NO.: RD20201201007	TO: Ozdisan
APPROVAL SHEET No. : T-0615A	

Series No.: MRW

Specification No.:

Rohs2.0

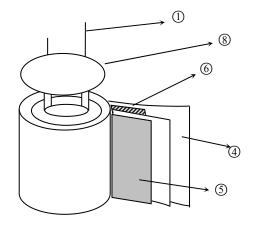
APPROVAL SHEET

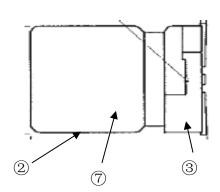
FOR AL. ELECTROLYTIC CAPACITORS

No.	(Customer No.)	(Koshin Part No.)	Description	ФДхЦ
1		MRW-035V102MH135-T/R	35V1000μF	12.5X13.5

PLEASE SIGN RETURN US ONE COPY OF THE APPROUAL SHEET.

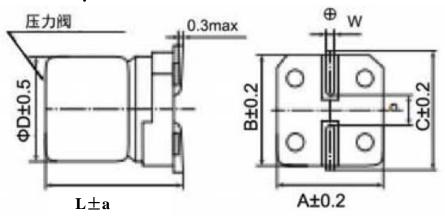
DESIGNED BY:MENGXIAOCONG CHECKED BY:JUANGYUANYUAN APPROVED BY: HAUNGXUEHUI


DATE: 2020-12-1



DJS-DS-0013

1. Inner conformation drawing and inner constitute parts(curtness drawing):



No:	Composing part	Material
①	Lead wire	Fe+Al+Cu+Sn
2	Case	Aluminum
3	Base plate	PPA
4	Paper	Cellulose
(5)	Anode foil	Aluminum foil
6	Cathode foil Aluminum foil	
Ø	Chemical liquid	GBL
8	Seal	Rubber

Standard Size map:

Lead spacing and Diameter Unit: mm

ΦD	L	a	A	В	С	W	P±0.2
12.5	13.5	1.0	13.0	13.0	13.7	1.0~1.3	4.2

Coefficient of Frequency for Ripple Current

obeline of Frequency for hippic outrent						
Frequency (Hz)						
	120	1K	10K	100K		
Capacitance(µ F)						
22 to 1500	1.00	1.05	1.08	1.08		

Series MRW Capacitor

1. Our part No.:

For example

2 Marking:

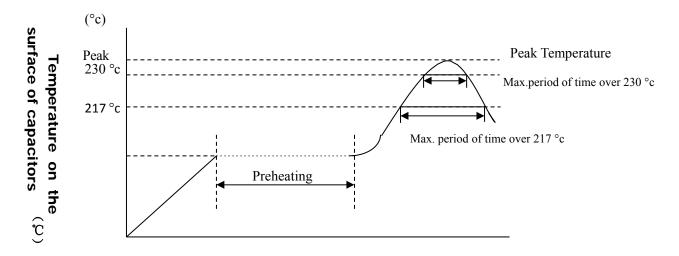
Include company's brand series code, rated voltage, capacitance and polarity

- 3. Specifications:
- 3.1 Temperature range : -40 ~+105℃
- 3.2 Electrical characteristics
- 3.2.1 Capacitance tolerance : $\pm 20\%$

3.2.2 Tangent of loss angle (tan δ): (at 20°C, 120Hz)

Rated voltage(V)		6. 3	10	16	25	35	50	63	100	160-250	400-450
+ \$ <i>(</i>)	B052-G100	0. 35	0. 24	0. 26	0. 16	0. 14	0. 12	0. 12	0. 12	_	-
tanδ (max.)	H135-K215	0. 38	0. 34	0. 30	0. 26	0. 22	0. 18	0. 14	0. 10	0. 20	0. 25

Note: 0.02 is added to each $1000\,\mu\,F$ increase over $1000\,\mu\,F$


3.2.3 Leakage current (μ A):

	Rated voltage (VDC)	6.3-100	160-450
Leakage Current (µ A)	4X5.2-10X10	Less than 0.01CV or 3 µ A, whichever is large (at 20 °C, 2 minutes)	
(FA)	12.5X13.5-18X21.5	Less than 0.03CV or 4 µ A ,whichever is large (at 20°C, 1 minutes)	0.04CV +100 µ A (at 20℃,1 minutes)

