

# CH7317B SDVO<sup>⋄</sup> / RGB DAC

#### **Features**

- Supporting analog RGB outputs for a display monitor
- Supporting maximum pixel rate of 165MP/s or graphics resolutions up to 1920x1200\*
- High-speed SDVO<sup>◊</sup> (1G~2Gbps) AC-coupled serial differential RGB inputs
- Supporting monitor connection detection
- Programmable power management
- Fully programmable through serial port
- Configuration through Intel® SDVO Opcode <sup>◊</sup>
- Offered in 64-pin LQFP package and 64-pin QFN package

## **General Description**

The CH7317B is a Display Controller device interfaces seamlessly to HDTV or PC monitors that is equipped with a VGA RGB interface display connector. Its input port, complied with Intel SDVO Specification 1.2, can accept a digital graphics, high-speed, AC-coupled, serial-differential RGB input signal, and convert it to analog RGB signal for driving the display.

The CH7317B supports maximum pixel rate of 165MP/s and is capable of displaying up to 1920x1200 resolution with reduced blanking. The built-in serial port controller will allow the graphics chipset to obtain the monitor's EDID information or communicate with CH7317B internal registers through SDVO Opcodes. In addition, the transmitter is designed with a monitor connection detection algorithm that allows the graphics chipset to read back the connection status through CH7317B internal registers.

The CH7317B provides the Boundary-scan test to help system developers to check the interconnection between chip I/O and the printed circuit board for faults. When the device is powered down by the graphics chipset, its current consumption is less than 100uA. The CH7317B is available in 64-pin LQFP and 64-pin QFN packages.

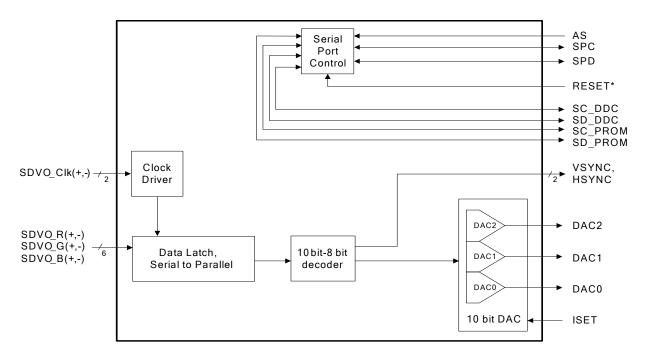



Figure 1: Functional Block Diagram

<sup>\*</sup> Reduced Blanking

<sup>&</sup>lt;sup>♦</sup> Intel<sup>®</sup> Proprietary.

CH7317B

# **Table of Contents**

| 1.0 | Pin-Out                          | 4  |
|-----|----------------------------------|----|
| 1.1 | Package Diagram                  |    |
| 1.2 | Pin Description                  | (  |
| 2.0 | Functional Description           | 8  |
| 2.1 | Input Interface                  | 8  |
| 2.2 | VGA Output Operation             | 8  |
| 2.3 | Command Interface                |    |
| 3.0 | Register Control                 | 12 |
| 4.0 | Electrical Specifications        | 13 |
| 4.1 | Absolute Maximum Ratings         | 13 |
| 4.2 | Recommended Operating Conditions | 13 |
| 4.3 | Electrical Characteristics       | 14 |
| 4.4 | DC Specifications                | 14 |
| 4.5 | AC Specifications                | 16 |
| 5.0 | Package Dimensions               | 18 |
| 6.0 | Revision History                 | 20 |

# **Figures and Tables**

# **List of Figures**

| Figure 1: Functional Block Diagram                                                         | 1  |
|--------------------------------------------------------------------------------------------|----|
| Figure 2: 64-Pin LQFP Package                                                              | 4  |
| Figure 3: 64-Pin QFN Package                                                               | 5  |
| Figure 4: Control Bus Switch                                                               | 10 |
| Figure 5: NAND Tree Connection                                                             | 10 |
| Figure 6: 64 Pin LQFP Package                                                              | 18 |
| Figure 7: 64 Pin QFN Package (8 X 8 mm)                                                    |    |
| List of Tables  Table 1: Pin Description                                                   | 6  |
| Table 2: CH7317B supported Pixel Rates, Clock Rates, Data Transfer Rates and Fill Patterns | 8  |
| Table 3: Various VGA resolutions.                                                          | 9  |
| Table 4: Video DAC Configurations for CH7317B                                              | 9  |
| Table 5: Signal Order in the NAND Tree Testing                                             | 11 |
| Table 6: Signals not Tested in NAND Test besides power pins                                | 11 |
| Table 7: Revisions                                                                         | 20 |

