













HD3SS3202

SLASEO1A - MAY 2018 - REVISED SEPTEMBER 2018

# HD3SS3202 Two-Channel Differential 2:1/1:2 USB3.1 Mux/Demux

#### **Features**

- Provides MUX/DEMUX Solution for USB Type-C™ Ecosystem for USB 3.1 Gen 1 and Gen 2 Data Rates
- Compatible With MIPI DSI/CSI-2 DPHY, LVDS, PCIE Gen III, SATA Express, SATA
- Operates up to 10 Gbps
- Wide -3-dB Differential BW of over 8 GHz
- Excellent Dynamic Characteristics (at 5 GHz)
  - Crosstalk = -41 dB
  - Off Isolation = -20 dB
  - Insertion Loss = -2.4 dB
  - Return Loss = -8 dB
- Bidirectional "Mux/De-Mux" Differential Switch
- Supports Common Mode Voltage 0 to 2 V
- Single Supply Voltage V<sub>CC</sub> of 3.3 V ±10%
- Commercial Temperature Range of 0°C to 70°C (HD3SS3202)
- Industrial Temperature Range of -40°C to 85°C (HD3SS3202I)

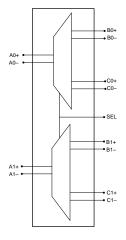
# 2 Applications

- USB Type-C™ Ecosystem
- Desktop and Notebook PCs
- Shared I/O Ports
- **Docking Stations**
- Monitors, TVs
- Set Top Box
- **Network Security Cameras**

### 3 Description

The HD3SS3202 is a high-speed bidirectional passive switch in mux or demux configurations suited for USB Type-C™ applications that support USB 3.1 Gen 1 and Gen 2 data rates. Based on control pin SEL, the device supplies switching on differential channels between Port B or Port C to Port A.

The HD3SS3202 is a generic analog differential passive switch. It works with any high-speed interface application that requires a common mode voltage range of 0 to 2 V, and requires a differential signaling with differential amplitude at a maximum of 1800 mVpp. The device has adaptive tracking that makes sure the channel stays unchanged for the full common mode voltage range.


The device allows high-speed switching with minimum attenuation to the signal eye diagram with little added jitter. It uses < 1.65 mW (typical) of power when in operation. It has a shutdown mode that is used by the OEn pin resulting < .02 µW (typical).

#### Device Information<sup>(1)</sup>

| PART NUMBER             | PACKAGE   | BODY SIZE (NOM)   |
|-------------------------|-----------|-------------------|
| HD3SS3202<br>HD3SS3202I | UQFN (16) | 2.60 mm x 1.80 mm |

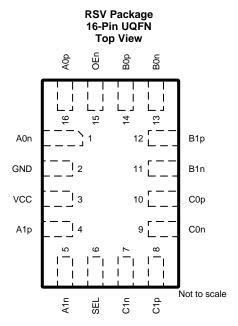
(1) For all available packages, see the orderable addendum at the end of the data sheet.

#### Simplified Schematic





# **Table of Contents**


| 1 | Features 1                              |    | 8.3 Feature Description                              | 9    |
|---|-----------------------------------------|----|------------------------------------------------------|------|
| 2 | Applications 1                          |    | 8.4 Device Functional Modes                          | . 10 |
| 3 | Description 1                           | 9  | Application and Implementation                       | . 11 |
| 4 | Revision History2                       |    | 9.1 Application Information                          |      |
| 5 | Pin Configuration and Functions 3       |    | 9.2 Typical Applications                             |      |
| 6 | Specifications4                         |    | 9.3 Systems Examples                                 | . 15 |
| • | 6.1 Absolute Maximum Ratings 4          | 10 | Power Supply Recommendations                         | . 18 |
|   | 6.2 ESD Ratings                         | 11 | Layout                                               | . 18 |
|   | 6.3 Recommended Operating Conditions 4  |    | 11.1 Layout Guidelines                               | . 18 |
|   | 6.4 Thermal Information                 |    | 11.2 Layout Example                                  | . 18 |
|   | 6.5 Electrical Characteristics5         | 12 | Device and Documentation Support                     | . 19 |
|   | 6.6 High-Speed Performance Parameters 5 |    | 12.1 Receiving Notification of Documentation Updates | s 19 |
|   | 6.7 Switching Characteristics 6         |    | 12.2 Community Resources                             | . 19 |
|   | 6.8 Typical Characteristics6            |    | 12.3 Trademarks                                      | . 19 |
| 7 | Parameter Measurement Information 7     |    | 12.4 Electrostatic Discharge Caution                 | . 19 |
| 8 | Detailed Description9                   |    | 12.5 Glossary                                        | . 19 |
|   | 8.1 Overview                            | 13 | Mechanical, Packaging, and Orderable                 |      |
|   | 8.2 Functional Block Diagram9           |    | Information                                          | . 19 |
|   | =                                       |    |                                                      |      |

**4 Revision History**NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Cł | hanges from Original (May 2018) to Revision A   | Page | 3 |
|----|-------------------------------------------------|------|---|
| •  | Changed I <sub>CC</sub> max from 0.6mA to 0.8mA |      |   |



