25
Offset Calibration CH0	25
AUTOMATIC GAIN CONTROL and SIGNAL MONITORING	26
MONITORING AND ERROR OUTPUT	27
Error Input/Output: pin ERR	27
Excessive Temperature Warning	27
Analog Output Drivers Shutdown	27
Error Protocol	27
ANALOG OUTPUT DRIVERS	28
REVERSE POLARITY PROTECTION	28
APPLICATION HINTS	29
Connecting MR sensor bridges for	
safety-related applications	29
PLC Operation	29
Motor feedback encoder with shared EEPROM	30
REVISION HISTORY	31

Rev B1, Page 4/32

PACKAGING INFORMATION

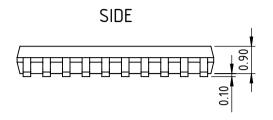
PIN CONFIGURATION TSSOP20-TP

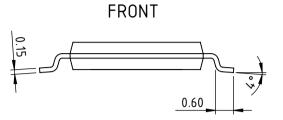
PIN FUNCTIONS

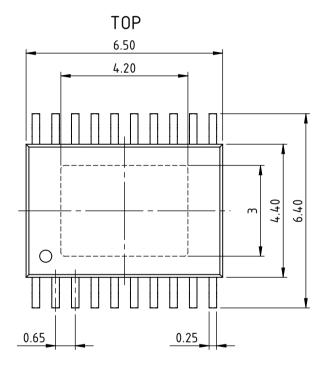
No. Name Function

-	X1	Signal Input 1 (Index +)
	X2	Signal Input 2 (Index -)
3	X3	Signal Input 3
	X4	Signal Input 4
5	VDDS ¹	Switched Supply Output and Internal
		Analog Supply Voltage
		(reverse-polarity-proof, load 20 mA
		max.)
6	GNDS ¹	Switched Ground
		(reverse-polarity-proof)
7	X5	Signal Input 5
8	X6	Signal Input 6
9	n.c.	Pin is not connected.
10	SDA	Serial Configuration Interface,
		data line
11	SCL	Serial Configuration Interface,
		clock line
12	NC	Neg. Cosine Output
13	PC	Pos. Cosine Output
14	NS	Neg. Sine Output
15	PS	Pos. Sine Output
16	GND	
17	VDD	+4.3 V to +5.5 V Supply Voltage
18	NZ	Neg. Index Output
19	ΡZ	Pos. Index Output
20	ERR	Error Signal (In/Out),
		Test Mode Trigger Input
	TP ²	Thermal Pad (TSSOP20-TP)

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes), <D-CODE> = date code (subject to changes);

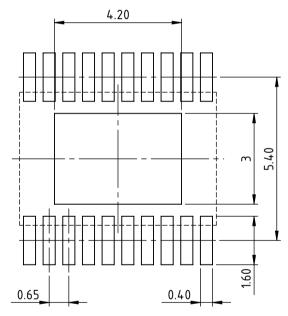

¹ It is advisable to connect a bypass capacitor of about 100 nF (up to 1 µF max.) close to the chip's analog supply terminals.


² To improve heat dissipation the *thermal pad* of the package (bottom side) should be joined to an extended copper area which must have GNDS potential.



Rev B1, Page 5/32

PACKAGE DIMENSIONS : TSSOP20-TP



All dimensions given in mm. Tolerances of form and position according to JEDEC MO-153

RECOMMENDED PCB-FOOTPRINT

dra_tssop20-tp-1_pack_1, 8:1

Rev B1, Page 6/32

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V()	Voltage at VDD, GND, PC, NC, PS, NS, PZ, NZ		-6	6	V
G002	V()	Voltage at ERR		-6	8	V
G003	V()	Pin-To-Pin Voltage between VDD, GND, PC, NC, PS, NS, PZ, NZ, ERR			6	V
G004	V()	Voltage at X1X6, SCL, SDA		-0.3	VDDS + 0.3	V
G005	I(VDD)	Current in VDD		-100	100	mA
G006	I()	Current in VDDS, GNDS		-50	50	mA
G007	I()	Current in X1X6, SCL, SDA, ERR, PC, NC, PS, NS, PZ, NZ		-20	20	mA
G008	Vd()	ESD Susceptibility at all pins	HBM 100 pF discharged through $1.5 \text{k}\Omega$		2	kV
G009	Ptot	Permissible Power Dissipation	TSSOP20-TP		400	mW
G010	Tj	Junction Temperature		-40	150	°C
G011	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

VDD = 4.3...5.5 V

lte	em	n Symbol Parameter Condition		Conditions					
No	o.	-			Min.	Тур.	Max.		
	T01	Та	Operating Ambient Temperature Range	TSSOP20-TP	-40		115	°C	
	T02	Rthja		TSSOP20-TP surface mounted to PCB according to JEDEC 51		35		K/W	

Rev B1, Page 7/32

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Device				_ , ,		
001	VDD	Permissible Supply Voltage	load current I(VDDS) up to 10 mA load current I(VDDS) up to 20 mA	4.3 4.5		5.5 5.5	V V
002	I(VDD)	Supply Current in VDD	Tj = 27 °C, no load		25	50	mA
003	I(VDDS)	Permissible Load Current VDDS		-20		0	mA
004	Vcz()hi	Clamp Voltage hi at all pins				11	V
005	Vc()hi	Clamp Voltage hi at inputs SCL, SDA	Vc()hi = V() – V(VDDS), I() = 1 mA	0.4		1.5	V
006	Vc()hi	Clamp Voltage hi at inputs X1X6	Vc()hi = V() – V(VDDS), I() = 4 mA	0.3		1.2	V
007	Vc()lo	Clamp Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
008	Irev(VDD)	Reverse-Polarity Current VDD vs. GND	V(VDD) = -5.5 V4.3 V	-1		1	mA
PGA I	nputs and S	Signal Conditioning: X3X6					
101	Vin()sig	Permissible Input Voltage Range	RIN12(3:0) = 0x01	0.75		VDDS - 1.5	V
100			RIN12(3:0) = 0x09	0		VDDS	
102	lin()sig		RIN12(0) = 0, BIAS12 = 0 RIN12(0) = 0, BIAS12 = 1	-300 10		-10 300	μΑ μΑ
103 104	lin()	Input Current	RIN12(3:0) = 0x01	-10		10	μA
104	Rin()	Input Resistance vs. VREFin	Tj = 27 °C; RIN12(3:0) = 0x09 RIN12(3:0) = 0x00 RIN12(3:0) = 0x02 RIN12(3:0) = 0x04 RIN12(3:0) = 0x04 RIN12(3:0) = 0x06	16 1.1 1.6 2.2 3.2	20 1.6 2.3 3.2 4.6	24 2.1 3.0 4.2 6.0	kΩ kΩ kΩ kΩ kΩ
105	TCRin()	Temperature Coefficient Rin			0.15		%/K
106	VREFin12	Reference Voltage	RIN12(0) = 0, BIAS12 = 1 RIN12(0) = 0, BIAS12 = 0	1.35 2.25	1.5 2.5	1.65 2.75	V V
107	G12	Gain Factors	GC2 = 0x80; RIN12(3:0) = 0x01, GR12 and AGCGF1 = min. RIN12(3:0) = 0x01, GR12 and AGCGF1 = max. RIN12(3:0) = 0x09, GR12 and AGCGF1 = min.		0.8 116 0.2		
			RIN12(3:0) = 0x09, GR12 and AGCGF1 = max.		29		
108	⊿Gdiff	Differential Gain Accuracy	calibration range 11 bit	-0.5		0.5	LSB
109	⊿Gabs	Absolute Gain Accuracy	calibration range 11 bit, guaranteed monotony	-1		1	LSB
110	Vin()diff		Vin()diff = V(CHPx) - V(CHNx), RIN12(3) = 0 RIN12(3) = 1	10 40		500 2000	mVpp mVpp
111	Vin()os	Input Offset Voltage	refered to side of input		20		μV
112	VOScal	Offset Calibration Range	referenced to the selected source (VOS12); ORx = 00 ORx = 01 ORx = 10 ORx = 11		±100 ±200 ±600 ±1200		%V() %V() %V() %V()
113	∆VOSdiff	Differential Linearity Error of Offset Correction	calibration range 11 bit	-0.5		0.5	LSB
114	∆VOSint	Integral Linearity Error of Offset Correction	calibration range 11 bit	-1		1	LSB
115	PHIkorr	Phase Error Calibration Range	CH1 versus CH2		±10.4		°
116	⊿PHIdiff	Differential Linearity Error of Phase Calibration	calibration range 10 bit	-0.5		0.5	LSB
117	⊿PHlint	Integral Linearity Error of Phase Calibration	calibration range 10 bit	-1		1	LSB
119	fin()max	Permissible Max. Input Fre- quency				20	kHz