RECOMMEDED SOLDERING CONDITIONS FOR ALUMINIUM SURFACE MOUNT TYPE

-Air or Infrared reflow soldering

Time(Sec)

SMDshape	size	voltage	preheating	Time	Time	Peak	Reflow
				maintained	maintained	temperature	number
				over 217 °c	over 230 °c		
	B52~E87	4~63V		≤90 Sec	≤60 Sec	≤260 °c	≤2 times
		63V,80V		≤60 Sec	≤40 Sec	≤250 °c	≤2 times
	F63~G100	4~50V		≤60 Sec	≤30 Sec	≤245 °c	≤2 times
		63V~100,	150-180C	≤30 Sec	≤20 Sec	≤240 °c	≤2 times
		400V	≤120Sec.				
	H135~K215	6.3~50V		≤30 Sec	≤20 Sec	≤240 °c	≤2 times
		63~450V		≤20 Sec	_	≤230 °c	≤2 times

Remark: Reflow number cannot over 2 times. After first time reflow , must be ensure that the temperature of capacitors became cold to room temperature(5 \sim 35 $^{\circ}$ C) ,then continue second flow.

1. Scope:

This specification applies to aluminum electrolytic capacitor ,used in electronic equipment.

2. Electrical characteristics:

NO	trical characterist	TEST METHOD	1	SPECIFICATION
. 2.1		TEST WETHOD		
2.1	Rated voltage Capacitance	1.Measuring frequency:120Hz±12Hz 2.Measuring voltage:≤0.5Vrms+0.5VDC 3.Measuring circuit: (Voltage range capacitance range specification of this series	
2.3	Dissipation factor			
2.4	Leakage current	A: DC current meter S2:Sv V: DC voltage meter C_x : To		Dissipation factor, leakage current, see specification of this series.
2.5	Temperature characteristic s	STE P TEMPERATURE 1 20°C \pm 2°C 2 -40°C \pm 3°C 3 20°C \pm 2°C 4 105°C \pm 2°C Step1.Measure the impedance. (Z ,20°C 120Hz \pm 2 Step2. Measure the impedance at thermal b (Z ,-40°C 120Hz \pm 2HZ) Step4.Measure the leakage current at therm	palance after 2 hours.	Step2. Low temperature impedance stability Less than specified value. Step4. Capacitance change: within ± 10% of the initial measured value. Dissipation factor: Less than specified
				Less than specified value.

NO	ITEM	TEST METHOD	SPECIFICATION
2.6	Surge test	Rated surge voltage shall be applied (switch on)for 30 \pm 5 second and then shall be applied (switch off) with discharge for 5.5min at room temperature. This cycle shall be repeated for 1000 cycles. Duration of one cycle is 6 ± 0.5 minutes	within \pm 15% of the initial
			Dissipation factor: Less than specified value.
			Leakage current: Within initial specified value.

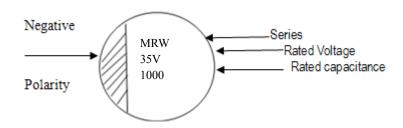
3. Mechanical characteristics

	inical characte	VIIDVIQU	
NO 1	ITEM	TEST METHOD	SPECIFICATION
	Lead strength	(A)Tensile strength: wire lead terminal:	When the capacitance is measured, there shall be no intermittent contacts, or open-or short-circuiting. There shall be no such mechanical damage as terminal damage etc.

NO.	ITEM	TEST METHOD	SPECIFICATION
3.2	Vibration resistance	The frequency of the vibration shall vary uniformly within the range 10 to 55 Hz with the amplitude of 0.75 mm, completing the cycle in the internal of one minute. The capacitor shall be securely mounted by its leads with hold the body of capacitor. The capacitor shall be vibrated in three mutually perpendicular directions for a period of 2 hours in each direction.	Capacitance change: within ± 5% of initial measured value. Appearance: no abnormal.
3.3	Solder ability	The leads are dipped in the solder bath of Sn at $235^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 2 ± 0.5 seconds. The dipping depth should be set at $1.5 \sim 2.0$ mm.	The solder alloy shall cover the 95% or more of dipped lead's area.