## 1.0 Pin-Out

## 1.1 Package Diagram

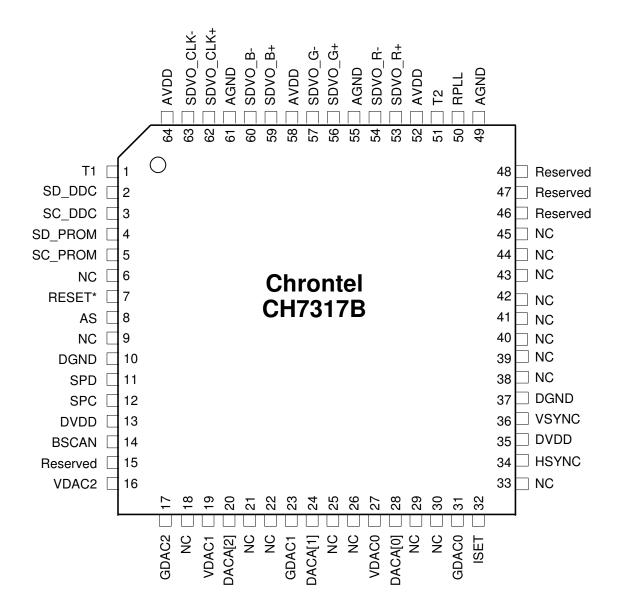



Figure 2: 64-Pin LQFP Package

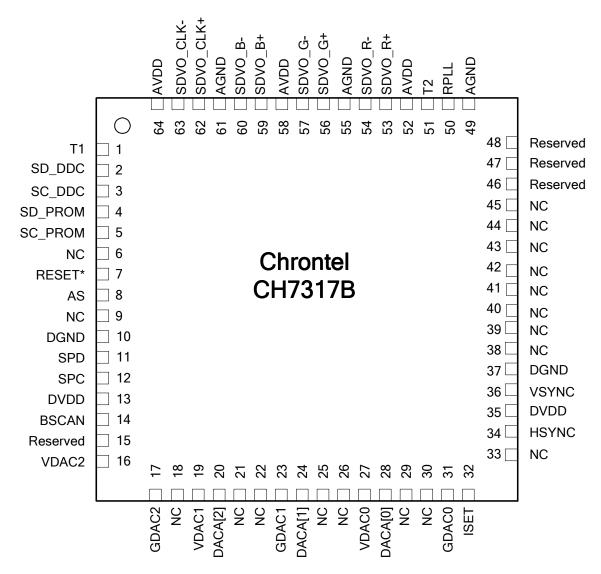



Figure 3: 64-Pin QFN Package

# 1.2 Pin Description

**Table 1: Pin Description** 

| Pin #    | Type    | Symbol    | Description                                                                                                |
|----------|---------|-----------|------------------------------------------------------------------------------------------------------------|
| 1,51     | Out     | T1, T2    | Test                                                                                                       |
|          |         |           | These pins are reserved for factory test and default to high impedance.                                    |
| 2        | In/Out  | SD_DDC    | Routed Serial Port Data Output to DDC                                                                      |
|          |         |           | This pin functions as the bi-directional data pin of the serial port to DDC receiver. This                 |
|          |         |           | pin will require a $10K\Omega$ pull-up resistor to the desired high state voltage. Leave open if           |
|          |         |           | unused.                                                                                                    |
| 3        | In/Out  | SC_DDC    | Routed Serial Port Clock Output to DDC                                                                     |
|          |         |           | This pin functions as the clock bus of the serial port to DDC receiver. This pin will                      |
|          |         |           | require a $10\text{K}\Omega$ pull-up resistor to the desired high state voltage. Leave open if unused.     |
| 4        | In/Out  | SD_PROM   | Routed Data Output to PROM                                                                                 |
|          |         |           | This pin functions as the bi-directional data pin of the serial port for PROM on ADD2                      |
|          |         |           | card. This pin will require a pull-up resistor to the desired high state voltage. Leave<br>open if unused. |
| 5        | In/Out  | SC_PROM   | Routed Clock Output to PROM                                                                                |
| 5        | III/Out | SC_FROM   | This pin functions as the clock bus of the serial port to PROM on ADD2 card. This pin                      |
|          |         |           | will require a pull-up resistor to the desired high state voltage. Leave open if unused.                   |
| 7        | In      | RESET*    | Reset* Input (Internal pull-up)                                                                            |
|          |         | 12521     | When this pin is low, the device is held in the power-on reset condition. When this pin                    |
|          |         |           | is high, reset is controlled through the serial port register. This pin is 3.3V compliant.                 |
| 8        | In      | AS        | Address Select (Internal pull-up)                                                                          |
|          |         |           | This pin determines the serial port address of the device (0,1,1,1,0,0,AS*,0). When AS                     |
|          |         |           | is low the address is 72h, when high the address is 70h.                                                   |
| 11       | In/Out  | SPD       | Serial Port Data Input / Output                                                                            |
|          |         |           | This pin functions as the bi-directional data pin of the serial port and operates with                     |
|          |         |           | inputs from 0 to 2.5V. Outputs are driven from 0 to 2.5V. This pin requires an external                    |
|          |         |           | $4K\Omega$ - $9K\Omega$ pull-up resistor to 2.5V.                                                          |
| 12       | In/Out  | SPC       | Serial Port Clock Input                                                                                    |
|          |         |           | This pin functions as the clock input of the serial port and operates with inputs from 0 to                |
|          |         |           | 2.5V. This pin requires an external $4K\Omega$ - $9K\Omega$ pull-up resistor to 2.5V.                      |
| 14       | In      | BSCAN     | BSCAN (Internal pull-down)                                                                                 |
|          |         |           | This pin should be pulled low with a 10K ohm resistor. This pin enables the boundary                       |
|          |         |           | scan for in-circuit testing. Voltage level is 0 to DVDD.                                                   |
| 15       | In      | Reserved  | Reserved (Internal pull-down)                                                                              |
|          |         |           | This pin should be pulled low with a 10K ohm resistor.                                                     |
| 20,24,28 | Out     | DACA[2:0] | DAC Output A                                                                                               |
|          |         |           | Video Digital-to-Analog outputs. RGB Bypass outputs. Each output is capable of                             |
|          |         |           | driving a 75-ohm doubly terminated load.                                                                   |