Rev B1, Page 8/32

tem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
120	fhc()	Input Amplifier Cut-off Frequency		100		indx.	kHz
		(-3dB)	GR12 = 0x5, AGCGF1 = 0x80 (gain 4.77)		900		kHz
201		Signal Conditioning: X1, X2	D(N(2)) = 0.04	0.75	1		V
201	Vin()sig	Permissible Input Voltage Range	RIN0(3:0) = 0x01	0.75		VDDS - 1.5	V
			RIN0(3:0) = 0x09	0		VDDS	V
202	lin()sig	Permissible Input Current Range	RIN0(0) = 0, BIAS0 = 0 RIN0(0) = 0, BIAS0 = 1	-300 10		-10 300	μΑ μΑ
203	lin()	Input Current	RIN0(3:0) = 0x01	-10		10	μA
204	Vout(X2)	Output Voltage at X2	BIASEX = 10, I(X2) = 0, referenced to VRE- Fin12	95	100	105	%
205	Vin(X2)	Permissible Input Voltage at	BIASEX = 11	0.5		VDDS – 2	V
206	Rin(X2)	Input Resistance at X2	BIASEX = 11, RIN0(3:0) = 0x01, RIN12(3:0) = 0x01	20	28	35	kΩ
207	Rin()	Input Resistance vs. VREFin	Tj = 27 °C; RIN0(3:0) = 0x09	16	20	24	kΩ
			RIN0(3:0) = 0x00 RIN0(3:0) = 0x00	1.1	1.6	24	kΩ
			RIN0(3:0) = 0x02	1.6	2.3	3.0	kΩ
			RIN0(3:0) = 0x04 RIN0(3:0) = 0x06	2.2	3.2	4.2 6.0	kΩ kΩ
200		Temperature Coefficient Rin	RIN0(3.0) = 0.000	3.2	4.6	0.0	K32 %/K
208 209	TCRin() VREFin0		$P(N(\alpha)) = 0$, $P(A \otimes \alpha = 1)$	1.25	0.15	1.65	%/r V
		Reference Voltage	RIN0(0) = 0, BIAS0 = 1 RIN0(0) = 0, BIAS0 = 0	1.35 2.25	1.5 2.5	1.65 2.75	V
210	G0	Gain Factors	GC0 = 0x80; RIN0(3:0) = 0x01, GR0 and AGCGF1 = min. RIN0(3:0) = 0x01, GR0 and AGCGF1 = max.		0.8 116		
			RIN0(3:0) = 0x09, GR0 and AGCGF1 = min. RIN0(3:0) = 0x09, GR0 and AGCGF1 = max.		0.2 29		
211	⊿Gdiff	Differential Gain Accuracy	calibration range 5 bit	-0.5		0.5	LSE
212	⊿Gabs	Absolute Gain Accuracy	calibration range 5 bit, guaranteed monotony	-1		1	LSE
213	Vin()diff	Recommended Differential Input Voltage	Vin()diff = V(CHP0)-V(CHN0), RIN0(3:0) = 0x01 RIN0(3:0) = 0x09	10 40		500 2000	mVp mVp
214	Vin()os	Input Offset Voltage	referred to side of input	0	75		μV
215	VOScal	Offset Calibration Range	referenced to the selected source (REFVOS); OR0 = 00 OR0 = 01 OR0 = 10 OR0 = 11		±100 ±200 ±600 ±1200		%V(%V(%V(%V(
216	∆VOSdiff	Differential Linearity Error of Offset Correction	calibration range 6 bit	-0.5		0.5	LSE
217	∆VOSint	Integral Linearity Error of Offset Correction	calibration range 6 bit	-1		1	LSE
	l Filter						
301	fg	Cut-off Frequency				4000	kHz
302	phi	Phase Shift	fin 500 kHz for sine/cosine			10	0
Index	Pulse Com	parator Output PZ, NZ					
401	Vpk()	Output Amplitude With Automatic Gain Control	EAZ = 1, AGCOFF = 0, ADJ = 0x32	225	250	275	mV
402	SR()	Output Slew Rate	EAZ = 1		1		V/µs
Analo		rivers: PS, NS, PC, NC, PZ, NZ					_
501	Vpk()max	Permissible Max. Output Amplitude	VDD = 4.5 V, DC level = VDD/2, RL = 50 Ω vs. VDD/2			300	mV
502	Vpk()	Output Amplitude With Automatic Gain Control	AGCOFF = 0, ADJ (5:0) adjusted for Vpp() = 500 mV	225	250	275	mV

Rev B1, Page 9/32

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
503	Vdc()	DC Output Voltage	versus GND; reference is VPAH, see 802 for tolerances		50		% VDE
504	fg	Cut-off Frequency	CL = 250 pF	500			kHz
506	lsc()	Short-circuit Current	pin shorten to VDD or GND	10	30	50	mA
507	llk()	Tristate Leakage Current	tristate or reversed supply	-1		1	μA
Autor	natic Gain	Control		1	1	1	
601	tset()	Automatic Gain Settling Time	square control active, AGCGF1: $0x40 \rightarrow 0x80$		2		ms
602	Gt()min	Control Range Monitoring 1: lower limit	CH1 gain/GR12, AGCGF1 = 0x10		1.2		-
603	Gt()max	Control Range Monitoring 2: upper limit	CH1 gain/GR12, AGCGF1 = 0xF0		16.6		
604	Vt()min	Signal Level Monitoring 1: lower limit	referenced to Vscq()		40		%Vpp
605	Vt()max	Signal Level Monitoring 2: upper limit	referenced to Vscq()		130		%Vpp
	Current ER						
701	I(ERR)	Permissible Test Current	test mode activated	0		1	mA
		Bias Current Source		100	200	200	
801	IBN() VPAH		MODE(3:0) = 0x01, I(NC) vs. VDDS	180	200	220	μA %VDD
802	VPAH V05	Reference Voltage VPAH Reference Voltage V05	referenced to GND	45	50	55 550	-
803 804	V05 V025	- · · ·		450	500	550	mV
	r-Down-Re	Reference Voltage V025			50		%V05
901	VDDon	Turn-on Threshold (power-on release)	increasing voltage at VDD vs. GND	3.7	4	4.3	V
902	VDDoff	Turn-off Threshold (power-down reset)	decreasing voltage at VDD vs. GND	3.2	3.5	3.8	V
903	VDDhys	Threshold Hysteresis	VDDhys = VDDon - VDDoff	0.3			V
Clock	Oscillator			0			
A01	fclk()	Internal Clock Frequency	MODE(3:0) = 0x0A, fclk(NS)	120	160	200	kHz
Error	Input/Outp	out: ERR					
B01	Vs()lo	Saturation Voltage lo	vs. GND, I() = 4 mA			0.4	V
B02	lsc()	Short-circuit Current lo	vs. GND; V(ERR)≤VDD V(ERR)>VTMon	4 2			mA mA
B03	Vt()hi	Input Threshold Voltage hi	vs. GND			2	V
B04	Vt()lo	Input Threshold Voltage lo	vs. GND	0.8			V
B05	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo	300	500		mV
B06	lpu()	Input Pull-up Current	V() = 0VDD - 1 V, EPU = 1	-400	-300	-200	μΑ
B07	Rpu()	Input Pull-Up Resistor	EPU = 0		500		kΩ
B08	Vpu()	Pull-up Voltage	Vpu() = VDD - V(), I() = -5 μA, EPU = 1			0.4	V
B09	VTMon	Test Mode Activation Threshold	increasing voltage at ERR			VDD +	V
B10	VTMoff	Test Mode Disabling Threshold	decreasing voltage at ERR	VDD + 0.5		1.0	V
B11	VTMhys	Test Mode Hysteresis	VTMhys = VTMon - VTMoff	0.15	0.3		V
B12	llk()	Leakage Current	tristate or reversed supply voltage	-1	-10	-50	μA
Suppl	y Switch a	nd Reverse Polarity Protection: \	/DDS, GNDS				
C01	Vs()	Saturation Voltage	Vs(VDDS) = VDD - V(VDDS)				
		VDDS vs. VDD	I(VDDS) = -10 mA0 mA I(VDDS) = -20 mA10 mA			150 250	mV mV
C02	Vs()	Saturation Voltage GNDS vs. GND	Vs(GNDS) = V(GNDS) – GND I(GNDS) = 0 mA10 mA I(GNDS) = 10 mA20 mA			150 250	mV mV