4. Reliability

:					
	NO	ITEM		TEST METHOD	SPECIFICATIO
•	4.1	Soldering resistance	heat	The leads immerse in the solder bath of Sn at 260°C±5°C for 30±1seconds until a distance of 1.5~2.0 mm from the case. After the capacitors are removed from the hot plate and then restored to standard atmospheric conditions for 1 to 2 hours, the capacitors shall meet the right requirements.	No visible damage or leakage of electrolyte. Capacitance change: Within \pm 10% of the initial measured value Tan δ : Less than specified value. Leakage current: Less than specified value
	4.2	1	head eady	Subject the capacitor to $40^\circ\!\text{C} \pm 2^\circ\!\text{C}$ and 90% to 95% relative humidity for 240 ± 8 hours.	Capacitance change: Within \pm 15% of the initial measured value Tan δ : Less than 1.2 specified value. Leakage current: Less than specified value Impedance: Less than 1.2 specified value.


NO.	ITEM	TEST METHOD	SPECIFICATION		
4.3	Load life	The following specifications shall be satisfied when the capacitors are restores to 20°C after the rated voltage is applied for 2,000 hours at 105°C.	Capacitance change: (4-6.3VDC) within±30% of the initial specified value. (10-100VDC) within±25% of the initial specified value. (160-450VDC) within±20% of the initial specified value.		
4.4	Shelf life	The following specifications shall be satisfied when the capacitors are restores to 20°C after exposing them for 500 hours at105°C without voltage applied. The rated voltage shall be applied to the capacitors for a minimum for 30 minutes, at least 24 hours and not more than 48 hours before the measurements	Dissipation factor: (4-100VDC) Less than 300% of the initial specified value. (160-450VDC) Less than 200% of the initial specified value. Leakage current: The initial specified value or less.		
4.5	Storage at low temperatur e	The capacitor shall be stored at temperature of -40 °C \pm 3 °C for 16 hours, during which time be subjected to standard atmospheric conditions for 16 hours or more. After which measurements shall be made.	Capacitance change: Within ±10% of the initial value. Tan δ :less than specified value Leakage current: Less than specified value. Appearance: no Abnormal.		
4.6	Pressure relief	AC test: Applied voltage: AC voltage not exceeding 0.7 times of the rated direct voltage or 250V AC whichever is the lower. Frequency: 50Hz or 60Hz . Series resistor: refer to the table below $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AC test circuit S R AC S S S R AC S S S S S S S S S S S S S S S S S S		

NO.	ITEM	TEST METHOD	SPECIFICATION
4.6	Pressure relief	DC test: Send the following electricity while applying the inverse voltage. Where case size: D≤22.4mm:1 A d.c. max D > 22.4mm:10 A d.c. max Note: 1.This requirement applies to capacitors with a diameter of 8 mm or more. 2. When the pressure relief device does not open even 30 minutes after commencement of test, the test may be ended.	DC test circuit S: Switch Cx: testing capacitor The pressure relief device shall open in such a way as to avoid any damage of fire or explosion of capacitor elements (terminal and metal foil etc.) or cover.
4.7	Temp cycle	LSL temperature(°C):-40 \pm 3 time(H): 0.5H/timeX5 times time(H): 0.5H/timeX5 times Judgement: CAP: \triangle C/C \leq \pm 1 No electrolyte leakage.	• • • •
4.8	Thermal shock	dry heat temperature (°C): 105 ± 2 time(H): 16 moist heat temperature (°C): -40 ± 2 time(H): 2/ moist heat temperature temper	rature($^{\circ}$ C): 55 time(H): 24: led value, Leakage current: Less

5. Marking For example:

5.1. Marking on capacitors include:

- 1>. Series
- 2>. Rated voltage
- 3>. Rated capacitance (u F)
- 4>. Polarity

5.2. Marking color: Blue

Detergent needing attention

Hydrogen carbide liquid and halogen liquid can cause Aluminum Electrolytic Capacitor to corrode. Some of Safe and Unsafe detergent are as follows

