

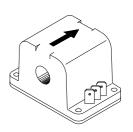
Current Transducer LT 100-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current Primary current, measuring range		100 0 ± 200		A A
$R_{\scriptscriptstyle M}$	Measuring resistance		$R_{_{Mmin}}$	$R_{\text{M max}}$	
	with ± 12 V	@ ± 100 A _{max}	0	75	Ω
		@ ± 200 A _{max}	0	25	Ω
	with ± 18 V	@ ± 100 A max	30	135	Ω
		@ ± 200 A _{max}	30	55	Ω
I _{SN}	Secondary nominal r.m.s.	current	100		mΑ
K _N	Conversion ratio		1:1000	0	
v _c	Supply voltage (± 5 %)		± 12	18	V
I _c	Current consumption		28 (@±	18V)+ I _s	mA
V _d	R.m.s. voltage for AC isola	ation test, 50 Hz, 1 mn	5	Ü	kV

Accuracy - Dynamic performance data


X _G & _L	Overall accuracy @ I _{PN} , T _A = 25°C Linearity		± 0.5 < 0.1		% %
I _o I _{ot}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	0°C + 70°C	Typ ± 0.3	Max ± 0.4 ± 0.6	mA mA
t _r di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

T_{A}	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	25	Ω
m	Mass	125	g
	Standards	EN 50178	

Note: 1) With a di/dt of 100 A/µs.

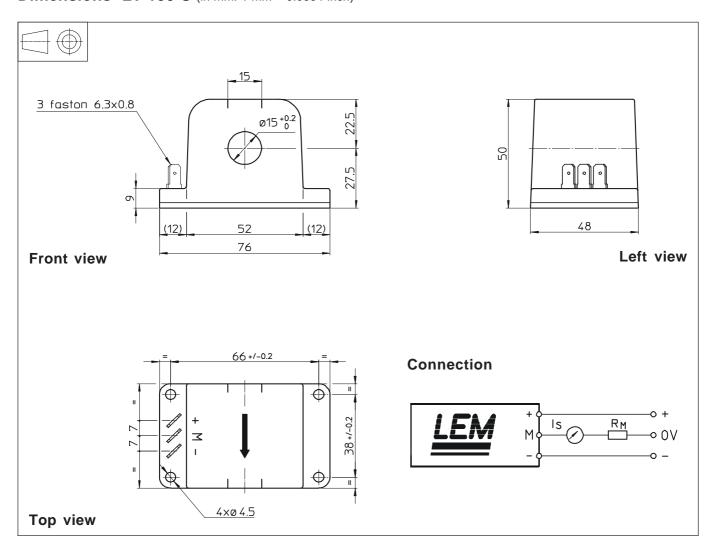
$I_{PN} = 100 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

061206/3

Dimensions LT 100-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque max

- Primary through-hole
- Connection of secondary
- ± 0.3 mm
- 4 holes \varnothing 4.5 mm M4 steel screws 3.2 Nm or 2.51 Lb-Ft. \varnothing 15 mm
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- To measure nominal currents of less than 100 A, the optimum accuracy is obtained by having several primary turns (nominal current x number of turns = 100 At).
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.