Rev B1, Page 10/32

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
C03	C()	Backup Capacitor Analog Supply VDDS vs. GNDS		100			nF
Serial	I ² Interface	: SCL, SDA					
D01	Vs()lo	Saturation Voltage Io	I() = 4 mA			400	mV
D02	lsc()	Short-circuit Current lo		4		80	mA
D03	Vt()hi	Input Threshold Voltage hi				2	V
D04	Vt()lo	Input Threshold Voltage lo		0.8			V
D05	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi – Vt()lo	300	500		mV
D06	lpu()	Input Pull-up Current	V()= 0VDDS - 1 V	-650	-300	-60	μA
D07	Vpu()	Input Pull-up Voltage	Vpu() = VDDS - V(), I() = -5 µA			0.4	V
D08	fclk(SCL)	Clock Frequency at SCL	ENFAST = 0 ENFAST = 1	60 240	80 320	100 400	kHz kHz
D09	tbusy()cfg	Duration of Startup Configuration	IBN not calibated, EEPROM access without read failure, time to outputs operational; ENFAST = 0 ENFAST = 1		40 25	55 35	ms ms
D10	tbusy()err	End Of I2C Communication; Time Until I2C Slave Is Enabled	IBN not calibrated; V(SDA) = 0 V V(SCL) = 0 V or arbitration lost no EEPROM CRC ERROR		4 indef. 45 95	12 135 285	ms ms ms ms
D11	td()	Start Of Master Activity On I2C Protocol Error	SCL without clock signal: V(SCL) = constant; IBN not calibrated IBN calibrated to 200 μA	25 64	80 80	240 120	μs μs
D12	td()i2c	Delay for I2C-Slave-Mode Enable	no EEPROM, V(SDA) = 0 V		4	6.2	ms
D13	fclk()ext	Permissible External Clock Frequency at SCL				400	kHz
Temp	erature Mon	litoring					
E01	VTs	Temperature Sensor Voltage	VTs() = VDDS – V(PS), Tj = 27 °C, Calibration Mode 3, no load	600	650	700	mV
E02	TCs	Temp. Co. of Temperature Sen- sor Voltage			-1.8		mV/K
E03	VTth	Temperature Warning Activation Threshold	VTth() = VDDS $- V(NS)$, Tj = 27 °C, Calibration Mode 3, no load; CFGTA(3:0) = 0x00 CFGTA(3:0) = 0x0F	260 470	310 550	360 630	mV mV
E04	TCth	Temp. Co. Temperature Warning Activation Threshold			0.06		%/K
E05	Thys	Temperature Warning Hysteresis		4	12	20	°C
E06	ΔT	Relative Shutdown Temperature	ΔT = Toff – Twarn	4	12	20	°C

Rev B1, Page 11/32

PROGRAMMING

Register Layo	out Page 12	Signal Condit GR12: VOS12:	tioning CH1, CH2 (X3X6) Page 23 Gain Range CH1, CH2 (coarse) Offset Reference Source CH1, CH2			
Serial I ² Inter	face Page 14	OR1:	Offset Range CH1 (coarse)			
ENFAST:	I ² C Fast Mode Enable	OF1:	Offset Factor CH1 (fine)			
ENSL:	I^2C Slave Mode Enable	OR2:	Offset Range CH2 (coarse)			
DEVID:	Device ID of EEPROM providing the	OF2:	Offset Factor CH2 (fine)			
DEVID.	chip configuration data (e.g. 0x50)	PH12:	Phase Correction CH1 vs. CH2			
CHKSUM:	CRC of chip configuration data	GC2:	Gain Correction CH2 (fine)			
	(address range 0x40 to 0x5E)	602.	Gain Correction Criz (line)			
CHPREL:	Chip Release	Signal Condit	tioning CH0 (X1, X2) Page 25			
NTRI:	Tristate Function and	GC0:	Gain Correction CH0 (fine)			
	Op. Mode Change	GR0:	Gain Range CH0 (coarse)			
		VOS0:	Offset Reference Source CH0			
Calibration .	Page 17	OR0:	Offset Range CH0 (coarse)			
CFGIBN:	Bias Calibration	OF0:	Offset Factor CH0 (fine)			
CFGTA:	Temperature Sensor Calibration	010.				
		Automatia Ca	in Control and			
	des Page 18	Automatic Gain Control and Signal Monitoring Page 26				
MODE:	Operation Mode	AGCOFF:	Setup of AGC			
ENF:	Signal Filtering	AGCOFF. ADJ:	AGC Setpoint			
		ADJ.	AGC Selpoint			
TMODE:	Test Mode Functions	Monitoring ar EMTD:	nd Error Output Page 27 Minimal Alarm Indication Time			
PGA Inputs C	onfiguration and	EPH:	Alarm Input/Output Logic			
Signal Path M	lultiplexer Page 20	EPU:	Alarm Output Pull-Up Enable			
INMODE:	Diff./Single-Ended Input Mode	EMASKA:	Error Mask For Alarm Indication (pin			
RIN12:	I/V Mode and Input Resistance CH1,		ERR)			
	CH2	EMASKE:	Error Mask For Protocol (EEPROM)			
BIAS12:	Reference Voltage CH1, CH2	EMASKO:	Error Mask For Driver Shutdown			
RIN0:	I/V Mode and Input Resistance CH0					
BIAS0:	Reference Voltage CH0	ERR1:	Error Protocol: First Error			
MUXIN:	Input-To-Channel Assignment:	ERR2:	Error Protocol: Last Error			
	X3X6 to CH1, CH2	ERR3:	Error Protocol: History			
INVZ:	Index Signal Inversion		- ,			
EAZ:	Index Comparator Enable	PDMODE:	Driver Activation After Cycling Power			
BIASEX:	Input Reference Selection					
BYP	Input-to-output Feedthrough	AGCGF1:	AGC Gain Fine CH1 (read-only)			

Rev B1, Page 12/32

CONFIGURATION REGISTERS

OVERVIEW										
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Configu	Configuration Interface									
0x40	ENFAST				DEVID(6:0)*					
Calibration										
0x41	CFGIBN(3:0) CFGTA(3:0)									
Operatio	on Modes									
0x42	NTRI	1	0	-		MOD	E(3:0)			
PGA Inp	outs Configura	ation and Sig	nal Path Multi	plexer						
0x43	EAZ	0	0	0	INVZ	INMODE	MUXI	N(1:0)		
0x44	0	0	0	1	0	0	0	0		
	evel Controll	er								
0x45	AGCOFF	0			ADJ	(5:0)				
	onditioning (CH1, CH2		1		1				
0x46	0	0	0	0	0		GR12(2:0)			
0x47	0	0	0	0	1	0	0	0		
0x48	OR1(0)	0	1	0	0	0	0	0		
0x49				OF1(6:0)				OR1(1)		
0x4A	OF2	(1:0)	OR2	(1:0)	(0.0)	OF1(10:7)			
0x4B					(9:2)			052(40)		
0x4C 0x4D	DIAGE	EX(1:0)	ВҮР	PH12(6:0)	1		PH12(9:7)	OF2(10)		
0x4D 0x4E	ENF	BIAS12	VOS1	-	1	RIN1				
0x4E 0x4F		01/10/12	1001		(7:0)		2(0.0)			
	onditioning (CH0			(1.0)					
0x50				GC0	(7:0)					
0x51			-		、		GR0(2:0)			
0x52			OF0	(5:0)			OR0	(1:0)		
0x53	0	BIAS0	VOS	0(1:0)		RINC	(3:0)			
Error Mo	onitoring and	Alarm Output	t							
0x54	_				EMASKA(6:0)					
0x55	TMOE	DE(1:0)		EMTD(2:0)		EPH	-	_		
0x56	-				EMASKO(6:0)	1				
0x57		EMASI	KE(3:0)		ENSL	EPU	-	-		
0x58	_	PDMODE	_	-	_		EMASKE(6:4)			
0x59			EEPROM: no		M: AGCGF1(10	:3) (read-only)				
0x5A				not de	efined					
OEM Da	ta									
0x5E	0x5B OEM Data 0x5E									
Check S	um / Chip	Release								
0x5F			EEPRON	I: CHKSUM(7:0) / ROM: CHP	REL(7:0)				

Rev B1, Page 13/32

OVERV	OVERVIEW							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error Re	egister			•	•		•	•
0x60	-	– ERR1(6:0)						
0x61		ERR2(5:0) – –						
0x62	ERR3(3:0) – – – ERR2(6)							
0x63	– – – – – ERR3(6:4)							
Notes	Register entries specified 0 or 1 mean a mandatory programming.							
	*) The DEVID programming is only relevant if using the Test Mode for data output via pin ERR.							

Table 1: Register layout

SERIAL I²C INTERFACE

The multi-master capable I^2C interface consists of two bidirectional pins, SCL (for clock) and SDA (for data), and enables iC-MSA to restore its configuration from the external serial EEPROM. For this function, the readout can be accelerated from ENFAST reading onwards if a higher clock frequency is selected as an option.

The I²C master of iC-MSA addresses I²C devices using an 8-bit register address plus 3 block selection bits as part of the I²C device ID. That way an external EEP-ROM of up to 2 Kbit is addressed at 0x50 (for '1010 000' without the R/W bit), or 0xA0 respectively (for '1010 0000' with the R/W bit as zero), whereas the block selections bits are zero.

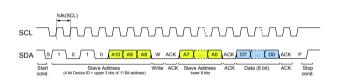


Figure 1: I²C slave addressing for writing a single byte to the EEPROM.

Furthermore, the I^2C interface can be enabled to operate as an I^2C slave (using ENSL), allowing an external I^2C master to monitor and edit iC-MSA's configuration data.

ENFAST	Addr. 0x00, bit 7
Code	Function
0	Regular clock rate, f(SCL) approx. 80 kHz
1	High clock rate, f(SCL) approx. 320 kHz
Notes	For in-circuit programming bus lines SCL and SDA require pull-up resistors (e.g. $2.2 \mathrm{k}\Omega$ for line capacitances of up to 170 pF and clock rate 320 kHz; the permissible minimum value is $1.5 \mathrm{k}\Omega$). A ground trace between SCL and SDA is recommended to avoid cross talk.

Table 2: I²C Fast Mode

ENSL	Addr. 0x17, bit 3
Code	Function
0	I ² C slave mode disabled
1	I ² C slave mode enabled (Device ID 0x57)

I ² C Master Performance				
Protocol	Standard I ² C			
Output Clock Rate	100 kHz max. (see Elec.Char.D08), 400 kHz max. using ENFAST = 1			
Addressing	11 bit: 8 bit register address plus 3 bit block selection			
Access Trials	Read: up to 4x at power-on (I ² C error: acknowledge missing)			
Multi-Master Capability	Yes			
I ² C Slave Performance				
Input Clock Rate	400 kHz max. (see Elec.Char. D13)			
Device ID	0x57 ('1010 111' w/o R/W bit)			

Table 4: I²C interface performance

Note: The I²C bus lines are sensitive. Keeping the traces short and shielding them with ground prevents unwanted actions.

The use of pull-up resistors (e.g. $2.2 \text{ k}\Omega$ at SCL and SDA) supports the bus signals on logic high and improves the EMI immunity.

Note: When programming the EEPROM in-circuit, iC-MSA must be powered up in advance to avoid interferences by its l^2 C master. Note that power must be maintained (e.g. for 10 ms) to allow the EEPROM finishing its write operation.

Attention: If a power failure interrupts the EEPROM's write operation, the entire page content may be lost.

Attention: If error logging is enabled and periodic errors occur, the maximum permissible write cycles may be exceeded. The recommended precaution is to disable error logging (refer to EMASKE), and to lock the EEPROM by its WP pin after factory calibration.

Rev B1, Page 15/32

EEPROM Device Selection

EEPROM Device Requirements			
Supply Voltage	3.3 V to 5.5 V		
Power-On Threshold	< 3.3 V (due to Elec.Char. 901)		
Addressing	11 bit address max.		
Device Address	0x50 ('1010 000' w/o R/W bit), 0xA0 ('1010 0000' with R/W = 0)		
Page Buffer	Support of <i>Page Write</i> with pages of at least 4 bytes.		
Size Minimum	512 bit (64x8 bit) (address range used is 0x00 to 0x3F)		
Size Maximum	8 Kbit (4x 256x8 bit), type 24C08 If I ² C Slave Mode is disabled: 16 Kbit (8x 256x8 bit), type 24C16		

Table 5: EEPROM Device Requirements

If the EEPROM does not feature *Page Write*, error events can not be saved (EMASKE must be configured to 0x00).

The following EEPROMs have been recommended, but may need to be re-tested for the above conditions: Atmel AT24C01, ST M24C01, ST M24C02 (2K), ROHM BR24L01A-W, BR24L02-W.

Attention: EEPROMs that ignore the block select or upper address bits in the control byte (such as the Microchip 24AA0x/24LC0xB, and maybe other 5-pin devices) should not be used with the iC-MSA. EEPROMs that use the address pins as additional enable bits should be used instead.

Attention: When I^2C Slave Mode is enabled, iC-MSA responds to device ID 0x57, limiting the maximum EEPROM size to 8 Kbit (0x50 to 0x53 addresses 4x 256 bytes).

Device Startup

Once the supply has been switched on, i.e. after a power down reset, the iC-MSA outputs are high impedance (tristate) until a valid configuration is read from the EEPROM using device ID 0x50.

If the configuration data is not confirmed by its checksum, the readin process is repeated. If no valid configuration data is available after a fourth attempt, iC-MSA terminates communication with the EEPROM and enables I²C slave mode. For timing information, refer to the Electrical Characteristics, items D10 and D11.

For devices loading valid configuration data from the EEPROM, bit ENSL decides whether the I²C slave function is enabled or not.

Configuration Data Checksum

The checksum at address 0x1F is used to initially confirm the configuration data read from the EEPROM.

CHKSUM	Addr. 0x1F, bit 7:0
Code	Function
0x00 0xFF	Checksum for address range 0x00 to 0x1E; CRC polynomial 0x11D ($x^8 + x^4 + x^3 + x^2 + 1$) Start value: 0x01

Table 6: Configuration Data Checksum

Example of CRC Calculation Routine:

```
unsigned char ucDataStream = 0;
int iCRCPoly = 0x11D;
unsigned char ucCRC=0;
int i = 0;
ucCRC = 1; // start value !!!
for (iReg = 0; iReg<31; iReg ++)
{
    ucDataStream = ucGetValue(iReg);
    for (i=0; i<=7; i++) {
        if ((ucCRC & 0x80) != (ucDataStream & 0x80))
            ucCRC = (ucCRC << 1) ^ iCRCPoly;
        else
            ucCRC = (ucCRC << 1);
        ucDataStream = ucDataStream << 1;
    }
}
```


Rev B1, Page 16/32

I²C Slave Mode (ENSL = 1)

In this mode iC-MSA behaves like an I²C slave with the device ID 0x57 and the configuration interface permits write and read accesses to iC-MSA's internal registers.

For chip release verification purposes an identification value is stored under ROM address 0x5F; a write access to this address is not permitted.

CHPREL	Adr 0x5F, bit 7:0 (ROM)		
Code	Chip Release		
0x10	iC-MSA		

Table 7: Chip Release

NTRI	Adr 0x42, bit 7
Code	Function
0	Output drivers disabled
1	Setting the operating mode, output drivers active
Notes	NTRI is evaluated only during I ² C slave mode.

Table 8: Tristate Function And Op. Mode Change

Register	Read access in I^2C slave mode (ENSL = 1)
Address	Content
0x00-0x03	Current error memory
0x04-0x3F	Not available
0x40-0x58	Configuration: register addresses 0x40-0x58
0x59	AGCGF1(10:3)
0x5A	Not available
0x5B-0x5E	OEM data (4 byte)
	(see EEPROM addresses 0x5B-0x5E)
0x5F	Chip release (ROM)
0x60-0x63	Configuration: register addresses 0x60-0x63
0x64-0x77	Not available
0x78	Configuration: register address 0x58
0x79-0x7A	Not available
0x7B-0x7E	OEM data (4 byte) (see EEPROM addresses 0x5B-0x5E)
0x7F	Chip release (ROM)

Table 9: RAM Read Access

Register	Write access in I^2C slave mode (ENSL = 1)		
Address	Access and conditions		
0x40	Changes possible, no restrictions		
0x41	Changes possible (wrong entries for CFGIBN can limit functions)		
0x42	Bit $7 = 0$ (NTRI): changes to bits (6:0) permitted A change of operating mode follows only on writing Bit $7 = 1$ (NTRI); when doing so changes to bits (6:0) are not permitted.		
0x43-0x56	Changes possible, no restrictions		
0x57	Bit 3 = 1 (ENSL):		
	changes to bits (7:4) and (2:0) permitted		
0x58	Changes possible, no restrictions		
0x59-0x5A	Not available		
0x5B-0x5E	Changes possible, no restrictions		
others	No changes permitted		

Table 10: RAM Write Access

BIAS SOURCE AND TEMPERATURE SENSOR CALIBRATION

Bias Source Calibration

The calibration of the bias current source in operation mode *Calibration 1* (Tab. 13) is prerequisite for adherence to the given electrical characteristics and also instrumental in the determination of the chip timing (e.g. SCL clock frequency). For setup purposes the IBN value is measured using a $10 \text{ k}\Omega$ resistor by pin VDDS connected to pin NC. The setpoint is $200 \,\mu\text{A}$ which is equivalent to a measurement voltage of 2 V.

CFGIBN	Adr 0x41, bit 7:4		
Code k	$IBN \sim rac{31}{39-k}$	Code k	$IBN \sim rac{31}{39-k}$
0x0	79%	0x8	100 %
0x1	81 %	0x9	103 %
0x2	84 %	0xA	107 %
0x3	86 %	0xB	111 %
0x4	88 %	0xC	115 %
0x5	91 %	0xD	119 %
0x6	94 %	0xE	124 %
0x7	97 %	0xF	129 %

Table 11: Bias Current Source Calibration

Temperature Sensor

The temperature monitor is calibrated in operating mode *Calibration Mode 3*.

To set the required warning temperature T_2 the temperature sensor voltage VTs at which the warning is generated is first determined. To this end a voltage ramp from VDDS towards GNDS is applied to pin PS until pin ERR triggers an error message (for EMASKA = 0x20 and EMTD = 0x00).

Example: $VTs(T_1)$ is ca. 650 mV, measured from VDDS versus PS, with $T_1 = 25$ °C;

The necessary activation threshold voltage VTth(T_1) is then calculated. The required warning temperature T_2 , temperature coefficients TCs and TCth (see Electrical Characteristics, Section E) and measurement value VTs(T_1) are entered into this calculation:

$$VTth(T_1) = \frac{VTs(T_1) + TCs \cdot (T_2 - T_1)}{1 + TCth \cdot (T_2 - T_1)}$$

Example: For $T_2 = T_1 + 100 \text{ K}$, $VTth(T_1)$ must be programmed to 443 mV.

Activation threshold voltage VTth(T_1) is provided for a high impedance measurement (10 M Ω) at output pin NS (measurement versus VDDS) and must be set by programming CFGTA(3:0) to the calculated value.

Example: Altering VTth(T_1) from 310 mV (measured with CFGTA(3:0)= 0x0) to 443 mV is equivalent to 143 %, the closest value for CFGTA is 0x9;

CFGTA	Adr 0x41, bit 3:0		
Code k	VTth $\sim rac{65+3.25k}{65}$	Code k	VTth $\sim rac{65+3.25k}{65}$
0x0	100 %	0x8	140 %
0x1	105 %	0x9	145 %
0x2	110 %	0xA	150 %
0x3	115 %	0xB	155 %
0x4	120 %	0xC	160 %
0x5	125 %	0xD	165 %
0x6	130 %	0xE	170 %
0x7	135 %	0xF	175 %
Notes	With CFGTA = 0xF Toff is 80 °C typ., with CFGTA = 0x0 Toff is 155 °C typ.		

 Table 12: Calibration of Temperature Monitoring

OPERATING MODES

In order to calibrate iC-MSA, compensate for the input signals and test iC-MSA the mode of operation must be changed. The output function changes according to the

various operating modes; the line drivers and protection against reverse polarity facility are only active in normal mode.

MODE(3:0)		Addr. 0x42;	bit 3:0					
BYP		Addr. 0x4D;	bit 5					
Code	Operating Mode	Pin PS	Pin NS	Pin PC	Pin NC	Pin PZ	Pin NZ	Pin ERR
0x00	Normal operation	PS	NS	PC	NC	PZ	NZ	ERR
0x01	Calibration 1	TANA0(2)	VREFI0	VREFI12	IBN	PZI	NZI	ERR
0x02	Calibration 2	PCH1	NCH1	PCH2	NCH2	—	—	_
0x03	iC-Haus Test 1	VPAH	VPD	—	CGUCK	IPF	V05	IERR
0x04	iC-Haus Test 2	PS_out	NS_out	PC_out	NC_out	PZ_out	NZ_out	IERR
0x05	iC-Haus Test 3	PS_out	NS_out	PC_out	NC_out	PZ_out	NZ_out	ERR
0x06	iC-Haus Test 4, BYP = 0 iC-Haus Test 4, BYP = 1	TANA12(0) X4	TANA12(1) X6	TANA12(2) X3	TANA12(3) X5	TANA12(4) X1	TANA12(5) X2	IERR
0x07	Calibration 3	VTs	VTth	—	—	—	—	ERR
0x08	Saturation low	SCL, SDA and ERR low						
0x09	—	—	—	—	—	—	—	—
0x0A	iC-Haus Test 5	—	—	TP	CLK6	—	—	—
0x0B	—	—	—	—	—	—	—	_
0x0C	—	—	—	—	—	-	—	—
0x0D	—	—	—	—	—	-	—	—
0x0E	IDDQ-Test	All PU/PD resistors, oscillator and supply voltage deactivated						
0x0F	—	—	—	—	—	—	—	—

Table 13: Selection of Operating Modes

Calibration Op. Modes

In *Calibration Mode 1* the user can measure the BIAS current (IBN), input amplifier reference potential VREFI and the analog signals from channel 0 following signal conditioning (PCH0 and NCH0).

In *Calibration Mode 2* the conditioned signals from channels 1 and 2 are output (PCH1, NCH1, PCH2 and NCH2).

In *Calibration Mode 3* the internal temperature monitoring signals are provided.

Special Device Test Functions

IDDQ-Test, *Saturation Low*, *Saturation High*, and *Test* 1 to 5 are test modes for iC-Haus device tests. With an activated bypass (BYP = 1), mode *iC-Haus Test 4* permits the direct feedthrough of X1 - X6 input signals to the output pins; in this instance the output impedance is high-ohmic. Furthermore, if the input voltage divider is selected (by RINx = 1--1), it reduces the signal amplitudes to approx. 7/8.

Signal Filter

iC-MSA has a noise limiting signal filter to filter the conditioned analog signals. This can be activated using ENF.

ENF	Adr 0x4E, bit 7
Code	Function
0	Noise limiter deactivated
1	Noise limiter activated

Table 14: Signal Filtering

TEST MODE

iC-MSA switches to test mode if a voltage larger than VTMon is applied to pin ERR (precondition: TMODE(0) = 1). In response iC-MSA transmits its configuration settings as current-modulated data using I/O pin ERR after re-reading the EEPROM. If the voltage at pin ERR falls below VTMoff test mode is terminated and data transmission aborted.

The clock rate for the data output is determined by ENFAST. Two clock rates can be selected: 780 ns for ENFAST = 1 or $3.125 \,\mu$ s for ENFAST = 0 (see Elec. Char. D08 for clock frequency and tolerances).

Data is output in Manchester code via two clock pulses per bit. To this end the lowside current source switches between a Z state (OFF = 0 mA) and an L state (ON = 2 mA).

The bit information lies in the direction of the current source switch:

Zero bit: change of state Z \rightarrow L (OFF to ON) One bit: Change of state L \rightarrow Z (ON to OFF)

Transmission consists of a start bit (a one bit), 8 data bits and a pause interval in Z state (the timing is identical with an EEPROM access via the I^2C interface).

Example: byte value = 1000 1010 Transmission including the start bit: 1 1000 1010 In Manchester code: LZ LZZL ZLZL LZZL LZZL

Decoding of the data stream:

If test mode is quit with TMODE = 0x00, iC-MSA continues operation without any interruption.

If test mode is quit with TMODE > 0x00, then iC-MSA again reads out its configuration from the EEPROM ac-

cessible at the device ID filed to DEVID(6:0) of address 0x40.

In TMODE = 0x03 the EEPROM is read completely; in all other cases only the address range 0x40 to 0x61 is read to keep the configuration time for device testing short.

TMODE	Addr 0x55, bit 7:6	
Code	Function during test mode	Function following test mode
00	Normal operation	Normal operation
01	Transmission of EEPROM data, address range 0x5B-0x7F and 0x00-0x3F	Repeated read out of EEPROM
10	Normal operation	Repeated read out of EEPROM
11	Transmission of EEPROM data, address range 0x40-0x7F and 0x00-0x3F	Repeated read out of EEPROM

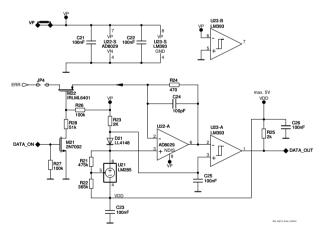


Figure 2: Example circuit for the decoding and conversion of the current-modulated signals to logic levels.

PGA INPUTS CONFIGURATION

All input stages are configured as instrumentation amplifiers and thus directly suitable for differential input signals. Referenced input signals can be processed as an option; in this mode input X2 acts as a reference. Both current and voltage signals can be processed as input signals, selected using RIN12(0) and RIN0(0).

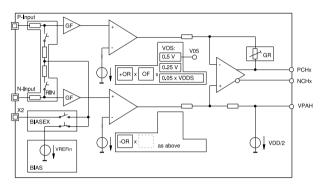


Figure 3: Signal conditioning input circuit.

Current Signals

In I Mode an input resistor Rin() becomes active at each input pin, converting the current signal into a voltage signal. Input resistance Rin() consists of a pad wiring resistor and resistor Rui() which is linked to the adjustable bias voltage source VREFin(). The following table shows the possible selections, with Rin() giving the typical resulting input resistance (see Electrical Characteristics for tolerances).

NB. The input circuit is not suitable for back-to-back photodiodes.

Voltage Signals

In V Mode an optional voltage divider can be selected which reduces unacceptably large input amplitudes to ca. 25%. The circuitry is equivalent to the resistor chain in I Mode; the pad wiring resistor is considerably larger here, however.

For sensors whose offset calibration is to be proportional to an external DC voltage source the reference source can be selected using BIASEX; for all other sensors BIASEX should be set to '00'.

INMODE Addr 0x43, bit 2	
Code	Function
0	Differential input signals
1	Single-ended input signals *
Note	* Input X2 is reference for all inputs.

Table 16: Input Signal Mode

RIN12	Addr 0x4E, bit 3:0			
RIN0	Addr 0x53, bit 3:0			
Code	Nominal Rin()	Intern Rui()	I/V Mode	
-000	1.7 kΩ	1.6 kΩ	current input	
-010	2.5 kΩ	2.3 kΩ	current input	
-100	3.5 kΩ	3.2 kΩ	current input	
–110	4.9 kΩ	4.6 kΩ	current input	
1—1	20 kΩ	5 kΩ	voltage input 4:1*	
0—1	high	1 MΩ	voltage input 1:1	
	impedance			
Notes	For single-ended signals identical settings of RIN0 and RIN12 are required. *) VREFin is the voltage divider's footpoint; input currents may be positive or negative (Vin > VREFin, or Vin < VREFin).			

Table 17: I/V Mode and Input Resistance

BIAS12	Addr 0x4E, bit 6
BIAS0	Addr 0x53, bit 6
Code	Function
0	VREFin = 2.5 V for low-side current sinks (e.g. photodiodes with common anode at GNDS)
1	VREFin = 1.5 V for high-side currrent-sources (e.g. photodiodes with common cathode at VDDS) for voltage sources versus ground (e.g. iC-SM2, Wheatstone sensor bridges) for voltage sources with low-side reference (e.g. iC-LSHB, when using BIASEX = 11)

Table 18: Reference Voltage

BIASEX	Addr 0x4D, bit 7:6		
Code	VREFin Pin function of X2		
00	internal	Input Index- (negative zero signal)	
10	internal	Output of VREFin12*	
11	external Input for external reference**: V(X2) replaces VREFin		
Notes	*) Do not load, buffering recommended **) See Elec. Char. Nos. 205 and 206		

Table 19: Input Reference Selection

Rev B1, Page 21/32

NB: VREFin is referenced to GNDS.

Figure 4: Permissible common mode range and maximum input signal for lowest gain (GR12 = 0x0, GF1, GF2 = 0x00); left side: voltage input 1:1, right side: voltage input 4:1.

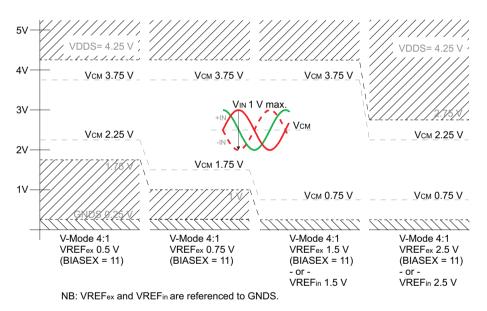


Figure 5: Permissible common mode range for voltage input 4:1 in dependancy to the reference voltage.

Rev B1, Page 22/32

SIGNAL PATH MULTIPLEXING

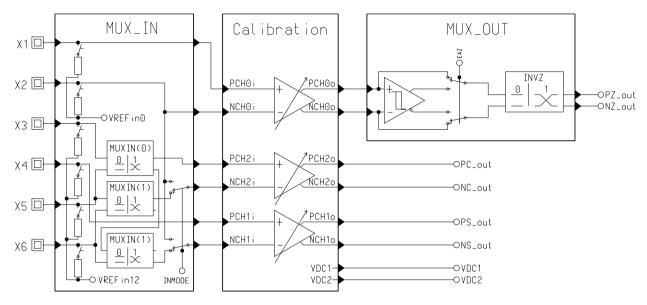


Figure 6: Multiplexer Schematics

The signals for index channel CH0 are connected up to pins X1 and X2. Pins X3 to X6 are allocated to internal channels CH1 and CH2 via MUXIN. INMODE can be activated for referenced input signals; this then selects X2 as the reference input.

MUXIN	Addr 0x43, bit 1:0			
Code	PCH1i	NCH1i	PCH2i	NCH2i
00	X4	X6	X3	X5
01	X4	X6	X5	X5
10	X4	X5	X3	X6
11	X4	X3	X5	X6

Table 20: Input Multiplexer for INMODE = 0

MUXIN	Addr 0x43, bit 1:0			
Code	PCH1i	NCH1i	PCH2i	NCH2i
-0	X4	X2	X3	X2
-1	X4	X2	X5	X2

Table 21: Input Multiplexer for INMODE = 1

EAZ permits the activation of an analog comparator for index channel CH0.

EAZ	Addr 0x43, bit 7
Code	Function
0	Comparator bypass
1	Comparator active

Table 22: Index Output

For output purposes INVZ allows the index signal phase to be inverted.

INVZ	Addr 0x43, bit 3	
Code	PZ_out	NZ_out
0	PCH0o	NCH0o
1	NCH0o	PCH0o

Table 23: Index Signal Inversion

Rev B1, Page 23/32

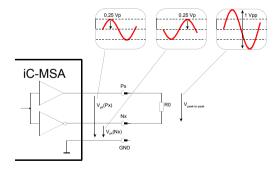
SIGNAL CONDITIONING CH1, CH2

The voltage signals necessary for the conditioning of channels 1 and 2 can be measured in operation mode *Calibration 2*.

Gain Settings CH1, CH2

The gain is set in four stages:

1. The automatic gain control is shut down (set register AGCOFF to a value of 1).


2. The gain range is selected so that the differential signal amplitude of CH1 is closest to 1 Vpp (signal Px vs. Nx, see Figure below).

3. The automatic gain control is turned on (set register AGCOFF to a value of 0) and adjust ADJ to obtain a signal amplitude of 1 Vpp for CH1.

4. The CH2 signal amplitude can then be adjusted relative to the CH1 signal amplitude via gain correction ratio GC2.

AGC gain range reserve can be checked by the value of read-only register AGCGF1 which represents the 8 most significant bits of the current automatic gain setting for channel 1.

NB: automatic gain control is halted during AGCGF1 readout and will continue automatically afterwards.

Figure 7: Definition of 1 Vpp signal. Termination R0 must be high-ohmic during all *Test* and *Calibration* modes.

GR12	Addr 0x46, bit 2:0	
Code	AGC on (AGCOFF = 0)	AGC off (AGCOFF = 1)
0x0	0.20 2.77	0.75
0x1	0.34 4.69	1.27
0x2	0.51 7.03	1.89
0x3	0.71 9.82	2.65
0x4	1.01 13.8	3.73
0x5	1.28 17.7	4.77
0x6	1.68 23.2	6.24
0x7	2.11 29.1	7.83

Table 24: Gain Range CH1, CH2 with voltage divider inputs (RIN12=0x9)

GR12	Addr 0x46, bit 2:0	
Code	AGC on (AGCOFF = 0)	AGC off (AGCOFF = 1)
0x0	0.80 11.1	2.98
0x1	1.36 18.8	5.06
0x2	2.04 28.1	7.58
0x3	2.85 39.3	10.6
0x4	4.02 55.4	14.9
0x5	5.14 70.8	19.1
0x6	6.73 92.6	25.0
0x7	8.44 116	31.3

Table 25: Gain Range CH1, CH2 (RIN12≠0x9)

GC2	Addr 0x4F, bit 7:0
Code	Ratio
0x00	0.8292
0x01	0.8304
	$20\frac{GC2-128}{2047}$
0x80	1.00
	$20\frac{GC2-128}{2047}$
0xFE	1.2025
0xFF	1.2043

Table 26: Gain Correction Ratio CH2/CH1

AGCGF1	Addr 0x59, bit 7:0
Value	AGC reserve
0xF0	alarm (±0.0 dB)
0x80	0.27 3.7 (±11.4 dB)
0x5E92	0.33 3.0 (±9.5 dB)
0x4BB4	0.50 2.0 (±6.0 dB)
0x33CD	0.67 1.5 (±3.5 dB)
0x10	alarm (±0.0 dB)

Table 27: Minimum AGC Reserve (read only)

Rev B1, Page 24/32

Offset Calibration CH1, CH2

In order to calibrate the offset the reference source must first be selected using VOS12. Two fixed voltages and one dependent source are available for this purpose.

VOS12	Addr 0x4E, bit 5:4
Code	Type of source
0x0	Feedback of sensor supply voltage: VDDS for supply-dependent differential voltage signals for Wheatstone sensor bridges
0x1, 0x2	Fixed reference: V05 of 500 mV, V025 of 250 mV for single-ended or differential signals (regulated sensor or waveform generator)
0x3	not permitted

Table 28: Offset Reference Source CH1, CH2

The calibration range for the CH1/CH2 offset is dependent on the selected VOS12 source and is set using OR1 and OR2. Both sine and cosine signals are then calibrated using factors OF1 and OF2. The calibration target is reached when the DC fraction of the differential signals PCHx versus NCHx is zero.

