MITSUBISHI SEMICONDUCTORS <HVIC>

600V HIGH VOLTAGE HALF BRIDGE DRIVER

DESCRIPTION

M81721FP is high voltage Power MOSFET and IGBT gate driver for half bridge applications.

FEATURES

- Floating supply voltage up to 600V
- Low quiescent power supply current
- \bullet Separate sink and source current output up to $\pm 1A$ (typ)
- \bullet Active Miller effect clamp NMOS with sink current up to $-1A\,(typ)$
- Input noise filters
- Over-current detection and output shutdown
- High side under voltage lockout
- FO pin which can input and output Fault signals to communicate with controllers and synchronize the shut down with other phases
- 24-Lead SSOP PACKAGE

APPLICATIONS

Power MOSFET and IGBT gate driver for Medium and Micro inverter or general purpose.

600V HIGH VOLTAGE HALF BRIDGE DRIVER

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings indicate limitation beyond which destruction of device may occur. All voltage parameters are absolute voltage reference to GND unless otherwise specified.

Symbol	Parameter	Test conditions	Ratings	Unit
Vв	High side floating supply absolute voltage		-0.5 ~ 624	V
Vs	High side floating supply offset voltage		VB-24 ~ VB+0.5	V
VBS	High side floating supply voltage	VBS = VB-VS	-0.5 ~ 24	V
Vно	High side output voltage		Vs-0.5 ~ VB+0.5	V
Vcc	Low side fixed supply voltage		-0.5 ~ 24	V
VNO	Power ground		Vcc-24 ~ Vcc+0.5	V
Vlo	Low side output voltage		VNO-0.5 ~ VCC+0.5	V
VIN	Logic input voltage	HIN, LIN, FO_RST	-0.5 ~ Vcc+0.5	V
VFO	FO input/output voltage		-0.5 ~ Vcc+0.5	V
VCIN	CIN input voltage		-0.5 ~ Vcc+0.5	V
dVs/dt	Allowable offset voltage slew rate		±50	V/ns
Pd	Package power dissipation	Ta = 25°C, On PCB	~ 1.25	W
Kθ	Linear derating factor	Ta > 25°C, On PCB	~ 12.5	mW/°C
Rth(j-c)	Junction-case thermal resistance		~ 80	°C/W
Tj	Junction temperature		-40 ~ 125	°C
Topr	Operation temperature		-40 ~ 100	°C
Tstg	Storage temperature		-40 ~ 125	°C

RECOMMENDED OPERATING CONDITIONS

For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to GND unless otherwise specified.

Quarter	Demension	Testereditions		Link			
Symbol	Parameter	lest conditions	Min.	Тур.	Max.	Unit	
Vв	High side floating supply absolute voltage		Vs+13.5	Vs+15	Vs+20	V	
Vs	High side floating supply offset voltage	VBS > 13.5V	-5	_	500	V	
VBS	High side floating supply voltage	VBS = VB-VS	13.5	15	20	V	
Vно	High side output voltage		Vs	_	Vs+20	V	
Vcc	Low side fixed supply voltage		13.5	15	20	V	
VNO	Power ground		-0.5	—	5	V	
VLO	Low side output voltage		VNO	—	Vcc	V	
VIN	Logic input voltage	HIN, LIN, FO_RST	0	—	Vcc	V	
VFO	FO input/output voltage		0	—	Vcc	V	
VCIN	CIN input voltage		0	—	5	V	
Note: For proper	operation, the device should be used within the recommend	conditions.	•				

THERMAL DERATING FACTOR CHARACTERISTIC

Ambience Temperature (°C)

600V HIGH VOLTAGE HALF BRIDGE DRIVER

Note: If HVIC is working in high noise environment, it is recommended to connect a 1nF ceramic capacitor (CFO) to FO pin.

600V HIGH VOLTAGE HALF BRIDGE DRIVER

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=VBs (=VB-Vs)=15V, unless otherwise specified)

SymbolParameterTest conditionsMin.Typ.Max.IFsHigh side leakage currentVB = Vs = 600V1.0IBsVBs quiescent supply currentHIN = LIN = 0V0.150.5IccVcc quiescent supply currentHIN = LIN = 0V0.71.5VOHHigh level output voltageIo = -20mA, HPOUT, LPOUT14.515VoLLow level output voltageIo = 20mA, HNOUT1, LNOUT100.5	μA mA mA V V V V V MA mA
IFSHigh side leakage current $VB = VS = 600V$ 1.0IBSVBS quiescent supply currentHIN = LIN = 0V0.150.5ICCVCc quiescent supply currentHIN = LIN = 0V0.71.5VOHHigh level output voltageIo = -20mA, HPOUT, LPOUT14.515VoLLow level output voltageIo = 20mA, HNOUT1, LNOUT100.5	μΑ mA V V V V V mA mA
IBS VBS quiescent supply current HIN = LIN = 0V 0.15 0.5 Icc Vcc quiescent supply current HIN = LIN = 0V 0.7 1.5 VoH High level output voltage Io = -20mA, HPOUT, LPOUT 14.5 15 VoL Low level output voltage Io = 20mA, HNOUT1, LNOUT1 0 0.5	mA MA V V V V MA
Icc Vcc quiescent supply current HIN = LIN = 0V — 0.7 1.5 VoH High level output voltage Io = -20mA, HPOUT, LPOUT 14.5 15 — VoL Low level output voltage Io = 20mA, HNOUT1, LNOUT1 — 0 0.5	mA V V V mA mA
VOH High level output voltage IO = -20mA, HPOUT, LPOUT 14.5 15 VoL Low level output voltage IO = 20mA, HNOUT1, LNOUT1 0 0.5	V V V mA mA
Vol Low level output voltage Io = 20mA, HNOUT1, LNOUT1 — 0 0.5	V V MA mA
	V V mA mA
VIH FIIGH IEVEI INPUT THRESHOLD VOITAGE HIIN, LIN, FO_KST 4.0	V mA mA
VIL Low level input threshold voltage HIN, LIN, FO_RST - 0.6	mA mA
IIH High level input bias current VIN = 5V 0.6 1 1.4	mA
IIL Low level input bias current VIN = 0V -0.01 0	
tFilter Input signals filter time HIN, LIN, FO_RST, FO 100 200 500	ns
High side active Miller clamp NMOS	V
input threshold voltage	v
Low side active Miller clamp NMOS VIN – 0V 55 76 85	V
input threshold voltage	
tVNO2 Active Miller clamp NMOS filter time VIN = 0V - 400 -	ns
VOLFO Low level FO output voltage IFO = 1mA — 0.95	V
VIHFO High level FO input threshold voltage 4.0 — —	V
VILFO Low level FO input threshold voltage - 0.6	V
VBsuvr VBs supply UV reset voltage 10.5 11.3 12.1	V
VBsuvt VBs supply UV trip voltage 10 10.8 11.6	V
VBSuvh VBS supply UV hysteresis voltage VBSuvh = VBSuvr–VBSuvt 0.2 0.5 0.8	V
tVBSuv VBS supply UV filter time 4 8 16	μs
VCIN CIN trip voltage 0.4 0.5 0.6	V
VPOR POR trip voltage 4.5 6.5 8.5	V
IOH Output high level short circuit pulsed current HPOUT(LPOUT) = 0V, HIN = 5V, PW < 5µs — 1 —	А
IOL1 Output low level short circuit pulsed current HNOUT1 (LNOUT1) = 15V, LIN = 5V, PW < 5µs1 -	А
Active Miller clamp NMOS output HNOUT2 (LNOUT2) = 15V, LIN = 5V,	A
low level short circuit pulsed current PW < 5μs	
ROH Output high level on resistance IO = -1A, ROH = (VOH-VO)/IO - 15 -	Ω
RoL1 Output low level on resistance IO = 1A, ROL1 = VO/IO — 15 —	Ω
Active Miller clamp NMOS output	Ω
low level on resistance	
tdLH(HO) High side turn-on propagation delay HPOUT short to HNOUT1 and HNOUT2, CL = 1nF 0.4 0.8 1.25	μs
tdHL(HO) High side turn-off propagation delay HPOUT short to HNOUT1 and HNOUT2, CL = 1nF 0.35 0.74 1.2	μs
tdLH(LO) Low side turn-on propagation delay LPOUT short to LNOUT1 and LNOUT2, CL = 1nF 0.4 0.8 1.25	μs
tdHL(LO) Low side turn-off propagation delay LPOUT short to LNOUT1 and LNOUT2, CL = 1nF 0.35 0.74 1.2	μs
tr Output turn-on rise time CL = 1nF — 40 —	ns
tf Output turn-off fall time CL = 1nF — 40 —	ns
AtdLH Delay matching, high side turn-on tdLH (HQ) tdHL (HQ)	ne
and low side turn-off	115
AtdHI Delay matching, high side turn-off tdl H (I O) tdHI (HO)	ne
and low side turn-on	115

Note: Typ is not specified.

600V HIGH VOLTAGE HALF BRIDGE DRIVER

HIN	LIN	FO_RST	CIN	FO (Input)	VBS/UV	Vcc/POR	HOUT	LOUT	FO (Output)	Behavioral status
H→L	L	L	L	-	н	н	L	L	н	
H→L	Н	L	L	-	Н	Н	L	Н	Н	
L→H	L	L	L	-	Н	Н	Н	L	Н	
L→H	Н	L	L	-	Н	Н	Q	Q	Н	Interlock active
Х	Н	X	Н	-	X	Н	L	L	L	CIN tripping when LIN = H
Х	L	X	Н	-	X	Н	Q	Q	Н	CIN not tripping when LIN = L
Х	Х	Х	Х	L	Х	Н	L	L	L	Output shuts down when FO = L
Х	Х	Х	Х	-	Х	L	L	L	Н	Vcc power reset
Х	L	L	L	-	L	Н	L	L	Н	VBS power reset
Х	Н	L	L	-	L	Н	L	Н	Н	VBS power reset is tripping when LIN = H

FUNCTION TABLE (Q: Keep previous status)

Note1 : "L" status of VBS/UV indicates a high side UV condition; "L" status of VCC/POR indicates a VCC power reset condition.

2 : In the case of both input signals (HIN and LIN) are "H", output signals (HOUT and LOUT) keep previous status.

 $3: X (HIN): L \rightarrow H \text{ or } H \rightarrow L. \text{ Other}: H \text{ or } L.$

4 : Output signal (HOUT) is triggered by the edge of input signal.

FUNCTIONAL DESCRIPTION

1. INPUT/OUTPUT TIMING DIAGRAM

600V HIGH VOLTAGE HALF BRIDGE DRIVER

2. INPUT INTERLOCK TIMING DIAGRAM

When the input signals (HIN/LIN) are high level at the same time, the outputs (HOUT/LOUT) keep their previous status. But if signals (HIN/LIN) are going to high level simultaneously, HIN signals will get active and cause HOUT to enter "H" status.

Note1 : The minimum input pulse width at HIN/LIN should be to more than 500ns (because of HIN/LIN input noise filter circuit).

Note2 : If a high-high status of input signals (HIN/LIN) is ended with only one input signal entering low level and another still being in high level, the output will enter high-low status after the delay match time (not shown in the figure above).

Note3 : Delay times between input and output signals are not shown in the figure above.

3. SHORT CIRCUIT PROTECTION TIMING DIAGRAM

When an over-current is detected by exceeding the threshold at the CIN and LIN is at high level at the same time, the short circuit protection will get active and shutdown the outputs while FO will issue a low level (indicating a fault signal). The fault output latch is reset by a high level signal at FO_RST pin and then FO will return to high level while the output of the driver will respond to the following active input signal.

Note1 : Delay times between input and output signals are not shown in the figure above.

Note2 : The minimum FO_RST pulse width should be more than 500ns (because of FO_RST input filter circuit).

600V HIGH VOLTAGE HALF BRIDGE DRIVER

4. FO INPUT TIMING DIAGRAM

When FO is pulled down to low level in case the FO of other phases becomes low level (fault happened) or the MCU/ DSP sets FO to low level, the outputs (HOUT, LOUT) of the driver will be shut down. As soon as FO goes high again, the output will respond to the following active input signal.

Note1 : Delay times between input and output signals are not shown in the figure above. Note2 : The minimum FO pulse width should be more than 500ns (because of FO input filter circuit).

5. LOW SIDE Vcc SUPPLY POWER RESET SEQUENCE

When the Vcc supply voltage is lower than power reset trip voltage, the power reset gets active and the outputs (HOUT/ LOUT) become "L". As soon as the Vcc supply voltage goes higher than the power reset trip voltage, the outputs will respond to the following active input signals.

Note1 : Delay times between input and output signals are not shown in the figure above.

600V HIGH VOLTAGE HALF BRIDGE DRIVER

6. HIGH SIDE VBS SUPPLY UNDER VOLTAGE LOCKOUT SEQUENCE

When VBs supply voltage drops below the VBs supply UV trip voltage and the duration in this status exceeds the VBs supply UV filter time, the output of the high side is locked. As soon as the VBs supply voltage rises above the VBs supply UV reset voltage, the output will respond to the following active HIN signal.

Note1 : Delay times between input and output signals are not shown in the figure above.

7. POWER START-UP SEQUENCE

At power supply start-up the following sequence is recommended when bootstrap supply topology is used.

- (1). Apply Vcc.
- (2). Make sure that FO is at high level.
- (3). Set LIN to high level and HIN to low level so that bootstrap capacitor could be charged.
- (4). Set LIN to low level.
- Note : If two power supply are used for supplying Vcc and VBs individually, it is recommended to set Vcc first and then set VBs.

600V HIGH VOLTAGE HALF BRIDGE DRIVER

8. ACTIVE MILLER EFFECT CLAMP NMOS OUTPUT TIMING DIAGRAM

The structure of the output driver stage is shown in following figure. This circuit structure employs a solution for the problem of the Miller current through Cres in IGBT switching applications. Instead of driving the IGBT gate to a negative voltage to increase the safety margin, this circuit structure uses a NMOS to establish a low impedance path to prevent the self-turn-on due to the parasitic Miller capacitor in power switches.

When HIN/LIN is at low level and the voltage of the VOUT (IGBT gate voltage) is below active Miller effect clamp NMOS input threshold voltage, the active Miller effect clamp NMOS is being turned on and opens a low resistive path for the Miller current through Cres.

Active Miller effect clamp NMOS keeps turn-on if Tw does not exceed active Miller clamp NMOS filter time

600V HIGH VOLTAGE HALF BRIDGE DRIVER

INTERNAL DIODE CLAMP CIRCUITS FOR INPUT AND OUTPUT PINS

PACKAGE OUTLINE