# 5 Pin Configuration and Functions



### **Pin Functions**

|                 | PIN | 1/0 | DESCRIPTION                                                                                                                                |
|-----------------|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| NAME            | NO. | 1/0 | DESCRIPTION                                                                                                                                |
| A0n             | 1   | I/O | Port A, channel 0, high-speed negative signal                                                                                              |
| GND             | 2   | G   | Ground                                                                                                                                     |
| V <sub>CC</sub> | 3   | Р   | 3.3-V power                                                                                                                                |
| A1p             | 4   | I/O | Port A, channel 1, high-speed positive signal                                                                                              |
| A1n             | 5   | I/O | Port A, channel 1, high-speed negative signal                                                                                              |
| SEL             | 6   | I   | Port select pin. To help with noise immunity, a 0.01 µF capacitor to GND on this pin is suggested. L: Port A to Port B H: Port A to Port C |
| C1n             | 7   | I/O | Port C, channel 1, high-speed negative signal (connector side)                                                                             |
| C1p             | 8   | I/O | Port C, channel 1, high-speed positive signal (connector side)                                                                             |
| C0n             | 9   | I/O | Port C, channel 0, high-speed negative signal (connector side)                                                                             |
| С0р             | 10  | I/O | Port C, channel 0, high-speed positive signal (connector side)                                                                             |
| B1n             | 11  | I/O | Port B, channel 1, high-speed negative signal (connector side)                                                                             |
| В1р             | 12  | I/O | Port B, channel 1, high-speed positive signal (connector side)                                                                             |
| B0n             | 13  | I/O | Port B, channel 0, high-speed negative signal (connector side)                                                                             |
| В0р             | 14  | I/O | Port B, channel 0, high-speed positive signal (connector side)                                                                             |
| OEn             | 15  | I   | Active-low chip enable. To help with noise immunity, a 0.01 µF capacitor to GND on this pin is suggested. L: Normal operation H: Shutdown  |
| A0p             | 16  | I/O | Port A, channel 0, high-speed positive signal                                                                                              |

Copyright © 2018, Texas Instruments Incorporated



### 6 Specifications

### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

|                  |                                |                  | MIN  | MAX                   | UNIT |
|------------------|--------------------------------|------------------|------|-----------------------|------|
| $V_{CC}$         | / <sub>CC</sub> Supply voltage |                  | -0.5 | 4                     | V    |
|                  | Voltage                        | Differential I/O | -0.5 | 2.5                   | V    |
|                  | Voltage                        | Control pins     | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| T <sub>stg</sub> | Storage temperature            |                  | -65  | 150                   | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.

### 6.2 ESD Ratings

|                    |           |                                                                     | VALUE | UNIT |
|--------------------|-----------|---------------------------------------------------------------------|-------|------|
| , Electrostatic    |           | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>   | ±2000 | \/   |
| V <sub>(ESD)</sub> | discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±500  | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.

### 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|                 |                                                    |               | MIN  | NOM | MAX      | UNIT     |
|-----------------|----------------------------------------------------|---------------|------|-----|----------|----------|
| $V_{CC}$        | V <sub>CC</sub> Supply voltage                     |               | 3    | 3.3 | 3.6      | V        |
| $V_{ih}$        | V <sub>ih</sub> Input high voltage (SEL, OEn pins) |               | 2    |     | $V_{CC}$ | V        |
| V <sub>il</sub> | Input low voltage (SEL, OEn pins)                  |               | -0.1 |     | 0.8      | V        |
| $V_{diff}$      | High-speed signal pins differential voltage        |               | 0    |     | 1.8      | $V_{pp}$ |
| V <sub>cm</sub> | High speed signal pins common mode voltage         |               | 0    |     | 2        | V        |
| _               | On senting for a sin/ambiguit to me and the        | HD3SS3202RSV  | 0    |     | 70       | °C       |
| $T_A$           | Operating free-air/ambient temperature             | HD3SS3202IRSV | -40  |     | 85       |          |

### 6.4 Thermal Information

|                      | THERMAL METRIC <sup>(1)</sup>                | RSV (VQFN) | UNIT |
|----------------------|----------------------------------------------|------------|------|
|                      |                                              | 16 PINS    |      |
| $R_{\theta JA}$      | Junction-to-ambient thermal resistance       | 117.3      | °C/W |
| $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance    | 52.1       | °C/W |
| $R_{\theta JB}$      | Junction-to-board thermal resistance         | 52.6       | °C/W |
| ΨЈТ                  | Junction-to-top characterization parameter   | 1.2        | °C/W |
| ΨЈВ                  | Junction-to-board characterization parameter | 51.1       | °C/W |
| $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | n/a        | °C/W |

 For more information about traditional and new thermalmetrics, see the Semiconductor and IC Package ThermalMetrics application report.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.