Safe	Unsafe
Dimethylbenzene	1,1,2-trichloroethane
Ethanol	1,2,2- trichloroethane
Butanol	
Methanol	Tetrachloroethylene
Propanol	Chloroform(colorless volatilizable liquid)
	Dichloromethane
Detergent	Trichloroethylene

Carrier Pack Taping Specification:

Fig.1

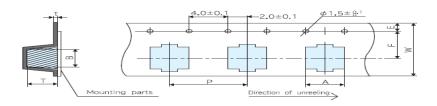
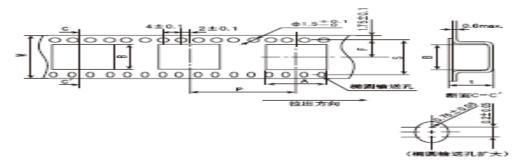
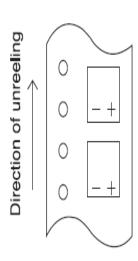
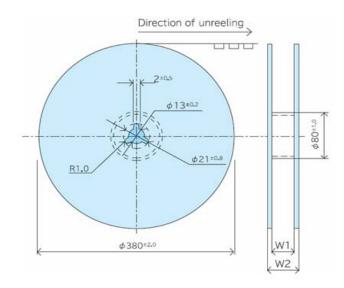



Fig.2




Product size table Unit: mm

Dimension Size Code	A	В	W	F	Е	P	t	S	Т	Fig.
Ф12.5Х13.5	13.4±0.2	13.4±0.2	32	14.2	1.75±0.1	24	0.6max	28.5±0.1	14.5±0.2	2

Polarity:

Package for SMD Type:

Size Code	W1(mm)	W2(mm)	Q·ty/Reel
Ф12.5	34±0.5	38.5 ± 1.0	200PCS

Surface Mount Aluminum Electrolytic Capacitor Specification								
MRW	35	V 1000 μF	Par	t No.	MR	RW-035V102MH135-T/R		
	•		Case size ΦD12.53			ФD12.5X	X L13.5	
	Iten	ns	Standard					
Operat:	ing tempe	erature range			- 40 ~ + 1	105 ℃		
Сара	acitance	tolerance		±20	0% (20°	C ,120Hz)		
Dissi	pation f	actor (MAX)	(Less tl	nan) 22%	5 (20°C , 1	20Hz)	
Leal	kage curi	rent (MAX)	(Les	ss than) 1050 μA	(20 ℃ 35	V 1 min)	
	Impedanc	e (MAX)			/			
Rip	ple curr	ent (MAX)	600 mArms (120Hz ,105℃)					
	Load 1	life	2000 hrs					
	Marking	color	Blue					
(Dimensions)								
		压力阀 9.0 1 Qφ L±1.			10	w 0	C±0.2	
Le	ead spacin	g and Diameter	Unit: mm					
l	ΦD	L	A	В	С	W	P±0.2	
	12.5	13.5	13.0	13.0	13.7	1.0~1.3	4.2	
(The fi	rst edit	ion):2020-12-1						
 XiaoCon	g (Checked by: J	iangYuan	Yuan	Approved	by: Huan	ngXueHui	
	MRW Operation Capa Dissi Lead	MRW 35 Iter Operating tempor Capacitance Dissipation for the Leakage current of the Leakage current of the Load of the Load of the Load of the Load of the Leakage current of the Load of	Items Operating temperature range Capacitance tolerance Dissipation factor (MAX) Leakage current (MAX) Impedance (MAX) Ripple current (MAX) Load life Marking color L±1. Lead spacing and Diameter ΦD L 12.5 13.5 (The first edition):2020-12-1	MRW 35 V 1000 μF Par Case Items Operating temperature range Capacitance tolerance Dissipation factor (MAX) (Les Impedance (MAX) Ripple current (MAX) Load life Marking color (Dime Lead spacing and Diameter ΦD L A 12.5 13.5 13.0 (The first edition) :2020-12-1	MRW 35 V 1000 μF Part No.	MRW 35 V 1000 μF Part No. MR	MRW 35 V 1000 μF Part No. MRW-035V102.5X	

(Issue No.): DJJ-2875