

Current Transducer CTSR 1-TP/SP18

 $I_{PRN} = 1 A$

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Closed loop (compensated) current transducer
- Voltage output
- Single supply voltage
- PCB mounting.

Special features

- Test winding included
- No retention pin.

Advantages

- High accuracy
- Very low offset drift over temperature
- Wide aperture
- High overload capability
- High insulation capability
- Reference pin with two modes, Ref In and Ref Out
- Degauss and test functions.

Applications

- Residual current measurement
- Leakage current measurement in transformerless PV inverters
- First human contact protection of PV arrays
- Failure detection in power sources
- Symmetrical fault detection (e.g. after motor inverter)
- Leakage current detection in stacked DC sources
- Single phase or three phase current measurement of ±30 A per wire,maximum current up to ±150 A per wire (DC or AC).

Standards

- EN 50178: 1997
- IEC 61010-1: 2010
- UL 508: 2013.

Application Domain

- Industrial
- Suitable to fulfil VDE 0126-1-1, UL 1741 and IEC 62109-2.

Page 1/10

Absolute maximum ratings

Parameter	Symbol	Unit	Value
Maximum supply voltage	$U_{\rm C\;max}$	V	7
Maximum primary conductor temperature	$T_{\rm B\;max}$	°C	110
Maximum overload capability (100 µs, 500 A/µs)	$\hat{I}_{\rm Pmax}$	A	3300
Maximum current of test winding	I_{Tmax}	mA	300

Stresses above these ratings may cause permanent damage. Exposure to absolute maximum ratings for extended periods may degrade reliability.

UL 508: Ratings and assumptions of certification

File # E189713 Volume: 2 Section: 3

Standards

- CSA C22.2 NO. 14-10 INDUSTRIAL CONTROL EQUIPMENT Edition 11 Revision Date 2011/08/01
- UL 508 STANDARD FOR INDUSTRIAL CONTROL EQUIPMENT Edition 17 Revision Date 2013/03/15

Ratings

Parameter	Symbol	Unit	Value Version P
Primary involved potential		V AC/DC	1000
Max surrounding air temperature	T _A	°C	105
Primary current	I _P	А	150
Secondary supply voltage	U _c	V DC	5
Output voltage	$U_{\rm out}$	V	0 to 5

Conditions of acceptability

When installed in the end-use equipment, consideration shall be given to the following:

- 1 A suitable enclosure shall be provided in the end-use application.
- 5 The series is intended to be mounted on the printed wiring board of the end-use equipment.
- 8 Primary feeder of the devices shall be connected after an overvoltage device or system which has been evaluated by the standard for Transient Voltage Surge Suppressors, UL 1449.
- 9 Jumpers of current transducers, CTSR X-TP series are intended to be PCB mounted.

Marking

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.

Page 2/10

Insulation coordination

Parameter	Symbol	Unit	Value	Comment	
RMS voltage for AC insulation test, 50 Hz, 1 min	$U_{\rm d}$	kV	6.4		
Impulse withstand voltage 1.2/50 µs	$U_{ m Ni}$	kV	10.5		
Partial discharge extinction RMS voltage @ 10 pC	U_{e}	kV	1.65		
Clearance (pri pri.)	d _{cı}	mm	6.2	Shortest distance through air	
Creepage distance (pri pri.)	$d_{\sf Cp}$	mm	8.9	Shortest path along device body	
Clearance (pri sec.)	d _{cı}	mm	12	Shortest distance through air	
Creepage distance (pri sec.)	$d_{\rm Cp}$	mm	12	Shortest path along device body	
When mouted on a PCB (with recommended hole a	nd pad diamete	rs, see par	agraph "PCB f	ootprint").	
Clearance (pri pri.)	d _{cı}	mm	6.2	Shortest distance through air	
Creepage distance (pri pri.)	d _{Cp}	mm	17.05	Shortest path on recommended PCB surface	
Clearance (pri sec.)	d _{cı}	mm	12	Shortest distance through air	
Creepage distance (pri sec.)	d _{Cp}	mm	12.4	Shortest path on recommended PCB surface	
Comparative tracking index	CTI		600		
Application example	-	v	600	Reinforced insulation, non uniform field according to EN 50178, EN 61010 CAT III,PD2	
Application example	-	v	1500	Basic insulation, non uniform field according to EN 50178, IEC 61010 CAT III, PD2	

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Мах	Comment
Ambient operating temperature	T_{A}	°C	-40		105	
Ambient storage temperature	Ts	°C	-50		105	
Mass	т	g		130		

Page 3/10

CTSR 1-TP/SP18

Electrical data

At $T_A = 25$ °C, $U_C = +5$ V, output voltage referred to U_{ref} , unless otherwise noted (see Min., Max., typical definition paragraph) in page 8.

Parameter	Symbol	Unit	Min	Тур	Max	Comment	
Primary nominal residual RMS current	I _{prn}	A		1			
Primary residual current, measuring range	I _{prm}	A	-1.7		1.7		
Supply voltage	Uc	V	4.75	5	5.25		
Current consumption	I _c	mA		17.5	21.6	$+I_{\rm P} (mA)/N_{\rm S}$ With $N_{\rm S}$ = 1000 turns -40 105 °C	
Output voltage referred to GND (during Degauss cycle)	U_{out}	V		0.3	0.5	1)	
Output voltage referred to $U_{\rm ref}$ (Test current)	U_{out}	V	0.2	0.35	0.5	1)	
Reference voltage @ $I_{\rm p}$ = 0	U_{ref}	V	2.495	2.5	2.505	Internal reference	
External reference voltage	U_{ref}	V	2.3		4	Internal reference of $U_{\rm ref}$ input = 499 $\Omega^{(1)}$	
Electrical offset current referred to primary ²⁾	I _{oe}	mA	-30	7	30		
Temperature coefficient of $U_{\rm ref}$	TCU _{ref}	ppm/K			±50	−40 105 °C	
Temperature coefficient of U_{OE} @ I_{P} = 0	TCU _{oe}	ppm/K			±520	ppm/K of 2.5 V −40 … 105 °C	
Theoretical sensitivity	S _N	V/A		1.2			
Sensitivity error ³⁾	ε _s	%	-1.6	0.3	1.6	$R_{\rm L}$ > 500 k Ω	
Sensitivity error with testing winding (±3 %)	ε _s	%	-3		3	R _L > 500 kΩ	
Temperature coefficient of S	TCS	ppm/K			±200	−40 105 °C	
Linearity error	$\varepsilon_{\rm L}$	% of $I_{\rm PRM}$		0.4	1.3		
Number of turns (test winding)	$N_{\rm T}$			20			
Test current, measuring range	I _{t m}	mA	-50		50		
Magnetic offset current (1000 × I_{PRN}) referred to primary	I _{om}	mA		17			
Output RMS noise voltage (1 Hz 10 kHz)	$U_{\sf no}$	mV		4		R _L > 500 kΩ	
Delay time @ 10 % of I _{PRN}	t _{D 10}	μs		5		R _L > 500 kΩ, d <i>i</i> /d <i>t</i> > 5 A/μs	
Delay time to 90 % of $I_{\rm PN}$	t _{D 90}	μs		30		R_{\perp} > 500 k Ω , di/dt > 5 A/µs	
Frequency bandwidth (-1 dB)	BW	kHz		9.5	1	R _L > 500 kΩ	
Error 4)	З	%			1.9	$= (\varepsilon_{\rm S}^{2} + \varepsilon_{\rm L}^{2})^{1/2}$	

Notes: ¹⁾ See "Application information" section

²⁾ Electrical offset I_{OE}: When all the primary phase currents are equal to zero, the output of the transducer exhibits an offset voltage (DC value). For convinent aspects, this offset is expressed on the primary side as electrical offset current

³⁾ Sensitivity Error: Parameter measured when all the phase primary currents are equal to zero except one of them equal to the normal residual current. See also paragraph "Influence of phase current"

⁴⁾Accuracy @ $T_{\rm A}$ and $I_{\rm P}$: $\varepsilon_{\rm TA} = (\varepsilon^2 + (TCS \times 100 \times (T_{\rm A} - 25))^2 + (TCU_{\rm OE} \times 2.5 \times (T_{\rm A} - 25)/S_{\rm N} \times 100/I_{\rm P})^2)^{1/2}$.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

Page 4/10

Application information

Filtering, decoupling CTSR transducer

Supply voltage U_c (5 V)

The CTSR transducers have internal decoupling capacitors, but in the case of a power supply track on the application PCB having a high impedance, it is advised to provide local decoupling, 100 nF or more, located close to the transducer.

Reference U_{ref}

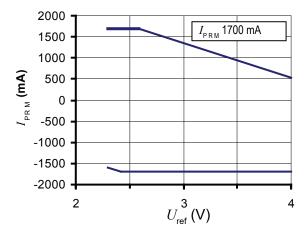
Ripple present on the U_{ref} pin can be filtered with a low value of capacitance because of the internal 499 ohm series resistance. The CTSR transducers have an internal capacitor of 22 nF between U_{ref} pin and Gnd pin and the maximum filter capacitance value which could be added is 1 µF. Adding a larger decoupling capacitor will increase the activation delay of degauss.

Output $U_{\rm out}$

The CTSR transducers have an internal low pass filter 470 ohm/22 nF; if a decoupling capacitor is added on U_{out} pin, the bandwidth and the response time will be affected. In case of short circuit, the transducer CTSR can source or sink up to a maximum of 10 mA on its output U_{out} .

Using an external reference voltage

If the U_{ref} pin of the transducer is not used it could be either left unconnected or filtered according to the previous paragraph "Reference U_{ref} ".

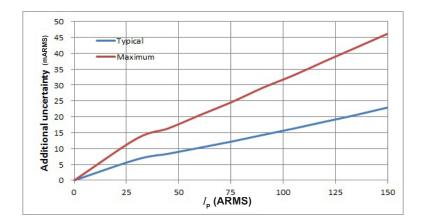

The U_{ref} pin has two modes Ref out and Ref In:

- In the Ref out mode the 2.5 V internal precision reference is used by the transducer as the reference point for bipolar measurements; this internal reference is connected to the U_{ref} pin of the transducer through a 499 ohms resistor. It tolerates sink or source currents up to ±5 mA, but the 499 ohms resistor prevents this current to exceed these limits.
- In the Ref In mode, an external reference voltage is connected to the U_{ref} pin; this voltage is specified in the range 2.3 to 4 V and is directly used by the transducer as the reference point for measurements. The external reference voltage U_{ref} must be able:

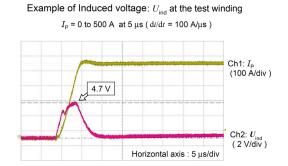
o either to source a typical current of $\frac{U_{ref} - 2.5}{499}$, the maximum value will be 3 mA when U_{ref} = 4 V.

o or to sink a typical current of $\frac{2.5 - U_{ref}}{499}$, the maximum value will be 0.4 mA when U_{ref} = 2.3 V.

The following graphs show how the measuring range of the transducer depends on the external reference voltage value U_{ref} ($U_c = 5 \text{ V}$).


 $\begin{array}{ll} \mbox{Upper limit: } I_{\rm p} = 1700 \mbox{ mA} & (U_{\rm ref} = 2.3 \hdots 2.625 \mbox{ V}) \\ \mbox{Upper limit: } I_{\rm p} = -833.3 \ ^* U_{\rm ref} + 3854.2 & (U_{\rm ref} = 2.625 \hdots 2.4 \mbox{ V}) \\ \mbox{Lower limit: } I_{\rm p} = -833.3 \ ^* U_{\rm ref} + 312.5 & (U_{\rm ref} = 2.3 \hdots 2.375 \mbox{ V}) \\ \mbox{Lower limit: } I_{\rm p} = -1700 \mbox{ mA} & (U_{\rm ref} = 2.375 \hdots 2.375 \hdots 4 \mbox{ V}) \\ \end{array}$

Page 5/10


Influence of phase current

The primary nominal residual current I_{PRN} is the algebraical sum of the instantaneous values of all the phase currents flowing through the aperture of the transducer. The primary phase current I_p is the amplitude of each individual phase currents flowing into any wire/cable placed into the aperture of the transducer. Even when $I_{PR} = 0$, the amplitude I_p of individual phase current will produce a spurious output, introducing additional uncertainty, as shown in the graph below. This additional uncertainty has to be taken into account in the budget error.

Test winding

A test winding is wound around the compensation winding. It allows simulating a primary residual current to test the function of the transducer. The output voltage U_{out} referred to U_{ref} for a test current I_{T} is below.

 $U_{\text{out}} - U_{\text{ref}} = S_{\text{N}} * I_{\text{T}}$ (test current) * 20

To fullfill the standard IEC 62109-2 with the transducer, the test winding must be used to verify the accuracy of the transducer according to clause 4.4.4.15.1 and 4.8.3.5 of the IEC 62109-2 before each attempted re-start of the PV inverter. The current injected in the test winding should be generated by a current source. When the test winding is not used, it must stay open. A high voltage may be generated by the test winding when a fast transient primary current is applied to the transducer (transformer effect); an additional protection is recommended in application PCB assembly if there is such a possibility.

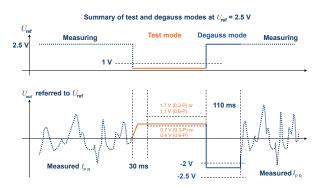
CTSR transducer in Test mode

When the U_{ref} pin is forced at a low level voltage between 0 and 1 V and is maintained at this level, the output voltage U_{out} of CTSR transducer exhibits a fixed value (see specification) as if it measured a primary test current.

The activation time of test mode is min 30 ms. The CTSR transducer can be maintained in test mode as long as needed for checking that it is fully operating.

Page 6/10

CTSR 1-TP/SP18


CTSR transducer in Degauss mode

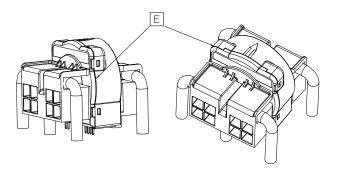
The CTSR transducers go in degauss mode automatically at each power on or on demand by using the $U_{\rm ref}$ pin. At power on:

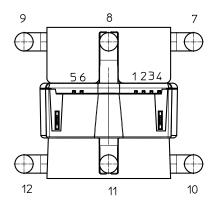
A degauss is automatically generated at each power on of the CTSR transducer; during degaussing the output voltage U_{out} is maintained at 0.3 V typ. (max 0.5 V). After c.a. 110 ms, the output voltage U_{out} is released and takes the normal operation level in relation with the measured primary current.

Using U_{ref} pin:

When the pin U_{ref} is released from the Low level voltage defined in the Test mode above, there is a rising edge on U_{ref} which generates an automatic degauss.

The activation of degauss takes typically 40 μ s after releasing U_{ref} pin, then degauss lasts typically 110 ms.


Page 7/10


CTSR 1-TP/SP18

Insulation around the CTSR transducer housing

Due to the joint between the case and the cover of the CTSR transducer, there is some isolation distance to respect when primary conductors pass around the CTSR housing. The figure below shows the joint and the apertures where the clearance between the secondary part inside the CTSR transducer and the surface of the housing is 3 mm (label E).

Integrated primary conductors

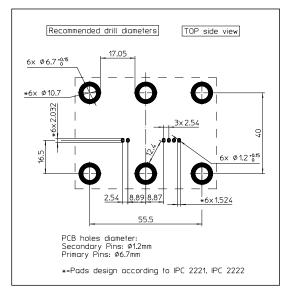
Primary conductor	Typical primary conductor resistance R_p (mOhm)				
7-10, 9-12	0.09				
8-11	0.04				

Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.

Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.


For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.

Typical, maximal and minimal values are determined during the initial characterization of a product.

Page 8/10

CTSR 1-TP/SP18

Assembly on PCB

- Recommended PCB hole diameter Maximum PCB thickness
- Wave soldering profile No clean process only
- 1.2 mm for secondary pin 2.4 mm maximum 260 °C, 10 s

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

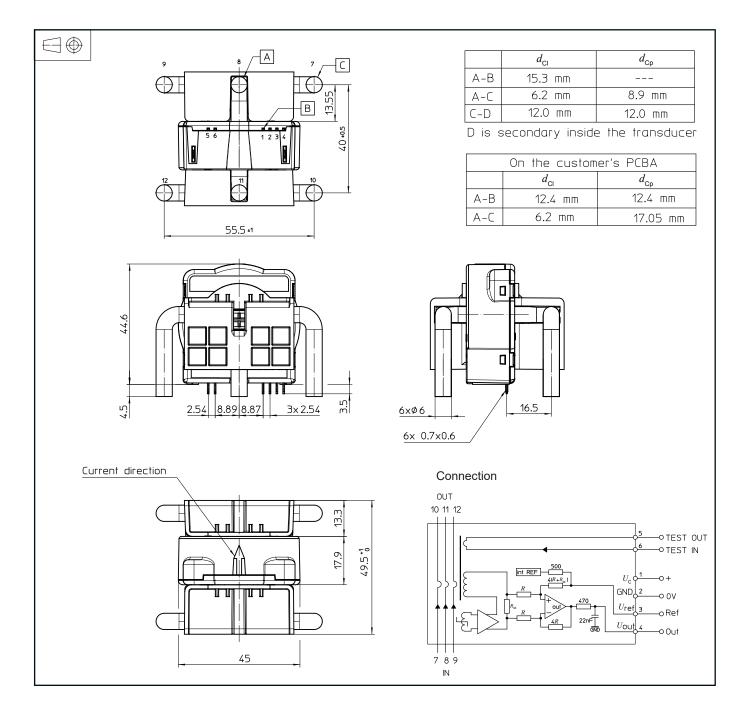
Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Remark


Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site:

https://www.lem.com/en/file/3137/download/.

Page 9/10

Dimensions (in mm, general tolerance ±0.5 mm)

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

Page 10/10