### 6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

|                      | PARAMETER                                                            | TEST CONDITIONS                                                                                       | MIN | TYP   | MAX | UNIT |
|----------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| I <sub>CC</sub>      | Device active current                                                | V <sub>CC</sub> = 3.3 V, OEn = 0                                                                      |     | 0.5   | 0.8 | mA   |
| I <sub>STDN</sub>    | Device shutdown current                                              | $V_{CC} = 3.3 \text{ V, OEn} = V_{CC}$                                                                |     | 0.005 | 1   | μΑ   |
| C <sub>ON</sub>      | Output ON capacitance to GND                                         |                                                                                                       |     | 0.6   |     | рF   |
| C <sub>OFF</sub>     | Output OFF capacitance to GND                                        |                                                                                                       |     | 0.8   |     | рF   |
| R <sub>ON</sub>      | Output ON resistance                                                 | $V_{CC} = 3.3 \text{ V}; V_{CM} = 0 \text{ to } 2 \text{ V};$<br>$I_{O} = -8 \text{ mA}$              |     | 5     | 8   | Ω    |
| ΔR <sub>ON</sub>     | On-resistance match between pairs of the same channel                | $V_{CC} = 3.3 \text{ V}; -0.35 \text{ V} \le V_{IN} \le 2.35 \text{ V};$<br>$I_{O} = -8 \text{ mA}$   |     |       | 0.7 | Ω    |
| R <sub>FLAT_ON</sub> | On-resistance flatness R <sub>ON</sub> (MAX) – R <sub>ON</sub> (MIN) | $V_{CC} = 3.3 \text{ V}; -0.35 \text{ V} \le V_{IN} \le 2.35 \text{ V}$                               |     |       | 1   | Ω    |
| I <sub>IH,CTRL</sub> | Input high current, control pins (SEL, OEn)                          |                                                                                                       |     |       | 1   | μΑ   |
| I <sub>IL,CTRL</sub> | Input low current, control pins (SEL, OEn)                           |                                                                                                       |     |       | 1   | μΑ   |
| I <sub>IH,HS</sub>   | Input high current, high-speed pins [Ax/Bx/Cx][p/n]                  | V <sub>IN</sub> = 2 V for selected port, A and B with SEL = 0, and A and C with SEL = V <sub>CC</sub> |     |       | 1   | μΑ   |
| I <sub>IH,HS</sub>   | Input high current, high-speed pins [Ax/Bx/Cx][p/n]                  | $V_{IN}$ = 2 V for non-selected port, C with SEL = 0, and B with SEL = $V_{CC}$ (1)                   |     | 100   | 140 | μA   |
| I <sub>IL,HS</sub>   | Input low current, high-speed pins [Ax/Bx/Cx][p/n]                   |                                                                                                       |     |       | 1   | μA   |

<sup>(1)</sup> There is a 20-k $\Omega$  pull-down in non-selected port.

# 6.6 High-Speed Performance Parameters

|                   | PARAMETER                   | TEST CONDITION  | MIN | TYP  | MAX | UNIT |
|-------------------|-----------------------------|-----------------|-----|------|-----|------|
|                   |                             | f = 0.3  MHz -0 |     | -0.4 |     |      |
|                   |                             | f = 0.625 MHz   |     | -0.4 |     |      |
| IL                | Differential insertion loss | f = 2.5 GHz     |     | -1.3 |     | dB   |
|                   |                             | f = 4  GHz      |     | -2.0 |     |      |
|                   |                             | f = 5 GHz       |     | -2.4 |     |      |
| BW                | -3-dB bandwidth             |                 |     | 8    |     | GHz  |
|                   |                             | f = 0.3 MHz     |     | -27  |     |      |
| В                 | Differential return loss    | f = 2.5 GHz     |     | -11  |     | ٩D   |
| $R_L$             |                             | f = 4  GHz      |     | -9   |     | dB   |
|                   |                             | f = 5 GHz       |     | -8   |     |      |
|                   |                             | f = 0.3 MHz     |     | -77  |     |      |
|                   | Differential OFF in eletion | f = 2.5 GHz     |     | -23  |     | ٩D   |
| O <sub>IRR</sub>  | Differential OFF isolation  | f = 4 GHz       |     | -21  |     | dB   |
|                   |                             | f = 5 GHz       |     | -20  |     |      |
|                   |                             | f = 0.3 MHz     |     | -82  |     |      |
| V                 | Differential executally     | f = 2.5 GHz     |     | -44  |     | ٩D   |
| X <sub>TALK</sub> | Differential crosstalk      | f = 4 GHz       |     | -41  |     | dB   |
|                   |                             | f = 5 GHz       |     | -41  |     |      |

Copyright © 2018, Texas Instruments Incorporated



# 6.7 Switching Characteristics

|                       | PARAMETER                                     |              | MIN | TYP | MAX | UNIT |
|-----------------------|-----------------------------------------------|--------------|-----|-----|-----|------|
| t <sub>PD</sub>       | Switch propagation delay (see Figure 4)       |              |     |     | 80  | ps   |
| t <sub>SW_ON</sub>    | Switching time SEL-to-Switch ON (see Figure 3 | )            |     |     | 0.5 | μs   |
| t <sub>SW_OFF</sub>   | Switching time SEL-to-Switch OFF (see Figure  | 3)           |     |     | 0.5 | μs   |
| t <sub>SK_INTRA</sub> | Intra-pair output skew (see Figure 4)         |              |     |     | 6   | ps   |
| t <sub>SK_INTER</sub> | Inter-pair output skew (see Figure 4)         |              |     |     | 20  | ps   |
|                       |                                               | f = 100 MHz  | 16  |     | 54  |      |
|                       |                                               | f = 200 MHz  | 33  |     | 63  |      |
|                       |                                               | f = 300 MHz  | 33  |     | 59  |      |
|                       |                                               | f = 400 MHz  | 33  |     | 57  |      |
|                       |                                               | f = 500 MHz  | 33  |     | 56  |      |
| $t_{PD}$              | Average propagation delay, see Figure 1       | f = 600 MHz  | 33  |     | 53  | ps   |
|                       |                                               | f = 700 MHz  | 33  |     | 50  |      |
|                       |                                               | f = 750 MHz  | 33  |     | 50  |      |
|                       |                                               | f = 800 MHz  | 33  |     | 50  |      |
|                       |                                               | f = 900 MHz  | 31  |     | 50  |      |
|                       |                                               | f = 1000 MHz | 30  |     | 50  |      |

# 6.8 Typical Characteristics

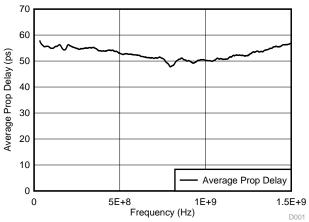



Figure 1. Average Propagation Delay vs Frequency

Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated



# 7 Parameter Measurement Information

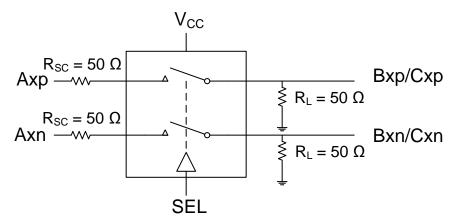



Figure 2. Test Setup

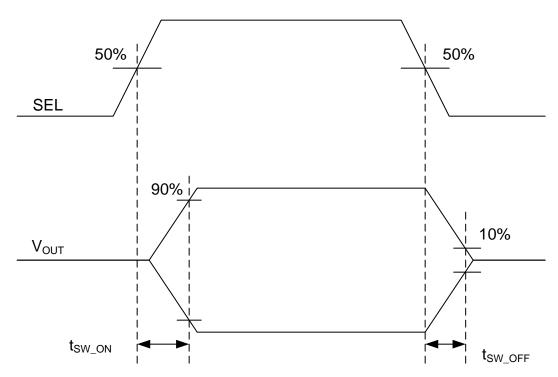



Figure 3. Switch On and Off Timing Diagram



# **Parameter Measurement Information (continued)**

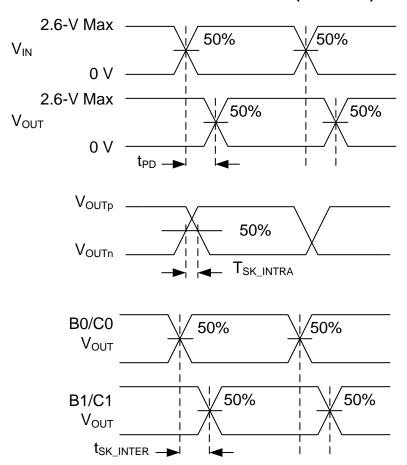
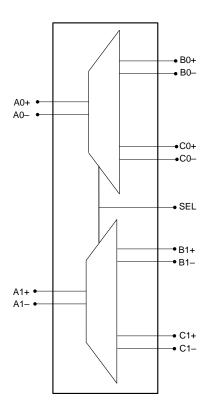



Figure 4. Timing Diagrams and Test Setup




### 8 Detailed Description

#### 8.1 Overview

The HD3SS3202 is a generic analog differential passive switch that can works for any high-speed interface applications requiring a common mode voltage range of 0 to 2 V and differential signaling with differential amplitude up to 1800 mVpp. It uses adaptive tracking to ensures the channel remain unchanged for the entire common mode voltage range.

Excellent dynamic characteristics of the device allow high-speed switching with minimum attenuation to the signal eye diagram with little added jitter. It consumes < 1.65 mW (typ) of power when operational and has a shutdown mode exercisable by OEn pin resulting < .02 µW (typical).

### 8.2 Functional Block Diagram



### 8.3 Feature Description

### 8.3.1 Output Enable and Power Savings

The HD3SS3202 has two power modes, active/normal operating mode and standby/shutdown mode. During standby mode, the device consumes little current to save the maximum power. To enter standby mode, the OEn control pin is pulled high through a resistor and must remain high. For active/normal operation, the OEn control pin should be pulled low to GND.

HD3SS3202 consumes < 1.65 mW (typ) of power when operational and has a shutdown mode exercisable by the OEn pin resulting  $< .02 \mu$ W (typ).

Copyright © 2018, Texas Instruments Incorporated



### 8.4 Device Functional Modes

Table 1. Port Select Control Logic<sup>(1)</sup>

| PORT A CHANNEL | PORT B OR PORT C CHANNEL CO | ONNECTED TO PORT A CHANNEL |
|----------------|-----------------------------|----------------------------|
| PORT A CHANNEL | SEL = L                     | SEL = H                    |
| A0p            | В0р                         | СОр                        |
| A0n            | B0n                         | C0n                        |
| A1p            | B1p                         | C1p                        |
| A1n            | B1n                         | C1n                        |

<sup>(1)</sup> The HD3SS3202 can tolerate polarity inversions for all differential signals on Ports A, B, and C. Take care to ensure the same polarity is maintained on Port A versus Ports B/C.



### 9 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### 9.1 Application Information

The HD3SS3202 is a generic 2-channel high-speed mux/demux type of switch that can be used for routing high-speed signals between two different locations on a circuit board. The HD3SS3202 supports several high-speed data protocols with a differential amplitude of <1800 mVpp and a common mode voltage of < 2 V, as with USB 3.1 and DisplayPort 1.2. The device has one select input (SEL) pin that can be controlled by an available GPIO pin within a system or from a microcontroller.

The HD3SS3202 with its adaptive common mode tracking technology can support applications where the common mode is different between the RX and TX pair. The two USB3.1 Type C connector applications show both a host and device side. The cable between the two connectors swivels the pairs to properly route the signals to the correct pin. The other applications are more generic because different connectors can be used.

Many interfaces require AC coupling between the transmitter and receiver. The 0201 capacitors are the preferred option to provide AC coupling; 0402 size capacitors also work. Avoid the capacitors greater than 0402 and C-packs. When placing AC coupling capacitors, symmetric placement is best. The designer should place them along the TX pairs on the system board, which are usually routed on the top layer of the board.

The AC coupling capacitors have several placement options. Because the HD3SS3202 requires a bias voltage, the designer must place the capacitors on one side of the switch. If they are placed on both sides of the switch, a biasing voltage should be provided. Figure 5 shows a few placement options. The coupling capacitors are placed between the HD3SS3202 and endpoint. In this situation, the HD3SS3202 is biased by the system/host controller.




Figure 5. AC Coupling Capacitors between HD3SS3202 TX and Endpoint TX



### **Application Information (continued)**

In Figure 6, the coupling capacitors are placed on the host transmit pair and endpoint transmit pair. In this situation, the switch on top is biased by the endpoint and the lower switch is biased by the host controller.

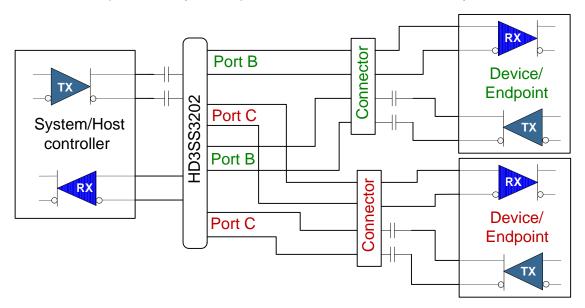
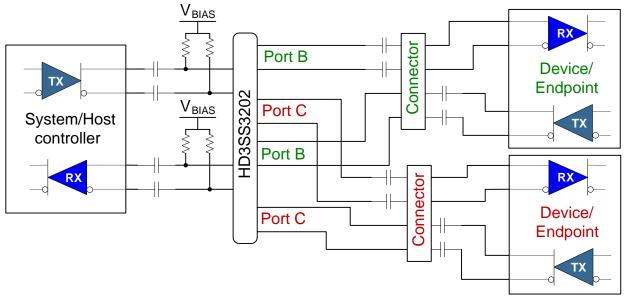




Figure 6. AC Coupling Capacitors on Host TX and Endpoint TX

If the common mode voltage in the system is higher than 2 V, the coupling capacitors are placed on both sides of the switch (shown in Figure 7). A biasing voltage of < 2 V is required in this case.



V<sub>BIAS</sub> can be GND

Capacitor and resistor values depend upon application.

Figure 7. AC Coupling Capacitors on Both Sides of Switch



### **Application Information (continued)**

The HD3SS3202 can be used with the USB Type C connector to support the connector's flip ability. Figure 8 provides the generic location for the AC coupling capacitors for this application.

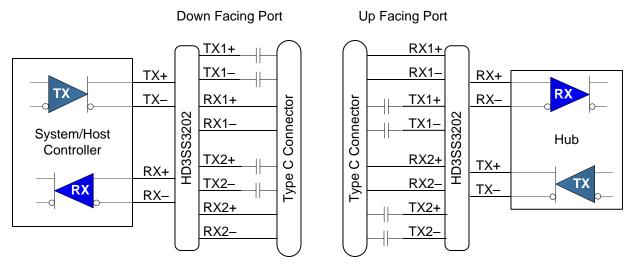



Figure 8. AC Coupling Capacitors for USB Type C

### 9.2 Typical Applications

### 9.2.1 Down Facing Port for USB3.1 Type C

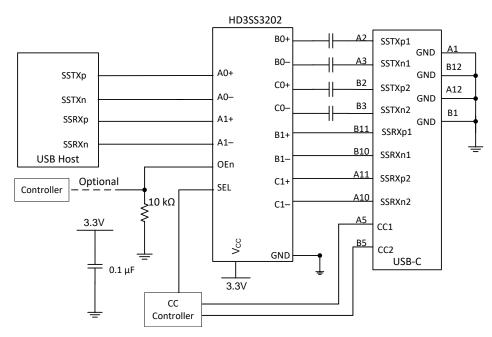



Figure 9. Down Facing Port for USB3.1 Type C Connector

#### 9.2.1.1 Design Requirements

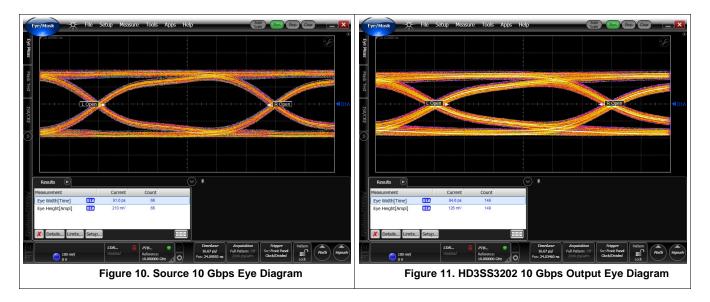
The HD3SS3202 can be designed into many different applications. All the applications have certain requirements for the system to work properly. The HD3SS3202 requires 3.3-V  $\pm 10\%$  V<sub>CC</sub> rail. The OEn pin must be low for device to work; otherwise, it disables the outputs. This pin can be driven by a processor. The expectation is that one side of the device has AC coupling capacitors. Table 2 provides information on expected values to perform properly.

| 3 2 2 2                                  |                  |  |  |  |  |  |  |  |
|------------------------------------------|------------------|--|--|--|--|--|--|--|
| DESIGN PARAMETER                         | VALUE            |  |  |  |  |  |  |  |
| V <sub>CC</sub>                          | 3.3 V            |  |  |  |  |  |  |  |
| AXp/n, BXp/n, CXp/n CM input voltage     | 0 to 2 V         |  |  |  |  |  |  |  |
| Control/OEn pin max voltage for low      | 0.8 V            |  |  |  |  |  |  |  |
| Control/OEn pin min voltage for high     | 2.0 V            |  |  |  |  |  |  |  |
| AC coupling capacitor                    | 75 nF to 265 nF. |  |  |  |  |  |  |  |
| R <sub>BIAS</sub> (Figure 9) when needed | 100 kΩ           |  |  |  |  |  |  |  |

**Table 2. Design Parameters** 

#### 9.2.1.2 Detailed Design Procedure

The HD3SS3202 is a high-speed passive switch device that can behave as a mux or demux. Because this is a passive switch, signal integrity is important because the device provides no signal conditioning capability. The device can support 1 to 2 inches of board trace and a connector on either end.


To design in the HD3SS3202, the designer needs to understand the following.

- Determine the loss profile between circuits that are to be muxed or demuxed.
- Provide clean impedance and electrical length matched board traces.
- Depending upon the application, determine the best place to put the 100-nF coupling capacitor.
- Provide a control signal for the SEL and OEn pins. It may be necessary to include a 0.01µF to GND on each
  of these pins to help with noise immunity.
- See the application schematics on recommended decouple capacitors from V<sub>CC</sub> pins to ground



### 9.2.1.3 Application Curves

Figure 10 shows the eye at the input of the HD3SS3202 and Figure 11 at the output of the HD3SS3202.



### 9.3 Systems Examples

### 9.3.1 Up Facing Port for USB3.1 Type C

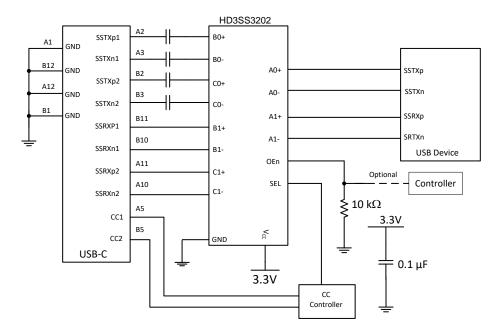



Figure 12. Up Facing Port for USB3.1 USB Type-C Connector



### **Systems Examples (continued)**

### 9.3.2 PCIE/USB

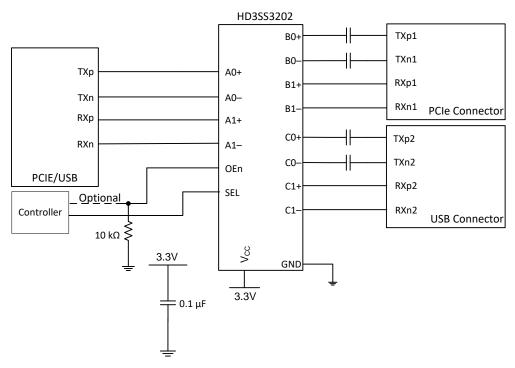



Figure 13. PCIE Motherboard

#### 9.3.3 PCIE/eSATA

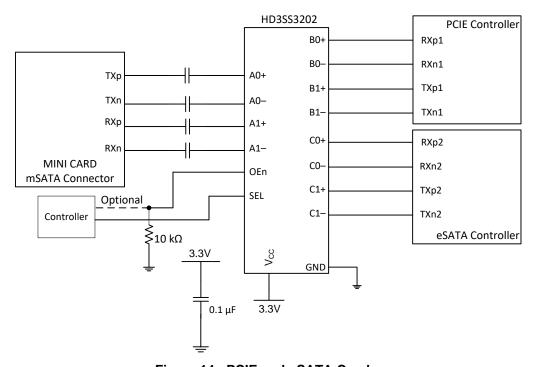



Figure 14. PCIE and eSATA Combo



### Systems Examples (continued)

### 9.3.4 USB/eSATA

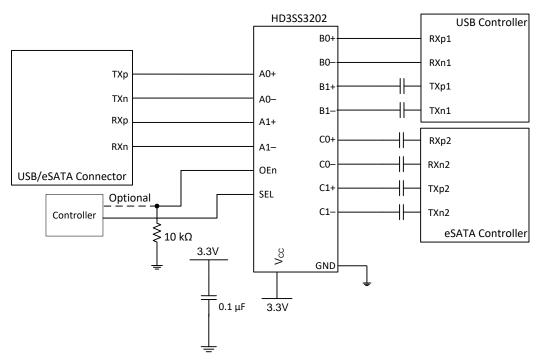



Figure 15. eSATA and USB 3.1 Combo Connector

### 9.3.5 MIPI Camera Serial Interface

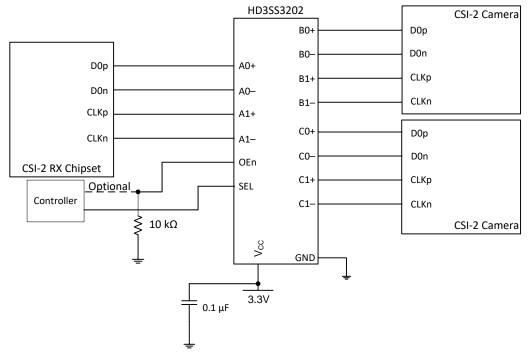



Figure 16. CSI Camera Array

Copyright © 2018, Texas Instruments Incorporated



## 10 Power Supply Recommendations

The HD3SS3202 does not require a power supply sequence. TI recommends placing a 100nF de-coupling capacitor at the device  $V_{CC}$  near the pin.

## 11 Layout

### 11.1 Layout Guidelines

## 11.2 Layout Example

### **Example 4 layer PCB Stackup**

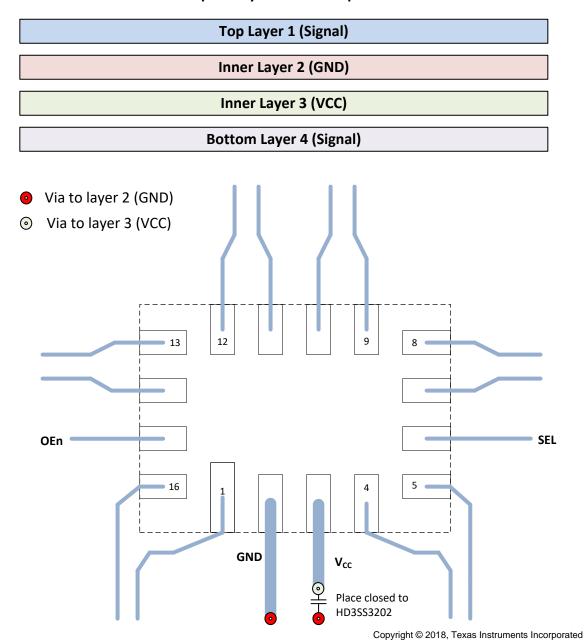



Figure 17. HD3SS3202 Basic Layout Example



### 12 Device and Documentation Support

### 12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 12.3 Trademarks

E2E is a trademark of Texas Instruments.

#### 12.4 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

### Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2018, Texas Instruments Incorporated



PACKAGE OPTION ADDENDUM



10-Dec-2020

#### PACKAGING INFORMATION

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------|
| HD3SS3202IRSVR   | ACTIVE     | UQFN         | RSV                | 16   | 3000           | RoHS & Green | NIPDAUAG                      | Level-1-260C-UNLIM | -40 to 85    | 3202                    | Samples |
| HD3SS3202IRSVT   | ACTIVE     | UQFN         | RSV                | 16   | 250            | RoHS & Green | NIPDAUAG                      | Level-1-260C-UNLIM | -40 to 85    | 3202                    | Samples |
| HD3SS3202RSVR    | ACTIVE     | UQFN         | RSV                | 16   | 3000           | RoHS & Green | NIPDAUAG                      | Level-1-260C-UNLIM | 0 to 70      | 3202                    | Samples |
| HD3SS3202RSVT    | ACTIVE     | UQFN         | RSV                | 16   | 250            | RoHS & Green | NIPDAUAG                      | Level-1-260C-UNLIM | 0 to 70      | 3202                    | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

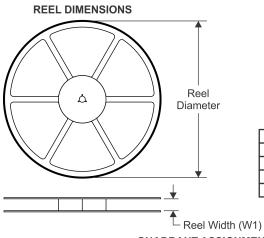
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

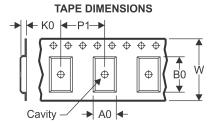
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and



## **PACKAGE OPTION ADDENDUM**

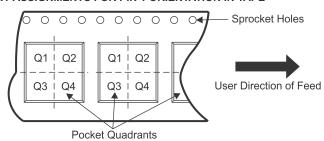
10-Dec-2020


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

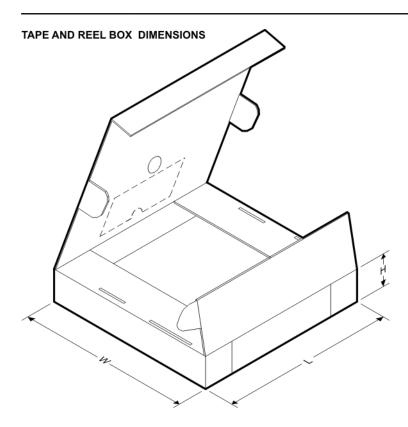
www.ti.com 13-Sep-2018


### TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

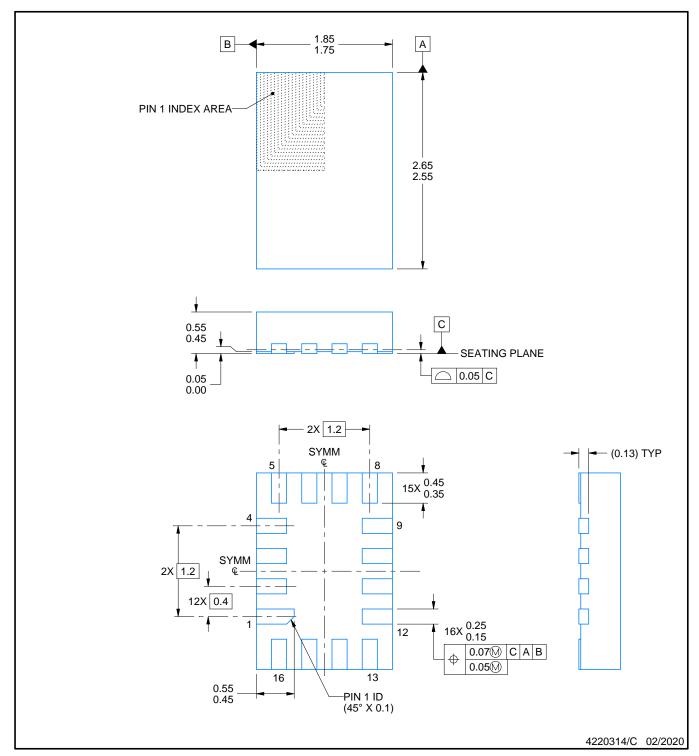

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

| All dimensions are nominal |      |                    |    |      |                          |                          |            |            |            |            |           |                  |
|----------------------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                     | _    | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| HD3SS3202IRSVR             | UQFN | RSV                | 16 | 3000 | 178.0                    | 13.5                     | 2.1        | 2.9        | 0.75       | 4.0        | 12.0      | Q1               |
| HD3SS3202IRSVT             | UQFN | RSV                | 16 | 250  | 178.0                    | 13.5                     | 2.1        | 2.9        | 0.75       | 4.0        | 12.0      | Q1               |
| HD3SS3202RSVR              | UQFN | RSV                | 16 | 3000 | 178.0                    | 13.5                     | 2.1        | 2.9        | 0.75       | 4.0        | 12.0      | Q1               |
| HD3SS3202RSVT              | UQFN | RSV                | 16 | 250  | 178.0                    | 13.5                     | 2.1        | 2.9        | 0.75       | 4.0        | 12.0      | Q1               |

www.ti.com 13-Sep-2018

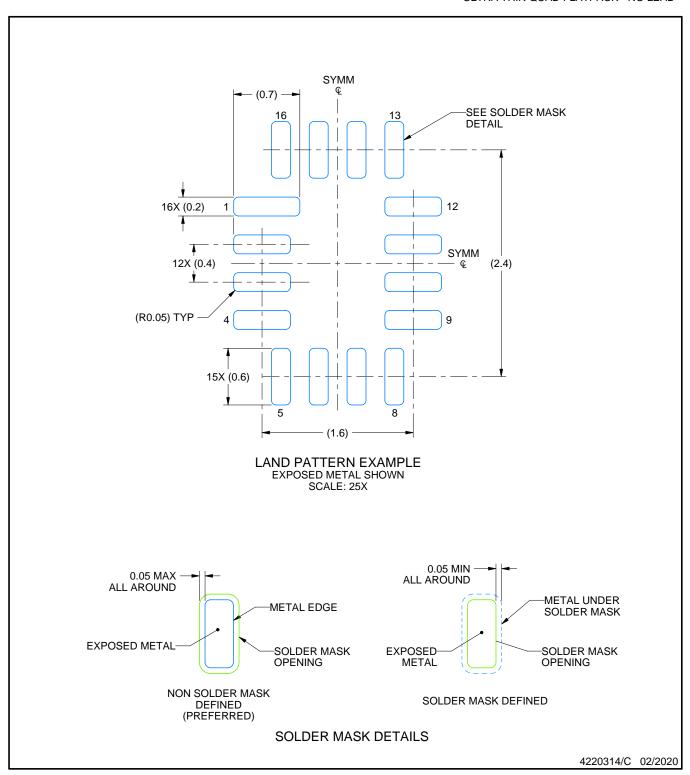



\*All dimensions are nominal

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| HD3SS3202IRSVR | UQFN         | RSV             | 16   | 3000 | 189.0       | 185.0      | 36.0        |
| HD3SS3202IRSVT | UQFN         | RSV             | 16   | 250  | 189.0       | 185.0      | 36.0        |
| HD3SS3202RSVR  | UQFN         | RSV             | 16   | 3000 | 189.0       | 185.0      | 36.0        |
| HD3SS3202RSVT  | UQFN         | RSV             | 16   | 250  | 189.0       | 185.0      | 36.0        |



ULTRA THIN QUAD FLATPACK - NO LEAD

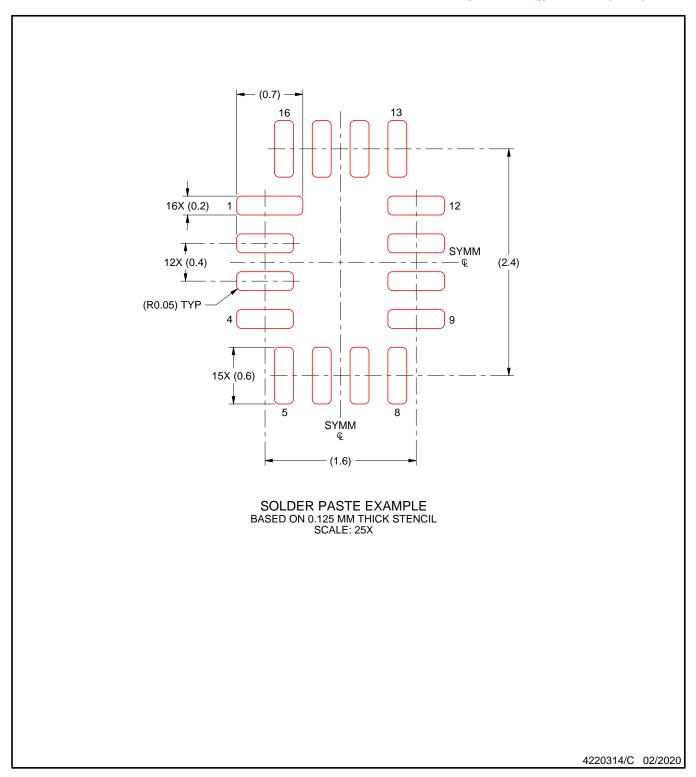



#### NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
   This drawing is subject to change without notice.



ULTRA THIN QUAD FLATPACK - NO LEAD




NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



ULTRA THIN QUAD FLATPACK - NO LEAD



NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (<a href="www.ti.com/legal/termsofsale.html">www.ti.com/legal/termsofsale.html</a>) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated