## FRED Module

## Fast Recovery Epitaxial Diode

## Single Diode

## Part number

MEO 450-12DA
$V_{\text {RRM }}=1200 \mathrm{~V}$
$\mathrm{I}_{\text {favm }}=453 \mathrm{~A}$
$\mathrm{t}_{\mathrm{rr}}=500 \mathrm{~ns}$


## Features / Advantages:

- International standard package with DCB ceramic base plate
- Planar passivated chips
- Short recovery time
- Low switching losses
- Soft recovery behaviour
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- Low noise switching
- Low losses


## Applications:

- Antiparallel diode for high frequency switching devices
- Free wheeling diode in converters and motor control circuits
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Package: Y4-M6

- Isolation voltage: 3600 V ~
- Industry standard outline
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling


## Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Diode} \& \multicolumn{4}{|c|}{Ratings} \\
\hline Symbol \& Definitions \& Conditions \& \& min. \& typ. \& max. \& \\
\hline \(\mathrm{V}_{\text {RSM }}\) \& max. non-repetitive reverse \& \& \(\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}\) \& \& \& 1200 \& V \\
\hline \(\mathrm{V}_{\text {RRM }}\) \& max. repetitive reverse \& \& \(\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}\) \& \& \& 1200 \& V \\
\hline \(\mathrm{I}_{\mathrm{R}}\) \& reverse current \& \[
\begin{aligned}
\& V_{R}=V_{\text {RRM }} \\
\& V_{R}=0.8 \cdot V_{\text {RRM }} \\
\& V_{R}=0.8 \cdot V_{R R M}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{v}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{v}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{array}{r}
24 \\
6 \\
120
\end{array}
\] \& \begin{tabular}{l}
mA \\
mA \\
mA
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{F}}\)} \& \multirow[t]{2}{*}{forward voltage} \& \(\mathrm{I}_{\mathrm{F}}=300 \mathrm{~A}\) \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{vv}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 1.78 \\
\& 1.51
\end{aligned}
\] \& V \\
\hline \& \& \(\mathrm{I}_{\mathrm{F}}=520 \mathrm{~A}\) \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{vv}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 1.96 \\
\& 1.76
\end{aligned}
\] \& V \\
\hline \(\mathrm{I}_{\text {FRMS }}\) \& RMS forward current \& \& \(\mathrm{T}_{\mathrm{c}}=75^{\circ} \mathrm{C}\) \& \& \& 640 \& A \\
\hline \(\mathrm{I}_{\mathrm{FAV}}{ }^{(1)}\) \& average forward current \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C} \\
\& \text { rectangular, } \mathrm{d}=0.5
\end{aligned}
\] \& \(\mathrm{T}_{\mathrm{v} J}=150^{\circ} \mathrm{C}\) \& \& \& 453 \& A \\
\hline \[
\begin{aligned}
\& \mathbf{V}_{\text {T0 }} \\
\& \mathbf{r}_{\mathrm{T}}
\end{aligned}
\] \& threshold voltage slope resistance \& for power-loss calculations only \&  \& \& \& \[
\begin{aligned}
\& \hline 1.16 \\
\& 1.15
\end{aligned}
\] \& \(V\)
\(\mathrm{~m} \Omega\) \\
\hline \[
\begin{aligned}
\& \mathbf{R}_{\mathrm{thuc}} \\
\& \mathbf{R}_{\mathrm{th} \mathrm{CH}}
\end{aligned}
\] \& thermal resistance junction to case thermal resistance junction to heatsink \& \& \& \& 0.043 \& 0.071 \& \[
\begin{aligned}
\& \text { K/W } \\
\& \text { K/W }
\end{aligned}
\] \\
\hline \(\mathrm{P}_{\text {tot }}\) \& total power dissipation \& \& \(\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}\) \& \& \& 1750 \& W \\
\hline \(\mathrm{I}_{\text {FSM }}\) \& max. surge forward current \& \[
\begin{array}{ll}
\hline t=10 \mathrm{~ms} \& (50 \mathrm{~Hz}), \text { sine } \\
\mathrm{t}=8.3 \mathrm{~ms} \& (60 \mathrm{~Hz}) \text {, sine } \\
\mathrm{t}=10 \mathrm{~ms} \& (50 \mathrm{~Hz}), \text { sine } \\
\mathrm{t}=8.3 \mathrm{~ms} \& (60 \mathrm{~Hz}) \text {, sine }
\end{array}
\] \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{vJ}}=45^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{vJ}}=150^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& \hline 4.80 \\
\& 5.28 \\
\& 4.32 \\
\& 4.75
\end{aligned}
\] \& kA
kA
kA
kA \\
\hline \(\mathrm{I}^{2} \mathrm{t}\) \& \({ }^{1}+\) t value for fusing \& \[
\begin{array}{ll}
\hline t=10 \mathrm{~ms} \& (50 \mathrm{~Hz}), \text { sine } \\
t=8.3 \mathrm{~ms} \& (60 \mathrm{~Hz}) \text {, sine } \\
t=10 \mathrm{~ms} \& (50 \mathrm{~Hz}), \text { sine } \\
t=8.3 \mathrm{~ms} \& (60 \mathrm{~Hz}) \text {, sine }
\end{array}
\] \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{vJ}}=45^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{vJ}}=150^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{array}{|c|}
\hline 115.2 \\
117.1 \\
93.3 \\
94.8
\end{array}
\] \& \begin{tabular}{l}
\(k^{2}{ }^{2}\) s \\
\(k A^{2} \mathrm{~S}\) \\
\(k^{2}{ }^{2} s\) \\
\(k^{2}{ }^{2}\) s
\end{tabular} \\
\hline \(t_{\text {rr }}\)

$I_{\text {RM }}$ \& max. reverse recovery current
reverse recovery time \& $\mathrm{I}_{\mathrm{F}}=450 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=800 \mathrm{~A} / \mu \mathrm{s}$

$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} ; \mathrm{L} \leq 0.05 \mu \mathrm{H}$ \& \[
$$
\begin{aligned}
& \mathrm{T}_{\mathrm{vv}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{vv}}=100^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{vj}}=100^{\circ} \mathrm{C}
\end{aligned}
$$

\] \& \& \[

$$
\begin{array}{r}
250 \\
500 \\
80 \\
125
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 300 \\
& 600 \\
& 100 \\
& 150
\end{aligned}
$$
\] \& ns

ns
A
A <br>
\hline
\end{tabular}

(1) $\mathrm{I}_{\text {FAVM }}$ rating includes reverse blocking losses at $\mathrm{T}_{\text {VJM }}, \mathrm{V}_{\mathrm{R}}=0.8 \mathrm{~V}_{\text {RRM }}$, duty cycle $\mathrm{d}=0.5$

| Package | Y4-M6 |  |  |  |  | Ratings |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Definitions | Conditions |  |  |  | min. | typ. | max. |  |
| $\mathrm{I}_{\text {RMS }}$ | RMS current | per terminal |  |  |  |  |  | 300 | A |
| $\begin{aligned} & \hline \mathrm{T}_{\mathrm{vJ}} \\ & \mathrm{~T}_{\mathrm{op}} \\ & \mathrm{~T}_{\mathrm{stg}} \end{aligned}$ | virtual junction temperature operation temperature storage temperature |  |  |  |  | $\begin{aligned} & -40 \\ & -40 \\ & -40 \end{aligned}$ |  | $\begin{aligned} & 150 \\ & 125 \\ & 125 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ |
| Weight |  |  |  |  |  |  | 108 |  | g |
| $\mathrm{M}_{\mathrm{D}}$ | mounting torque |  |  |  |  | 2.25 |  | 2.75 | Nm |
| $\mathrm{M}_{\text {T }}$ | terminal torque |  |  |  |  | 4.5 |  | 5.5 | Nm |
| $\begin{aligned} & \mathbf{d}_{\text {Spp/App }} \\ & \mathbf{d}_{\mathrm{Spb} / \mathrm{ppb}} \end{aligned}$ | creepage distance on surface \| striking distance through air |  |  | terminal to terminal terminal to backside | $\begin{aligned} & \hline 14.0 \\ & 16.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 10.0 \\ & 16.0 \\ & \hline \end{aligned}$ |  |  | $\mathrm{mm}$ $\mathrm{mm}$ |
| $\mathrm{V}_{\text {ISOL }}$ | isolation voltage | $\begin{aligned} & t=1 \text { second } \\ & t=1 \text { minute } \end{aligned}$ | $50 / 60 \mathrm{~Hz}, \mathrm{P}$ | $\mathrm{l}_{\text {ISOL }} \leq 1 \mathrm{~mA}$ |  | $\begin{aligned} & 3600 \\ & 3000 \end{aligned}$ |  |  | V |



Data Matrix: part no. (1-19), DC + PI (20-25), lot.no.\# (26-31),
blank (32), serial no.\# (33-36)

| Ordering | Ordering Number | Marking on Product | Delivery Mode | Quantity | Code No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Standard | MEO 450-12DA | MEO 450-12DA | Box | 6 | 464635 |



| Dim. | MIN <br> $[\mathrm{mm}]$ | MAX <br> $[\mathrm{mm}]$ | MIN <br> $[$ inch] $]$ | MAX <br> $[$ inch] $]$ |
| :---: | ---: | ---: | ---: | :---: |
| a | 30.0 | 30.6 | 1.181 | 1.205 |
| b | typ. 0.25 |  | typ. 0.010 |  |
| c | 64.0 | 65.0 | 2.520 | 2.559 |
| d | 6.5 | 7.0 | 0.256 | 0.275 |
| e | 4.9 | 5.1 | 0.193 | 0.201 |
| h | 93.5 | 94.5 | 3.681 | 3.720 |
| i | 79.5 | 80.5 | 3.130 | 3.169 |
| k | 33.4 | 34.0 | 1.315 | 1.339 |
| l | 16.7 | 17.3 | 0.657 | 0.681 |
| m | 22.7 | 23.3 | 0.894 | 0.917 |
| n | 22.7 | 23.3 | 0.894 | 0.917 |
| o | 14.0 | 15.0 | 0.551 | 0.591 |
| p | typ. 10.5 | typ. 0.413 |  |  |



B-B (1:1)




Fig. 1 Typ. forward current $\mathrm{I}_{\mathrm{F}}$ vs. $\mathrm{V}_{\mathrm{F}}$


Fig. 2 Typ. reverse recovery charge $Q_{r}$ versus $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$


Fig. 5 Typ. recovery timet ${ }_{\text {rr }}$ vs. $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$


Fig. 3 Typ. peak reverse current $\mathrm{I}_{\text {RM }}$ versus - $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 4 Typ. dynamic parameters $Q_{r}, I_{R M}$ versus $T_{V J}$



Fig. 7 Typ. transient thermal impedance junction to case