**Table 1: Pin Description (contd.)** 

| Pin #       | Туре  | Symbol      | Description                                                                                                                                                      |
|-------------|-------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32          | In    | ISET        | Current Set Resistor Input                                                                                                                                       |
|             |       |             | This pin sets the DAC current. A 1.2Kohm resistor should be connected between                                                                                    |
|             |       |             | this pin and DAC ground (pin 31) using short and wide traces.                                                                                                    |
| 34          | Out   | HSYNC       | Horizontal Sync Output                                                                                                                                           |
|             |       |             | A buffered version of VGA horizontal sync can be acquired from this pin.                                                                                         |
| 36          | Out   | VSYNC       | VSYNC                                                                                                                                                            |
|             |       |             | A buffered version of VGA vertical sync can be acquired from this pin.                                                                                           |
| 46          | Out   | Reserved    | This pin should be left open.                                                                                                                                    |
| 47          | Out   | Reserved    | This pin should be left open.                                                                                                                                    |
| 48          | Out   | Reserved    | This pin should be left open.                                                                                                                                    |
| 50          | In    | RPLL        | PLL Resistor Input                                                                                                                                               |
|             |       |             | External resistor 10Kohm should be connected between this pin and pin 49.                                                                                        |
| 53,54,56,57 | In    | SDVO_R+/-,  | SDVO Data Channel Inputs                                                                                                                                         |
| 59,60       |       | SDVO_G+/-,  | These pins accept 3 AC-coupled differential pair of inputs from a digital video port                                                                             |
|             |       | SDVO_B+/-   | of a graphics controller. These 3 pair of inputs can be R, G, B or Y, Cr, Cb.                                                                                    |
| 62,63       | In    | SDVO_CLK+/- | Differential Clock Input associated with SDVOB Data channel (SDVOB_R+/-,                                                                                         |
|             |       |             | SDVOB_G+/-, SDVOB_B+/-)                                                                                                                                          |
|             |       |             | These pins accept one AC-coupled differential pair of inputs from a digital video port of a graphics controller. The range of this clock pair is 100~200MHz. For |
|             |       |             | specified pixel rates in specified modes this clock pair will run at an integer multiple                                                                         |
|             |       |             | of the pixel rate. Refer to to section 2.1.3 for details.                                                                                                        |
| 13,35       | Power | DVDD        | Digital Supply Voltage (2.5V)                                                                                                                                    |
| 10,37       | Power | DGND        | Digital Ground                                                                                                                                                   |
| 16          | Power | VDAC2       | DAC Supply Voltage (3.3V)                                                                                                                                        |
| 17          | Power | GDAC2       | DAC Ground                                                                                                                                                       |
| 19          | Power | VDAC1       | DAC Supply Voltage (3.3V)                                                                                                                                        |
| 23          | Power | GDAC1       | DAC Ground                                                                                                                                                       |
| 27          | Power | VDAC0       | DAC Supply Voltage (3.3V)                                                                                                                                        |
| 31          | Power | GDAC0       | DAC Ground                                                                                                                                                       |
| 52,58,64    | Power | AVDD        | Analog Supply Voltage (2.5V)                                                                                                                                     |
| 49,55,61    | Power | AGND        | Analog Ground                                                                                                                                                    |

## 2.0 Functional Description

### 2.1 Input Interface

#### 2.1.1 Overview

One pair of differential clock signal and three differential pairs of data signals (R/G/B) form one channel data. The input data are 10-bit serialized data. Input data run at 1Gbits/s~2Gbits/s, being a 10x multiple of the clock rate (SDVOB\_CLK+/-). The CH7317B de-serializes the input into 10-bit parallel data with synchronization and alignment. Then the 10-bit characters are mapped into 8-bit color data or control data (HSYNC, VSYNC, DE).

### 2.1.2 Interface Voltage Levels

All differential SDVO pairs are AC coupled differential signals. Therefore, there is not a specified DC signal level for the signals to operate at. The differential p-p input voltage has a min of 175mV, and a max of 1.2V. The differential p-p output voltage has a min of 0.8V, with a max of 1.2V.

### 2.1.3 Input Clock and Data Timing

A data character is transmitted least significant bit first. The beginning of a character is noted by the falling edge of the SDVOB\_CLK+ edge. The skew among input lanes is required to be no larger than 2ns.

The clock rate runs at 100MHz~200MHz. The pixel rate can be 25MP/s~165MP/s. The pixel rate and the clock rate do not always equal. The clock rate can be a multiple of the pixel rate (1x, 2x, 4x depending on the pixel rate) so that the clock rate will be stay in the 100MHz~200MHz range. In the condition that the clock rate is running at a multiple of the pixel rate, there isn't enough pixel data to fill the data channels. Dummy fill characters ('0001111010') are used to stuff the data stream. The CH7317B supports the following clock rate multipliers and fill patterns shown in Table 2.

Table 2: CH7317B supported Pixel Rates, Clock Rates, Data Transfer Rates and Fill Patterns

| Pixel Rate   | Clock Rate – Multiplier    | Stuffing Format        | Data Transfer Rate - Multiplier  |
|--------------|----------------------------|------------------------|----------------------------------|
| 25~50 MP/s   | 100~200 MHz – 4xPixel Rate | Data, Fill, Fill, Fill | 1.00~2.00Gbits/s – 10xClock Rate |
| 50~100 MP/s  | 100~200 MHz – 2xPixel Rate | Data, Fill             | 1.00~2.00Gbits/s – 10xClock Rate |
| 100~200 MP/s | 100~200 MHz – 1xPixel Rate | Data                   | 1.00~2.00Gbits/s – 10xClock Rate |

#### 2.1.4 Synchronization

Synchronization and channel-to-channel de-skewing is facilitated by the transmission of special characters during the blank period. The CH7317B synchronizes during the initialization period and subsequently uses the blank periods to resynch to the data stream.

### 2.2 VGA Output Operation

The CH7317B can operate in VGA RGB Bypass mode. In VGA RGB Bypass mode, data from the graphics device, after proper decoding, are bypassed directly to the video DACs to implement a second RGB DAC function. Sync signals, after proper decoding, are buffered internally, and can be output to drive the VGA Monitor. The CH7317B can support a pixel rate of 200MHz. This operating mode uses 8-bits of three of the DAC's 10-bit range, and provides a nominal signal swing of 0.661V (or 0.7V depending on DAC Gain setting in control registers) when driving a 75 $\Omega$  doubly terminated load. No scaling, scan conversion or flicker filtering is applied in VGA RGB Bypass modes.

Table 3 lists some of the VGA resolutions.

Table 3: Various VGA resolutions.

| Name         | Resolution                                  |
|--------------|---------------------------------------------|
|              | 320x200                                     |
| QVGA         | 320x240                                     |
|              | 400x300                                     |
|              | 640x350, 640x400                            |
| VGA          | 640x480                                     |
|              | 512x384                                     |
|              | 704x480, 704x576                            |
|              | 720x350, 720x400, 720x480, 720x540, 720x576 |
|              | 768x480, 768x576                            |
| SVGA/WSVGA   | 800x600                                     |
|              | 832x624                                     |
|              | 848x480                                     |
|              | 920x766                                     |
|              | 960x600                                     |
|              | 1024x600                                    |
| XGA/WXGA     | 1024x768                                    |
|              | 1124x768                                    |
|              | 1152x720                                    |
|              | 1280x768, 1280x720, 1280x800, 1280x960      |
| SXGA/WSXGA   | 1280x1024                                   |
|              | 1360x768, 1360x1024, 1366x768, 1466x768     |
| SXGA+/WSXGA+ | 1400x1050                                   |
|              | 1400x1200                                   |
|              | 1536x960                                    |
|              | 1680x1050                                   |
| UXGA/WUXGA   | 1600x1200                                   |
|              | 1704x960                                    |
|              | 1920x1080                                   |
|              | 1920x1200 <sup>1</sup>                      |

#### Note:

1. With reduced blanking.

Table 4 below lists the DAC output configurations of the CH7317B.

**Table 4: Video DAC Configurations for CH7317B** 

| Output Type | DACA[0] | DACA[1] | DACA[2] |
|-------------|---------|---------|---------|
| VGA RGB     | В       | G       | R       |

### 2.3 Command Interface

Communication is through two-wire path, control clock (SPC) and data (SPD). The CH7317B accepts incoming control clock and data from graphics controller, and is capable of redirecting that stream to an ADD2 card PROM, DDC, or CH7317B internal registers. The control bus is able to run up to 1MHz when communicating with internal registers, up to 400kHz for the PROM and up to 100kHz for the DDC.

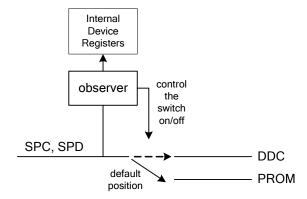
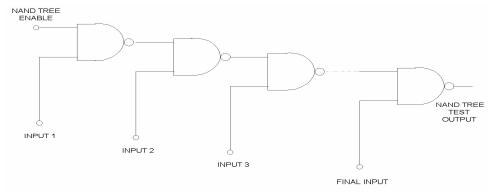




Figure 4: Control Bus Switch

Upon reset, the default state of the directional switch is to redirect the control bus to the ADD2 PROM. At this stage, the CH7317B observes the control bus traffic. If the observing logic sees a control bus transaction destined for the internal registers (device address 70h or 72h), it disables the PROM output pairs, and switches to internal registers. In the condition that traffic is to the internal registers, an Opcode command is used to set the redirection circuitry to the appropriate destination (ADD2 PROM or DDC). Redirecting the traffic to internal registers while at the stage of traffic to DDC occurs on observing a STOP after a START on the control bus.

### 2.3.1 Boundary scan Test

CH7317B provides a called "NAND TREE Testing" to verify IO cell function at the PC board level. This test will check the interconnection between chip I/O and the printed circuit board for faults (soldering, bend leads, open printed circuit board traces, etc.). NAND tree test is a simple serial logic which turns all IO cell signals to input mode, connects all inputs with NAND gates as shown in the figure below and switches each signal to high or low according to the sequence in Table 11. The test results then pass out at pin 51 (**T2**).



**Figure 5: NAND Tree Connection** 

Set BSCAN =1; (internal weak pull-low)

Set all signals listed in to 1.

Set all signals listed in to 0, toggle one by one with certain time period, suggested 100 ns. Pin 51 (**T2**) will change its value each time an input value changed.

**Table 5: Signal Order in the NAND Tree Testing** 

| Order | Pin Name | LQFP Pin |
|-------|----------|----------|
| 1     | SD_DDC   | 2        |
| 2     | SC_DDC   | 3        |
| 3     | SD_PROM  | 4        |
| 4     | SC_PROM  | 5        |
| 5     | RESETB   | 7        |
| 6     | AS       | 8        |
| 7     | SPD      | 11       |
| 8     | SPC      | 12       |
| 9     | DACA[2]  | 20       |
| 10    | DACA[1]  | 24       |
| 11    | DACA[0]  | 28       |
| 12    | ISET     | 32       |
| 13    | HSYNC    | 34       |
| 14    | VSYNC    | 36       |
| 15    | Reserved | 46       |
| 16    | Reserved | 47       |
| 17    | Reserved | 48       |
| 18    | T2       | 51       |

Table 6: Signals not Tested in NAND Test besides power pins

| Pin Name  | LQFP Pin |
|-----------|----------|
| SDVO_R+   | 53       |
| SDVO_R-   | 54       |
| SDVO_G+   | 56       |
| SDVO_G-   | 57       |
| SDVO_B+   | 59       |
| SDVO_B-   | 60       |
| SDVO_CLK+ | 62       |
| SDVO_CLK- | 63       |
| RESET*    | 7        |
| BSCAN     | 14       |
| Reserved  | 15       |
| T1        | 1        |

# 3.0 Register Control

The CH7317B is controlled via a serial control port. The serial bus uses only the SC clock to latch data into registers, and does not use any internally generated clocks so that the device can be written to in all power down modes. The device will retain all register values during power down modes.

Registers 00h to 11h are reserved for Opcode use. All registers except bytes 00h to 11h are reserved for internal factory use. For details regarding Intel<sup>®</sup> SDVO Opcodes, please contact Intel<sup>®</sup>.

# 4.0 Electrical Specifications

## 4.1 Absolute Maximum Ratings

| Symbol            | Description                                                                                         | Min          | Тур        | Max               | Units |
|-------------------|-----------------------------------------------------------------------------------------------------|--------------|------------|-------------------|-------|
|                   | All 2.5V power supplies relative to GND<br>All 3.3V power supplies relative to GND                  | -0.5<br>-0.5 |            | 3.5<br>5.0        | V     |
| T <sub>SC</sub>   | Analog output short circuit duration                                                                |              | Indefinite |                   | Sec   |
| T <sub>STOR</sub> | Storage temperature                                                                                 | -65          |            | 150               | °C    |
| TJ                | Junction temperature                                                                                |              |            | 150               | °C    |
| T <sub>VPS</sub>  | Vapor phase soldering (5 second) Vapor phase soldering (11 second) Vapor phase soldering (1 minute) |              |            | 260<br>245<br>225 | °C    |

#### Note:

- Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated under the normal operating condition of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The temperature requirements of vapor phase soldering apply to all standard and lead free parts.
- 2) The device is fabricated using high-performance CMOS technology. It should be handled as an ESD sensitive device. Voltage on any signal pin that exceeds the power supply voltages by more than ± 0.5V can induce destructive latch-up.

### **4.2 Recommended Operating Conditions**

| Symbol            | Description                                                     | Min   | Тур   | Max   | Units |
|-------------------|-----------------------------------------------------------------|-------|-------|-------|-------|
| AVDD              | Analog Power Supply Voltage                                     | 2.375 | 2.5   | 2.625 | V     |
| DVDD              | Digital Power Supply Voltage                                    | 2.375 | 2.5   | 2.625 | V     |
| VDAC              | DAC Power Supply                                                | 3.100 | 3.3   | 3.500 | V     |
| VDD33             | Generic for all 3.3V supplies                                   | 3.100 | 3.3   | 3.500 | V     |
| VDD25             | Generic for all 2.5V supplies                                   | 2.375 | 2.5   | 2.625 | V     |
| Rset              | Resistor on ISET pin (32)                                       | 1188  | 1200  | 1212  | Ω     |
| R <sub>RPLL</sub> | Resistor on RPLL pin (50)                                       | 9900  | 10000 | 10100 | Ω     |
| T <sub>AMB</sub>  | Ambient operating temperature (Commercial / Automotive Grade 4) | 0     |       | 70    | °C    |
| T <sub>AMB</sub>  | Ambient operating temperature (Industrial / Automotive Grade 3) | -40   |       | 85    | °C    |

## **4.3** Electrical Characteristics

(Operating Conditions:  $T_A$  = 0°C to 70°C for parts qualified as Commercial / Automotive Grade 4,  $T_A$  = -40°C to 85°C for parts qualified as Industrial / Automotive Grade 3, VDD25 =2.5V  $\pm$  5%, VDD33 = 3. 3V  $\pm$  5%,)

| Symbol                  | Description                                                                                    | Min | Тур   | Max | Units |
|-------------------------|------------------------------------------------------------------------------------------------|-----|-------|-----|-------|
|                         | Video D/A Resolution                                                                           | 10  | 10    | 10  | bits  |
|                         | Full scale output current                                                                      |     | 17.63 |     | mA    |
|                         | Video level error                                                                              |     |       | 10  | %     |
| I <sub>VDD25,</sub> VGA | Total VDD25 supply current (2.5V supplies) with VGA By-<br>Pass output and 1024x768@60Hz input |     | 100   | 110 | mA    |
| I <sub>VDD33,</sub> vGA | Total VDD33 supply current (3.3V supplies) with VGA By-<br>Pass output and 1024x768@60Hz input |     | 75    | 80  | mA    |
| I <sub>PD</sub>         | Total Power Down Current                                                                       |     | 0.1   |     | mA    |

# 4.4 DC Specifications

| Symbol                           | Description                                                     | Test Condition                                                   | Min     | Тур | Max         | Units |  |
|----------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|---------|-----|-------------|-------|--|
| $V_{RX-DIFFp-p}$                 | SDVO Receiver Differential<br>Input Peak to Peak Voltage        | $V_{RX-DIFFp-p} = 2 *$ $ V_{RX-D+} - V_{RX-D-} $                 | 0.175   |     | 1.200       | V     |  |
| Z <sub>RX-DIFF-DC</sub>          | SDVO Receiver DC Differential Input Impedance                   |                                                                  | 80      | 100 | 120         | Ω     |  |
| Z <sub>RX-COM-DC</sub>           | SDVO Receiver DC Common<br>Mode Input Impedance                 |                                                                  | 40      | 50  | 60          | Ω     |  |
| Z <sub>RX-COM-INITIAL-</sub>     | SDVO Receiver Initial DC<br>Common Mode Input<br>Impedance      | Impedance allowed when receiver terminations are first turned on | 5       | 50  | 60          | Ω     |  |
| Z <sub>RX-COM-High-</sub> IMP-DC | SDVO Receiver Powered<br>Down DC Common Mode<br>Input Impedance | Impedance allowed when receiver terminations are not powered     | 20k     |     | 200k        | Ω     |  |
| V <sub>PP_TVCLK</sub>            | TVCLK Differential Pk – Pk<br>Output Voltage                    |                                                                  | 0.8     |     | 1.2         | V     |  |
| V <sub>SDOL</sub> <sup>1</sup>   | SPD (serial port data) Output<br>Low Voltage                    | I <sub>OL</sub> = 2.0 mA                                         |         |     | 0.4         | V     |  |
| V <sub>SPIH</sub> <sup>2</sup>   | Serial Port (SPC, SPD) Input<br>High Voltage                    |                                                                  | 1.0     |     | VDD33 + 0.5 | V     |  |
| V <sub>SPIL</sub> <sup>2</sup>   | Serial Port (SPC, SPD) Input<br>Low Voltage                     |                                                                  | GND-0.5 |     | 0.4         | V     |  |
| $V_{HYS}$                        | Hysteresis of Serial Port Inputs                                |                                                                  | 0.25    |     |             | V     |  |
| $V_{\text{DDCIH}}$               | DDC Serial Port<br>Input High Voltage                           |                                                                  | 4.0     |     | +5V<br>+0.5 | V     |  |
| V <sub>DDCIL</sub>               | DDC Serial Port<br>Input Low Voltage                            |                                                                  | GND-0.5 |     | 0.4         | V     |  |
| $V_{PROMIH}$                     | PROM Serial Port<br>Input High Voltage                          |                                                                  | 4.0     |     | +5V<br>+0.5 | V     |  |

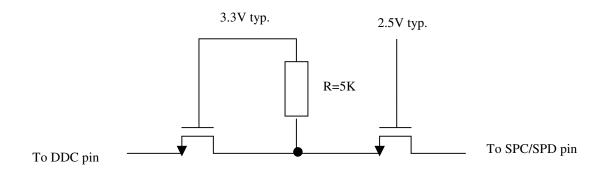
| Symbol                             | Description                                                               | Test Condition                                   | Min     | Тур | Max                           | Units |
|------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|---------|-----|-------------------------------|-------|
| $V_{PROMIL}$                       | PROM Serial Port<br>Input Low Voltage                                     |                                                  | GND-0.5 |     | 0.4                           | V     |
| V <sub>SD_DDCOL</sub> <sup>3</sup> | SPD (serial port data) Output<br>Low Voltage from SD_DDC (or<br>SD_EPROM) | Input is V <sub>INL</sub> at SD_DDC or SD_EPROM. |         |     | 0.9*V <sub>INL</sub> + 0.25   | V     |
|                                    | _ ,                                                                       | $4.0k\Omega$ pull-up to $2.5V$ .                 |         |     |                               |       |
| $V_{DDCOL}^{4}$                    | SC_DDC and SD_DDC Output Low Voltage                                      | Input is V <sub>INL</sub> at SPC and SPD.        |         |     | 0.933*V <sub>INL</sub> + 0.35 | V     |
|                                    |                                                                           | $5.6k\Omega$ pull-up to $5.0V$ .                 |         |     |                               |       |
| $V_{\text{EPROMOL}}^{5}$           | SC_EPROM and SD_EPROM Output Low Voltage                                  | Input is $V_{INL}$ at SPC and SPD.               |         |     | 0.933*V <sub>INL</sub> + 0.35 | V     |
|                                    |                                                                           | 5.6k $Ω$ pull-up to $5.0$ V.                     |         |     |                               |       |
| V <sub>MISC1IH</sub> <sup>6</sup>  | RESET*<br>Input High Voltage                                              |                                                  | 2.7     |     | VDD33 +<br>0.5                | V     |
| V <sub>MISC1IL</sub> 6             | RESET* Input Low Voltage                                                  |                                                  | GND-0.5 |     | 0.5                           | V     |
| V <sub>MISC2IH</sub> <sup>7</sup>  | AS, BSCAN<br>Input High Voltage                                           |                                                  | 2.0     |     | VDD25 + 0.5                   | V     |
| V <sub>MISC2IL</sub> <sup>7</sup>  | AS, BSCAN<br>Input Low Voltage                                            | DVDD=2.5V                                        | GND-0.5 |     | 0.5                           | V     |
| I <sub>PU</sub>                    | AS, RESET*<br>Pull-Up Current                                             | V <sub>IN</sub> = 0V                             | 10      |     | 30                            | uA    |
| I <sub>PD</sub>                    | BSCAN<br>Pull-Down Current                                                | V <sub>IN</sub> = 2.5V                           | 10      |     | 30                            | uA    |
| V <sub>SYNCOH</sub> <sup>8</sup>   | HSYNC, VSYNC<br>Output High Voltage                                       | I <sub>OH</sub> = -0.4mA                         | 2.0     |     |                               | V     |
| V <sub>SYNCOL</sub> <sup>8</sup>   | HSYNC, VSYNC<br>Output Low Voltage                                        | I <sub>OL</sub> = 3.2mA                          |         |     | 0.4                           | V     |

#### Notes:

- 1. V<sub>SDOL</sub> is the SPD output low voltage when transmitting from internal registers, not from DDC or EEPROM.
- 2. V<sub>SPIH</sub> and V<sub>SPIL</sub> are the serial port (SPC and SPD) input low voltage when transmitting to internal registers. Separate requirements may exist for transmission to the DDC and EEPROM.
- 3.  $V_{\text{SD_DDCOL}}$  is the output low voltage at the SPD pin when the voltage at SD\_DDC or SD\_EPROM is  $V_{\text{INL}}$ . Maximum output voltage has been calculated with the worst case of pull-up of 4.0k $\Omega$  to 2.5V on SPD.
- 4. V<sub>DDCOL</sub> is the output low voltage at the SC\_DDC and SD\_DDC pins when the voltage at SPC and SPD is V<sub>INL</sub>. Maximum output voltage has been calculated with 5.6k pull-up to 5V on SC\_DDC and SD\_DDC.
- V<sub>EPROMOL</sub> is the output low voltage at the SC\_EPROM and SD\_EPROM pins when the voltage at SPC and SPD is V<sub>INL</sub>.
   Maximum output voltage has been calculated with 5.6kΩ pull-up to 5V on SC\_EPROM and SD\_EPROM.
- 6. VMISC1 refers to RESET\* input which is 3.3V compliant.
- 7. VMISC2 refers to AS, BSCAN, which are 2.5V compliant
- V<sub>SYNC</sub> refers to HSYNC and VSYNC outputs.

CH7317B

# **CHRONTEL**


# 4.5 AC Specifications

| Symbol                     | Description                                                                        | Test Condition                                     | Min              | Тур                          | Max                | Units          |
|----------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|------------------|------------------------------|--------------------|----------------|
| UI <sub>DATA</sub>         | SDVO Receiver Unit Interval for Data Channels                                      |                                                    | Typ. –<br>300ppm | 1/[Data<br>Transfer<br>Rate] | Typ. +<br>300ppm   | ps             |
| $f_{SDVOB\_CLK}$           | SDVO CLK Input Frequency                                                           |                                                    | 100              |                              | 200                | MHz            |
| f <sub>PIXEL</sub>         | SDVO Receiver Pixel frequency                                                      |                                                    | 25               |                              | 165                | MHz            |
| f <sub>SYMBOL</sub>        | SDVO Receiver Symbol frequency                                                     |                                                    | 1                |                              | 2                  | GHz            |
| t <sub>RX-EYE</sub>        | SDVO Receiver Minimum Eye<br>Width                                                 |                                                    | 0.4              |                              |                    | UI             |
| t <sub>RX-EYE-JITTER</sub> | SDVO Receiver Max. time<br>between jitter median and<br>max. deviation from median |                                                    |                  |                              | 0.3                | UI             |
| $V_{RX-CM-ACp}$            | SDVO Receiver AC Peak<br>Common Mode Input Voltage                                 |                                                    |                  |                              | 150                | mV             |
| $RL_RX\text{-DIFF}$        | Differential Return Loss                                                           | 50MHz – 1.25GHz                                    | 15               |                              |                    | dB             |
| RL <sub>RX-CM</sub>        | Common Mode Return Loss                                                            | 50MHz – 1.25GHz                                    | 6                |                              |                    | dB             |
| T <sub>SPR</sub>           | SPC, SPD Rise Time<br>(20% - 80%)                                                  | Standard mode 100k Fast mode 400k 1M running speed |                  |                              | 1000<br>300<br>150 | ns<br>ns<br>ns |
| $T_{SPF}$                  | SPC, SPD Fall Time<br>(20% - 80%)                                                  | Standard mode 100k Fast mode 400k 1M running speed |                  |                              | 300<br>300<br>150  | ns<br>ns<br>ns |
| $T_{PROMR}$                | SC_PROM, SD_PROM Rise<br>Time (20% - 80%)                                          | Fast mode 400K                                     |                  |                              | 300                | ns             |
| $T_{PROMF}$                | SC_PROM, SD_PROM Rise<br>Time (20% - 80%)                                          | Fast mode 400K                                     |                  |                              | 300                | ns             |
| $T_{DDCR}$                 | SC_DDC, SD_DDC Rise<br>Time (20% - 80%)                                            | Standard mode 100k                                 |                  |                              | 1000               | ns             |
| $T_{DDCF}$                 | SC_DDC, SD_DDC Fall<br>Time (20% - 80%)                                            | Standard mode 100k                                 |                  |                              | 300                | ns             |
| T <sub>DDCR-DELAY</sub> 1  | SC_DDC, SD_DDC Rise<br>Time Delay (50%)                                            | Standard mode 100k                                 |                  | 0                            |                    | ns             |
| T <sub>DDCF-DELAY</sub> 1  | SC_DDC, SD_DDC Fall Time Delay (50%)                                               | Standard mode 100k                                 |                  | 3                            |                    | ns             |
| t <sub>skew</sub>          | SDVO Receiver Total Lane to<br>Lane Skew of Inputs                                 | Across all lanes                                   |                  |                              | 2                  | ns             |
| t <sub>R</sub>             | HSYNC and VSYNC (when configured as outputs) Output Rise Time (20% - 80%)          | 15pF load<br>DVDD = 2.5V                           |                  |                              | 1.50               | ns             |

| t <sub>F</sub> | H and V (when configured as | 15pF load   |  | 1.50 | ns |
|----------------|-----------------------------|-------------|--|------|----|
|                | outputs)                    | DVDD = 2.5V |  |      |    |
|                | Output Fall Time            |             |  |      |    |
|                | (20% - 80%)                 |             |  |      |    |

### Notes:

1. Refers to the figure below, the delay refers to the time pass through the internal switches.



# 5.0 Package Dimensions

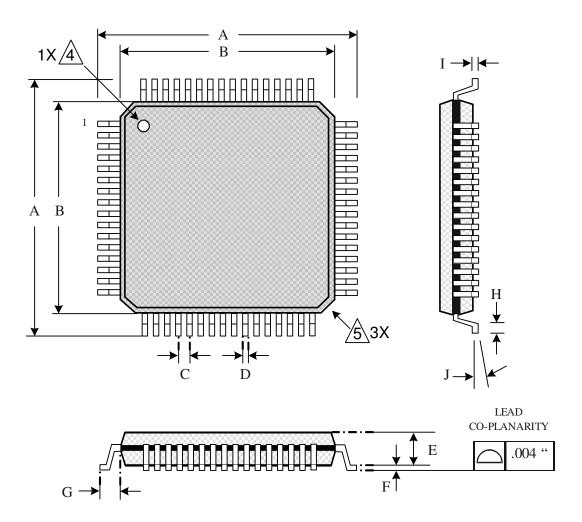



Figure 6: 64 Pin LQFP Package

### **Table of Dimensions**

| No. of   | Leads   | SYMBOL |       |      |      |      |      |      |      |      |            |
|----------|---------|--------|-------|------|------|------|------|------|------|------|------------|
| 64 (10 X | (10 mm) | A      | В     | C    | D    | E    | F    | G    | Н    | I    | J          |
| Milli-   | MIN     | 11.80  | -     | 0.50 | 0.17 | 1.35 | 0.05 | 1.00 | 0.45 | 0.09 | <b>0</b> ° |
| meters   | MAX     | 12.20  | 10.00 | 0.50 | 0.27 | 1.45 | 0.15 | 1.00 | 0.75 | 0.20 | <b>7</b> ° |

#### **Notes:**

- 1. Conforms to JEDEC standard JESD-30 MS-026D.
- 2. Dimension B: Top Package body size may be smaller than bottom package size by as much as 0.15 mm.
- 3. Dimension B does not include allowable mold protrusions up to 0.25 mm per side.

(1X) Corner in quadrant with Pin1 identifier (dot) is always chamfered. Exact shape of chamfer is optional.

(3X) Corners in quadrants without Pin1 identifier (dot) may be square or chamfered. Exact shape of corner or chamfer is optional.

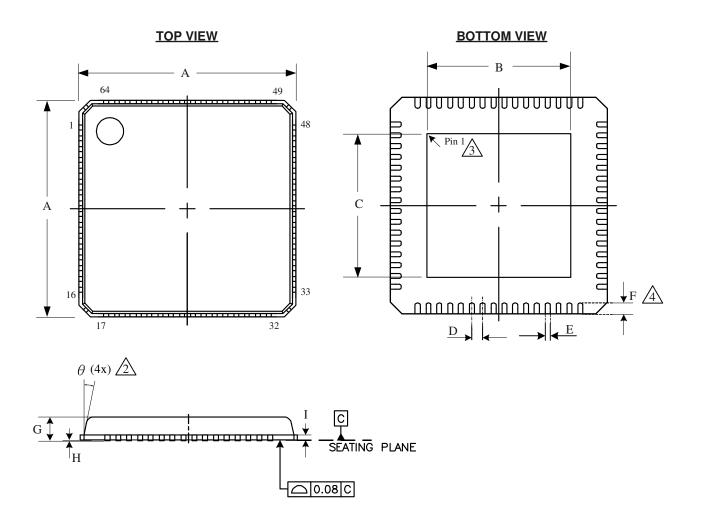



Figure 7: 64 Pin QFN Package (8 X 8 mm)

#### **Table of Dimensions**

| No. of  | Leads  | SYMBOL |      |      |     |      |      |     |      |     |
|---------|--------|--------|------|------|-----|------|------|-----|------|-----|
| 64 (8 X | (8 mm) | A      | В    | C    | D   | E    | F    | G   | Н    | I   |
| Milli-  | MIN    | 7.9    | 4.85 | 4.85 | 0.4 | 0.15 | 0.30 | 0.7 | 0    | 0.2 |
| meters  | MAX    | 8.1    | 6.3  | 6.3  | 0.4 | 0.25 | 0.50 | 1   | 0.05 | 0.2 |

### **Notes:**

1. Conforms to JEDEC standard JESD-30 MO-220.

2

Side of body may be square or curved.

/3\

Exposed pad may have chamfer in area of Pin 1.

**/**4\

Pins may protrude from edge of body by 0.05 mm.

# **6.0** Revision History

**Table 7: Revisions** 

| Rev. # | Date     | Section                      | Description                                                                                                                                                                                                                                 |
|--------|----------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0    | 04/06/09 | All                          | Official release.                                                                                                                                                                                                                           |
| 1.1    | 05/06/09 | 2.2, 2.3                     | Update Table 3, Table 4 and Figure 4.                                                                                                                                                                                                       |
|        |          | 4.2                          | Update Ambient operating temperature.                                                                                                                                                                                                       |
| 1.2    | 05/14/09 | 4.4, 4.5                     | Add some parameters and notes.                                                                                                                                                                                                              |
| 1.3    | 06/12/09 | 1.0<br>1.2<br>5.0            | Update Figure 2 and Figure 3, Pin definition of Pin34. Update Table 1, Pin definition of Pin34. Update Figure 7, QFN package drawing.                                                                                                       |
| 1.4    | 04/04/10 | Figure 1, Table 1<br>Table 3 | Make some pin type clear. Make some description more clear.                                                                                                                                                                                 |
| 1.5    | 01/14/11 | 4.1, 4.2                     | Update ambient operating temperature.                                                                                                                                                                                                       |
| 1.6    | 05/08/12 | 1.2, 4.1, 4.2, 4.3, 5.0      | Update ambient operating temperature into Commercial / Automotive Grade 4 and Industrial / Automotive Grade 3. Unify the description of pin 14 and pin 15. Modify some "Absolute Maximum Ratings". Add some notes for "Package Dimensions". |
| 1.7    | 11/26/12 | 1.2                          | Pin 14 and pin 15 should be connected to ground through a 10K resistor.                                                                                                                                                                     |
| 1.8    | 01/07/14 | 1.2, 4.1, 4.2                | Pins 62/63 (SDVO_CLK+/-) should be AC-coupled. Move T <sub>AMB</sub> from 4.1 to 4.2.                                                                                                                                                       |

### **Disclaimer**

This document provides technical information for the user. Chrontel reserves the right to make changes at any time without notice to improve and supply the best possible product and is not responsible and does not assume any liability for misapplication or use outside the limits specified in this document. We provide no warranty for the use of our products and assume no liability for errors contained in this document. The customer should make sure that they have the most recent data sheet version. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Chrontel, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE SPECIFIC WRITTEN CONSENT OF Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as directed can reasonably expect to result in personal injury or death.

| ORDERING INFORMATION |                                  |                |                |                                    |  |  |  |  |
|----------------------|----------------------------------|----------------|----------------|------------------------------------|--|--|--|--|
| Part Number          | Package Type                     | Number of Pins | Voltage Supply | Temperature Grade                  |  |  |  |  |
| CH7317B-TF           | Lead Free LQFP                   | 64             | 2.5V & 3.3V    | Commercial /<br>Automotive Grade 4 |  |  |  |  |
| CH7317B-TF-I         | Lead Free LQFP                   | 64             | 2.5V & 3.3V    | Industrial /<br>Automotive Grade 3 |  |  |  |  |
| CH7317B-TF-TR        | Lead Free LQFP in Tape & Reel    | 64             | 2.5V & 3.3V    | Commercial /<br>Automotive Grade 4 |  |  |  |  |
| CH7317B-TF-I-TR      | Lead Free LQFP<br>in Tape & Reel | 64             | 2.5V & 3.3V    | Industrial /<br>Automotive Grade 3 |  |  |  |  |
| CH7317B-BF           | Lead Free QFN                    | 64             | 2.5V & 3.3V    | Commercial /<br>Automotive Grade 4 |  |  |  |  |
| CH7317B-BF-I         | Lead Free QFN                    | 64             | 2.5V & 3.3V    | Industrial /<br>Automotive Grade 3 |  |  |  |  |
| CH7317B-BF-TR        | Lead Free QFN<br>in Tape & Reel  | 64             | 2.5V & 3.3V    | Commercial /<br>Automotive Grade 4 |  |  |  |  |
| CH7317B-BF-I-TR      | Lead Free QFN in Tape & Reel     | 64             | 2.5V & 3.3V    | Industrial /<br>Automotive Grade 3 |  |  |  |  |

# **Chrontel**

2210 O'Toole Avenue, Suite 100, San Jose, CA 95131-1326 Tel: (408) 383-9328 Fax: (408) 383-9338

www.chrontel.com E-mail: sales@chrontel.com

©2014 Chrontel, Inc. All Rights Reserved. Printed in the U.S.A.