OR1	Addr 0x49, bit 0; Addr 0x48, bit 7
OR2	Addr 0x4A, bit 5:4
Code	Range
0x0	x1
0x1	x2
0x2	x6
0x3	x12

Table 29: Offset Range CH1, CH2

OF1	Addr 0x4A, bit 3:0; Addr 0x49, bit 7:1		
OF2	Addr 0x4C, bit 0; Addr 0x4B, bit 7:0; Addr 0x4A, bit 7:6		
Code	Factor	Code	Factor
0x000	0	0x400	0
0x001	+ 0.00098	0x401	- 0.00098
	+ Code / 1023		- (Code - 1024) / 1023
0x3FF	+1	0x7FF	- 1

Table 30: Offset Factors CH1, CH2

Phase Correction CH1 vs. CH2

The phase shift between CH1 and CH2 can be adjusted using parameter PH12. Following phase calibration other calibration parameters may have to be adjusted again (those as gain ratio, intermediate potentials and offset voltages).

PH12	Addr 0x4D, bit 2:0; Addr 0x4C, bit 7:1		
Code	Correction angle	Code	Correction angle
0x000	0 °	0x200	0 °
0x001	+ 0.0204 °	0x201	- 0.0204 °
	+ 10.42 ° · PH12/511		— 10.42 ° · (PH12 - 512)/511
0x1FF	+ 10.42 °	0x3FF	- 10.42 °

Table 31: Phase Correction CH1 vs. CH2

Rev B1, Page 25/32

SIGNAL CONDITIONING CH0

The voltage signals needed to calibrate channel 0 are available in *Calibration Mode 1*.

Gain Settings CH0

The CH0 gain is set in the following stages:

- 1. Adjust CH1 and CH2.
- 2. Set gain range GR0 to the same value as GR12.

3. GC0 then permits fine gain ratio adjustment relative to CH1.

GR0	Addr 0x51, bit 2:0	
Code	AGC on (AGCOFF = 0)	AGC off (AGCOFF = 1)
0x0	0.20 2.77	0.75
0x1	0.34 4.69	1.27
0x2	0.51 7.03	1.89
0x3	0.71 9.82	2.65
0x4	1.01 13.8	3.73
0x5	1.28 17.7	4.77
0x6	1.68 23.2	6.24
0x7	2.11 29.1	7.83

Table 32: Gain Range CH0 with voltage divider inputs (RIN0=0x9)

GR0	Addr 0x51, bit 2:0	
Code	AGC on (AGCOFF = 0)	AGC off (AGCOFF = 1)
0x0	0.80 11.1	2.98
0x1	1.36 18.8	5.06
0x2	2.04 28.1	7.58
0x3	2.85 39.3	10.6
0x4	4.02 55.4	14.9
0x5	5.14 70.8	19.1
0x6	6.73 92.6	25.0
0x7	8.44 116	31.3

Table 33: Gain Range CH0 (RIN0≠0x9)

GC0	Addr 0x50, bit 7:0
Code	Ratio
0x00	0.8292
0x01	$\begin{array}{c} 0.8304 \\ 20 \frac{GCO-128}{2047} \end{array}$
0x80 	$1.00 \\ 20 \frac{GC0 - 128}{2047}$
0xFE	1.2025
0xFF	1.2043

Table 34: Gain Correction Ratio CH0/CH1

Offset Calibration CH0

To calibrate the offset the source of supply must first be selected using VOS0 (see Offset Calibration CH1 and CH2 for further information).

VOS0	Addr 0x53, bit 5:4
Code	Source
0x0	0.05 · V(VDDS)
0x1	0.5 V
0x2	0.25 V
0x3	not permitted

Table 35: Offset Reference Source CH0

OR0	Addr 0x52, bit 1:0
Code	Range
0x0	x1
0x1	x2
0x2	x6
0x3	x12

Table 36: Offset Range CH0

OF0	Addr 0x52, bit 7:2		
Code	Factor	Code	Factor
0x00	0	0x20	0
0x01	+0.0322	0x21	- 0.0322
	+ OF0/31		- (OF0 - 32)/31
0x1F	+ 1	0x3F	- 1

Table 37: Offset Factor CH0

AUTOMATIC GAIN CONTROL and SIGNAL MONITORING

Via its automatic gain control iC-MSA can keep the output signals for the ensuing sine-to-digital conversion constant regardless of changes in input signal level.

Both the controller operating range and input signal amplitude for the controller are monitored and can be enabled for error messaging.

Figure 8: Signal level monitoring with square control (example for AGCOFF = 0, ADJ = 0x32; see Elec. Char. Nos.604 and 605 regarding Vt()min resp. Vt()max).

AGCOFF	Addr 0x45, bit 7
Code	Function
0	Sine/cosine square control
1	AGC turned off

Table 38: Controller Operating Mode

ADJ	Addr 0x45, bit 5:0
Code	Square control AGCOFF = 0
0x00	Vpp() ca. 300 mV (60 %)
0x01	Vpp() ca. 305 mV (61 %)
	Vpp() $\approx 300 mV rac{77}{77 - (0.625 * Code)}$
0x32	Vpp() ca. 500 mV (101 %)
0x3F	Vpp() ca. 600 mV (120 %)

Table 39: Vpp Setpoint For Square Control

MONITORING AND ERROR OUTPUT

The following table gives the errors which can both be recognized by iC-MSA and enabled either for messaging, output shutdown or protocol in the EEPROM.

Mask EMASKA stipulates that errors should be signaled at pin ERR, mask EMASKO determines whether the line drivers are to be shutdown or not (with PDMODE defining reactivation) and mask EMASKE governs the storage of error events in the EEPROM.

EMASKA	Addr 0x54, bit 6:0
EMASKO	Addr 0x56, bit 6:0
EMASKE	Addr 0x58, bit 2:0; Addr 0x57, bit 7:4
Bit	Error Event
6*	Configuration error (SDA or SCL pin error, no Ack signal from EEPROM or invalid check sum); EMASKO(6) = 1 (ROM bit): The line drivers remain high impedance (tristate) when cycling power.
5	Excessive temperature warning
4	External system error
3	Control error 2: range at max. limit
2	Control error 1: range at min. limit
1	Signal error 2: clipping
0	Signal error 1: loss of signal (poor differential amplitude**, wrong s/c phase)
EMASKA	Error Mask Alarm Output ERR
1	Enable: event changes state of pin ERR (if EMASKO does not disable the output function).
0	Disable: event does not affect pin ERR.
EMASKO	Error Mask Driver Shutdown
1	Enable: event resets pin ACO to the 5 mA range, tristates the line driver outputs and pin ERR (i.e. low-active error messages can not be displayed)
0	Disable: output functions remain active
EMASKE	Error Mask EEPROM Savings
1	Enable: event will be latched
0	Disable: event will not be latched
Notes	 *) Pin ERR can not pull low on configuration error, use high-active error logic instead (EPH = 1); **) Also due to excessive input signals or internal signal clipping.

Table 40: Error Masking

Error Input/Output: pin ERR

Pin ERR is operated by a current-limited open-drain output driver and has an internal pull-up which can be disabled. The output logic (low or high active) is configured by EPH, and the minimum indication time by EMTD.

Pin ERR also acts as an input for error messages of the external system. This function requires EPH = 0 and an external error being low active. Pin ERR can

also switch iC-MSA to test mode, for which a voltage of larger than VTMon must be applied (see page 19).

EPH	Addr 0x55, bit 2		
Code	State with error	State w/o error	
0*	active low	high impedance (evaluation of low active external system error)	
1	high impedance (or optional pull-up)	active low	
Note		*) Pin ERR is disabled during driver shutdown and cannot indicate errors in this case.	

Table 41: I/O Logic, Alarm Output ERR

EMTD	Addr 0x55, bit 5:3		
Code	Indication Time	Code	Indication Time
0x0	0 ms	0x4	50 ms
0x1	12.5 ms	0x5	62.5 ms
0x2	25 ms	0x6	75 ms
0x3	37.5 ms	0x7	87.5 ms

Table 42: Min. Indication Time, Alarm Output ERR

EPU	Addr 0x57, bit 2
Code	Function
0	No internal pull-up
1	Internal 300 µA pull-up current source active

Table 43: Pull-Up Enable, Alarm Output ERR

Excessive Temperature Warning

Exceeding the temperature warning threshold T_w (corresponds to T_2 , refer to Tempeprature Sensor, page 17) can be signaled at pin ERR or used to shut down the line drivers (via mask EMASKO). The temperature warning is cleared when the temperature falls below T_w - T_{hvs} .

Note: If the temperature shutdown threshold $T_{off} = T_w + \Delta T$ is exceeded, the line drivers are shut down independently of EMASKO. For ΔT refer to Elec. Char. E06.

Analog Output Drivers Shutdown

PDMODE	Addr 0x58, bit 6
Code	Function
0	Line driver active when no error persists
1	Line driver active after power-on

Table 44: Driver Activation

Rev B1, Page 28/32

Error Protocol

Out of the errors pinpointed by EMASKE both the first (under ERR1) and last error (under ERR2) which occur after the iC-MSA is turned on are stored in the EEP-ROM.

The EEPROM also has a memory area in which all occurring errors can be stored (ERR3). Only the fact that an error has occurred can be recorded, with no information as to the time and frequency of that error given. The EEPROM memory can be used to statistically evaluate the causes of system failure, for example.

ERR1	Addr 0x60, bit 6:0
ERR2	Addr 0x62, bit 0; Addr 0x61, bit 7:2
ERR3	Addr 0x63, bit 2:0; Addr 0x62, bit 7:4
Bit	Error Event
6:0	Assignation according to EMASKE
Code	Function
0	No event
1	Registered error event

Table 45: Error Protocol

ANALOG OUTPUT DRIVERS

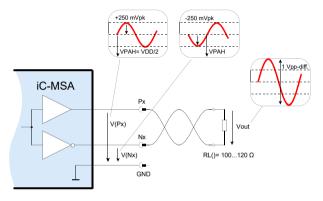


Figure 9: Output amplitude and offset according to Elec. Char. 502 and 503.

iC-MSA outputs differential 1 Vpp signals with approx. 2.5 V in offset onto the transmission cable, which is terminated with 100Ω or 120Ω at the receiver end (PLC).

The output drivers are shut down (tristated) in case of excessive temperature (see page 27), or when reverse polarity is detected (see section Reverse Polarity Protection, page 28).

Using EMASKO for error masking, further events can be selected to shut down the output drivers (see Table 40). Using PDMODE, the duration of a shutdown can be prolonged until power was cycled (see Table 44).

If there is no EEPROM or no valid configuration provided on power up, the output drivers will not be enabled.

REVERSE POLARITY PROTECTION

The analog output drivers of iC-MSA are protected against reverse polarity and short-circuiting. A defective or wrongly connected device cable causes no damage, neither to iC-MSA nor to the components protected against reverse polarity by VDDS and GNDS.

The following pins feature reverse polarity protection: PC, NC, PS, NS, PZ, NZ, ERR, VDD, GND and ACO (as long as GNDS is only loaded relative to VDDS). The maximum voltage difference between these pins should not exceed 6 V (8 V for pin ERR).

Reverse polarity is permanently monitored and detected if the voltage at a protected pin undershoots the ground potential at GND.

If the state of reverse polarity is resolved, iC-MSA reboots from the EEPROM and enables the output drivers.

Note: When iC-MSA is linked to a PLC and does not enable its output drivers on power up, a negative line potential could be the root cause. Refer to Application Hints, page 29, for details and recommended countermeasures.

APPLICATION HINTS

Connecting MR sensor bridges for safety-related applications

For safety-related applications iC-MSA requires an external overvoltage protection of supply VDD (Zener diode with fuse, for instance) and external pull-down resistors at the inputs X3 to X6 towards GNDS (of up to $100 \text{ k}\Omega$).

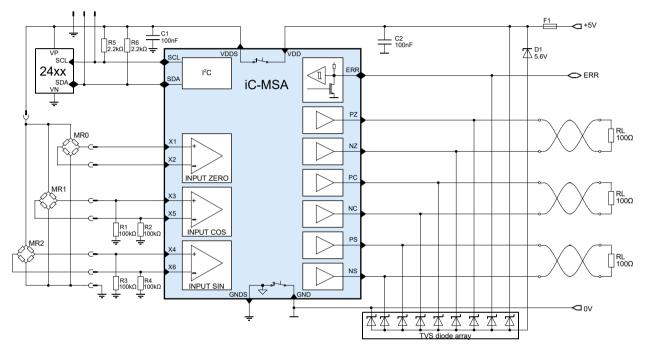


Figure 10: Example circuit for safety-related applications with iC-MSA.

PLC Operation

There are PLCs with a remote sense supply which require longer for the voltage regulation to settle. At the same time the PLC inputs can have high-impedance resistances versus an internal, negative supply voltage which define the input potential for open inputs.

In this instance iC-MSA's reverse polarity protection feature can be activated as the outputs are tristate during the start phase and the resistances in the PLC determine the pin potential. During the start phase neither the supply VDD nor the output pins, which are also monitored, must fall to below ground potential (pin GND); otherwise the device is not configured and the outputs remain permanently set to tristate.

Note: In order to ensure that iC-MSA starts with the PLCs mentioned above pull-up resistors can be used in the encoder. Values of $100 \text{ k}\Omega$ are usually sufficient; it is, however, recommended that PLC specifications be specifically referred to here.

Motor feedback encoder with shared EEPROM

In this application iC-MSB or iC-MSC is fed with typically 2048 CPR sine and cosine signals, and an index signal. A constant signal level is achieved by controlling the sensor's LED current.

iC-MSA is utilized to provide C/D commutation signals, typically with 1 CPR, at a constant amplitude. At higher rotation speed the sine/cosine amplifier cutoff frequency is exceeded and iC-MSB or iC-MSC increases the LED

current. In order to keep the low frequency signals of C/D at constant amplitudes, iC-MSA automatically reduces the gain.

iC-MSA and iC-MSB/iC-MSC are multi-master I²C capable and feature non-overlapping configuration register addresses. Thus, both devices can share a single EEPROM providing individual configuration data.

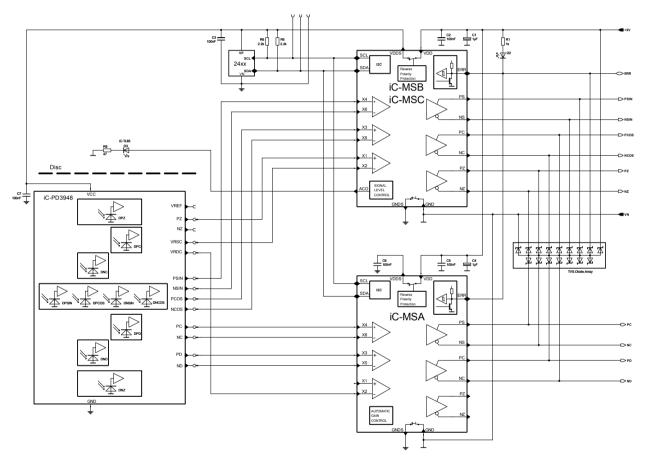


Figure 11: Example circuit with iC-MSA, iC-MSB or iC-MSC, and single EEPROM.

Rev B1, Page 31/32

REVISION HISTORY

Rel.	Rel. Date [*]	Chapter	Modification	Page
A1	2013-09-17		Initial release	all

Rel.	Rel. Date [*]	Chapter	Modification	Page
A2	2019-01-30	PACKAGING INFORMATION	Figure pin configuration and footnote updated, TSSOP20-TP dimension drawing added	4ff
		OVERVIEW	Note added on DEVID	13
		ERROR MONITORING AND ALARM OUTPUT	Alarm output: description improved, Table 41: description updated	27
		ORDERING INFORMATION	Section updated, evaluation board added	32

Rel.	Rel. Date*	Chapter	Modification	Page
A3	2020-08-20	BLOCK DIAGRAM	Update of block diagram, adaption of section titles	1ff
		DESCRIPTION	Note box added	2
		ELECTRICAL CHARACTERISTICS	Item 001: condition completed Items 503, D13 added Item D06: limit adaption	7ff
		SERIAL I ² C INTERFACE	Update of description, Figure 1 added, Table 2: note updated, Table 4 added, note and attention boxes added; Section EEPROM Device Selection: Table 5 added, update of description, note boxes added;	14ff
		BIAS SOURCE AND TEMP. SENSOR CALIBRATION	Table 12: formula corrected	17
		AUTOMATIC GAIN CONTROL and SIGNAL MONITORING	Table 39: 0x32 is 101 %	26
		ANALOG OUTPUT DRIVERS	Section added	28
		REVERSE POLARITY PROTECTION	Description updated	28
		APPLICATION HINTS	Text and Figures 10 and 11 updated for iC-MSC	29, 30
		ORDERING INFORMATION	Listing updated	32

Rel.	Rel. Date *	Chapter	Modification	Page
B1	2022-04-26		Item 120: typical cutoff-frequency added Item 502: correction of condition	8
		SERIAL I ² C INTERFACE	Table 4: byte read/write access removed	14
		APPLICATION HINTS	Figure 10 updated	29

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus. iC-Haus assumes no liability for any patent and/or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade

IC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. IC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev B1, Page 32/32

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-MSA	20-pin TSSOP with Thermal Pad RoHS compliant	Temperature range -40 °C to +115 °C	IC-MSA TSSOP20-TP
Evaluation Board			iC-MSA EVAL MSA1D

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 -92 92 -0 Fax: +49 (0) 61 35 -92 92 -192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners