

NON-ISOLATED BUCK LED LIGHTING DRIVE IC WITH LOW POWER AND HIGH CONSTANT CURRENT ACCURACY

DESCRIPTION

SD670XD is designed for non-isolated LED driving with floating Buck structure, and high constant current accuracy and high linear/load regulation available with assistant of special sense technology.

SD670XD integrates various protections, such as output open/short circuit protection, cycle-by-cycle current limit protection and over temperature protection.

The start-up current and operating current are low and highlight LED can be driven with high efficiency in full range (85VAC~265VAC).

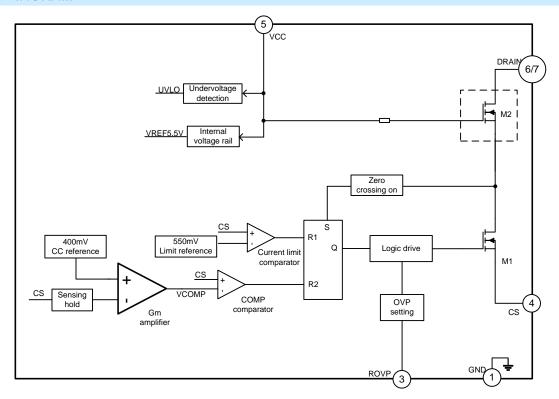
SD670XD integrates high voltage power MOSFET, reducing the system cost and the whole volume.

FEATURES

- Built-in 500V high voltage power MOSFET
- Constant current with high accuracy for LED (<±3%)
- Output open/short circuit protection
- CS open/short circuit protection
- VCC undervoltage protection
- Over temperature protection
- Cycle-by-cycle current protection
- No auxiliary winding

APPLICATION

- **Bulb Lamp**
- T5/T8 LED Lamp
- Various LED Lighting


ORDERING INFORMATION

Part No.	Package	Material	Packing
SD6701DTR	DIP-7-300-2.54	Halogen free	Tube
SD6702DTR	DIP-7-300-2.54	Halogen free	Tube
SD6703DTR	DIP-7-300-2.54	Halogen free	Tube
SD6704DTR	DIP-7-300-2.54	Halogen free	Tube

Rev.:1.1

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristics		Symbol	Rating	Unit
Drain-Gate voltage (R _{GS} =1MW)		V_{DGR}	500	٧
Gate-Source Volta	ige	V_{GS}	±30	٧
	SD6701D		4	
Drain current	SD6702D		8	
pulse	SD6703D	I _{DM}	10	Α
	SD6704D		12	
	SD6701D		1	
Drain continuous	SD6702D	_	2	
current	SD6703D	I _D	3	Α
(Tamb=25°C)	SD6704D		4	
Supply voltage		Vcc	-0.3~17	V
ROVP voltage		V _{ROVP}	-0.3~6.5	V
Sense voltage		Vcs	-0.3~6.5	V
DRAIN voltage		V_{DRAIN}	-0.3~500	V
Junction temperature Range		Tj	-40~150	°C
Storage temperature Range		Ts	-55~150	°C

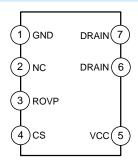
Rev.:1.1

http://www.silan.com.cn

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, V_{CC}=14V,T_{amb}=25°C)

Charact	eristics	Symbol	Test condition	Min.	Тур.	Max.	Unit
VCC clamp voltage		VCC _{CLAMP}	I _{VCC} =0.5mA	14	16	17	V
UVLO VH		UVLO _H		11.3	12.7	14.1	V
UVLO VL		UVLO _L		7	8	9	V
Start-up current		I _{START}	V _{CC} =10V	50	95	125	μΑ
Operating curre	nt	Ivcc	CS=1V	100	175	250	μA
Protection curre	nt	I _{PRO}	CS=5V	800	1200	2000	μΑ
Control loop pa	arameters						
CS reference vo	oltage ^{Note 1}	CS _{REF}		388	400	412	mV
CS peak protect	ion voltage	CS _{PEAK}		400	525	650	mV
Time paramete	ers			•			
Max. on time		T _{ON,MAX}		30	38	47	μs
LEB		T _{LEB}		0.45	0.6	0.75	μs
Max. off time		T _{OFF,MAX}		40	52	64	μs
Min. off time		T _{OFF,MIN}		2.5	3.5	4.5	μs
Min. period		T _{MIN}		3.7	5	6.3	μs
ROVP voltage		V _{ROVP}		2	2.4	2.8	V
Internal high ve	oltage MOSFET						
	SD6701D	-	V _{GS} =12V,I _D =0.1A		7.5	8.6	- Ω
0	SD6702D				5	5.7	
On resistance	SD6703D	R _{DSON}			2.8	3.3	
	SD6704D				1.9	2.5	
	SD6701D			500	550		
withstand	SD6702D	BV _{DSS}	V _{GS} =0V,I _D =50uA	500	550		- V
voltage at Drain	SD6703D			500	550		
Diaiii	SD6704D			500	550		
- ·	SD6701D					1.0	
Zero gate	SD6702D]	V _{DS} =500V, V _{GS} =0V			1.0	- μA
voltage drain	SD6703D	- I _{DSS}				1.0	
current	SD6704D					1.0	
Cata Carrer	SD6701D					±100	nA
Gate-Source Leakage	SD6702D] ,	V .20V V 0V			±100	
	SD6703D	- I _{GSS}	$V_{GS}=\pm30V$, $V_{DS}=0V$			±100	
Current	SD6704D	1				±100	
Temperature c	haracteristics			•			•
Regulatory temp	perature	T _{REG}		125	140	155	°C
Over temperature protection thresh		T _{SD}		135	150	165	°C

Rev.:1.1 http://www.silan.com.cn



SD670XD_Datasheet

Characteristics	Symbol	Test condition	Min.	Тур.	Max.	Unit
Over temperature	т		115	130	145	°C
protection release point	RECOVERY		115	130	145	C

Note 1: During test, the test results for CS reference voltage are theoretical values multiplied by 1.1, i.e., typical value 440mV, range 430mV~450mV.

PIN CONFIGURATIONS

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Description
1	GND	GND	GND
2	NC	/	No connection
3	ROVP	I/O	OVP pin, connected to GND through a resistor
4	cs	I	Sense current pin
5	VCC	POWER	Power supply
6, 7	DRAIN	0	Drain of internal high voltage MOSFET

FUNCTION DESCRIPTION

SD670XD is a non-isolated LED driver IC adopting BUCK structure with internal high voltage power MOSFET. The function is described below.

Start control

For SD670XD, no auxiliary winding is needed. The bus voltage charges capacitor of VCC through start resistor. The operating current should be as low as possible for high conversion efficiency. It features undervoltage protection at VCC and the on/off threshold values are 12.7V and 8V. The hysteresis characteristic guarantees that the IC can be powered by the capacitor during start.

Constant current accuracy control

IC senses the MOSFET current, which is input to Gm amplifier together with internal reference voltage for error amplification, to obtain high constant current accuracy and high linear/load regulation rate.

CS voltage and 400mV reference voltage are the inputs of Gm amplifier, and then the output is integrated through internal COMP capacitor.

 I_{OUT} =400mV/2* R_{CS} .

Boundary-conduction mode

SD670XD works in boundary-conduction mode with strong anti-interference and high conversion efficiency. Auxiliary

Rev.:1.1

winding is unnecessary to detect zero-crossing current and the peripheral circuit is simple.

Current detection and LEB

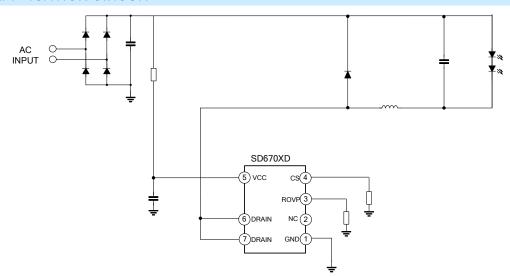
With the cycle-by-cycle current limit function, internal switch M1 will be turned off if CS voltage exceeds 525mV. System still works and internal switch M1is turned on in the next period. There is no LEB for current limit comparator. CS voltage and COMP voltage are compared by COMP comparator, if CS voltage is higher than COMP, internal switch M1 is off and system keeps work. During the instant of turning on internal switch M1, 0.6us LEB is used for avoiding the error operation on internal switch M1.

CS open/short circuit protection (also known as maximum output current limit)

If CS resistor is shorted, there is no limit for inductor current, voltage on pin CS is zero, and the short-circuit is judged by checking voltage during on of internal OUT signal. SD670XD series products all have OUT limit voltage setting, the larger the area of high-voltage MOSFET packaged, the higher the OUT limit voltage setting, therefore the higher the output current limit. Please refer to application note for maximum output current limit of each product.

Source driver

Source drive is adopted for this IC. Gate of M2 is connected to VCC through a resistor, Source is connected to Drain of internal switch M1. When Gate of internal switch M1 is driven by IC, the IC current can be reduced because of the low gate capacitance of M1, and hence no auxiliary winding is needed.

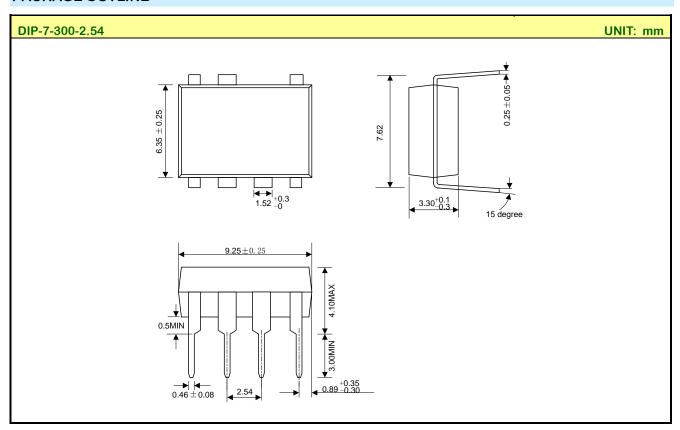

Output open circuit protection

There is no signal which reflects the output, the IC detects the discharge time for judging over voltage. The over voltage protection threshold value is set through pin ROVP. ROVP pin should be grounded via a pull-down resistor, floated is not allowed. Please refer to application note for resistance range and detailed operations.

Internal temperature regulatory

The output current will be reduced if the IC temperature exceeds the certain value.

TYPICAL APPLICATION CIRCUIT



HANGZHOU SILAN MICROELECTRONICS CO.,LTD

http://www.silan.com.cn

PACKAGE OUTLINE

MOS DEVICES OPERATE NOTES:

Electrostatic charges may exist in many things. Please take following preventive measures to prevent effectively the MOS electric circuit as a result of the damage which is caused by discharge:

- The operator must put on wrist strap which should be earthed to against electrostatic.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed in antistatic/conductive containers for transportation.

Disclaimer:

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products in
 system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards
 strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products could cause
 loss of body injury or damage to property.
- Silan will supply the best possible product for customers!

SD670XD_Datasheet

Part No.: SD670XD Copyright: HANGZHOU SIL			Document Type:	Datasheet http://www.silan.com.cn	
		U SILAN MICROELECTRONICS CO.,LTD	Website:		
Rev.:	1.1	Date:	Author:	Yao Feng	
Revision His	story:				
1. Mc	odify the function	on description			
Rev.:	1.0	Date:	Author:	Yao Feng	
Revision His	story:				
1. Fir	st release				

S CO.,LTD Rev.:1.1 Page 7 of 7