FEATURES

- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 5.9 ns at 3.3 V
- Typical $\mathrm{V}_{\mathrm{olp}}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\text {OHV }}$ (Output V_{OH} Undershoot) $>2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Support Mixed-Mode Signal Operation on All Ports
(5-V Input/Output Voltage With 3.3-V V_{CC})
- $I_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

SN54LVCH244A . . . J OR W PACKAGE
SN74LVCH244A . . DB, DBQ, DGV, DW, NS, OR PW PACKAGE

	(TOP VIEW)		
1㖪		20	V_{CC}
1A1	2	19] $\overline{O E}$
$2 Y 4$	3	18] 1 Y 1
1A2	4	17] 2A4
2 Y 3	5	16] 1 Y2
1A3	6	15] 2A3
$2 Y 2$	7	14] 1 Y3
1A4	8	13	2A2
$2 Y 1$	9	12] 1 Y 4
GND	10	11	[A 1

SN74LVCH244A...RGY PACKAGE (TOP VIEW)

SN54LVCH244A... FK PACKAGE
(TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The SN54LVCH244A octal buffer/line driver is designed for $2.7-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation, and the SN74LVCH244A octal buffer/line driver is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$ operation.

These devices are organized as two 4-bit line drivers with separate output-enable ($\overline{\mathrm{OE}})$ inputs. When $\overline{\mathrm{OE}}$ is low, these devices pass data from the A inputs to the Y outputs. When $\overline{O E}$ is high, the outputs are in the high-impedance state.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.
Inputs can be driven from either $3.3-\mathrm{V}$ or $5-\mathrm{V}$ devices. This feature allows the use of these devices as translators in a mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ system environment.

These devices are fully specified for partial-power-down applications using $I_{\text {off }}$. The $I_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCES0090-JULY 1995-REVISED FEBRUARY 2007
ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN - RGY	Reel of 1000	SN74LVCH244ARGYR	LCH244A
	SOIC - DW	Tube of 25	SN74LVCH244ADW	LVCH244A
		Reel of 2000	SN74LVCH244ADWR	
	SOP - NS	Reel of 2000	SN74LVCH244ANSR	LVCH244A
	SSOP - DB	Reel of 2000	SN74LVCH244ADBR	LCH244A
	SSOP (QSOP) - DBQ	Reel of 2500	SN74LVCH244ADBQR	LVCH244A
	TSSOP - PW	Tube of 70	SN74LVCH244APW	LCH244A
		Reel of 2000	SN74LVCH244APWR	
		Reel of 250	SN74LVCH244APWT	
	TVSOP - DGV	Reel of 2000	SN74LVCH244ADGVR	LCH244A
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube of 20	SNJ54LVCH244AJ	SNJ54LVCH244AJ
	CFP - W	Tube of 85	SNJ54LVCH244AW	SNJ54LVCH244AW
	LCCC - FK	Tube of 55	SNJ54LVCH244AFK	SNJ54LVCH244AFK

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

(EACH BUFFER)

INPUTS		OUTPUT
$\mathbf{O E}$	\mathbf{A}	
L	H	H
L	L	L
H	X	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
V_{1}	Input voltage range ${ }^{(2)}$		-0.5	6.5	V
V_{0}	Voltage range applied to any	or power-off state ${ }^{(2)}$	-0.5	6.5	V
V_{O}	Voltage range applied to any	${ }^{(2)(3)}$	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{K}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
$\mathrm{l}_{\text {OK }}$	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
l_{0}	Continuous output current			± 50	mA
	Continuous current through V^{\prime}			± 100	mA
		DB package ${ }^{(4)}$		70	
		DBQ package ${ }^{(4)}$		68	
		DGV package ${ }^{(4)}$		92	
$\theta_{\text {JA }}$	Package thermal impedance	DW package ${ }^{(4)}$		58	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		NS package ${ }^{(4)}$		60	
		PW package ${ }^{(4)}$		83	
		RGY package ${ }^{(5)}$		37	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The value of $\mathrm{V}_{C C}$ is provided in the recommended operating conditions table.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.
(5) The package thermal impedance is calculated in accordance with JESD 51-5.

Recommended Operating Conditions ${ }^{(1)}$

			SN54LVC	44A	SN74LV		
			MIN	MAX	MIN	MAX	UNIT
		Operating	2	3.6	1.65	3.6	
VCO	Supply voltage	Data retention only	1.5		1.5		
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V			$0.65 \times \mathrm{V}_{\text {cc }}$		
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V			1.7		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		2		
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V				$\times \mathrm{V}_{\mathrm{CC}}$	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V				0.7	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8		0.8	
V_{1}	Input voltage		0	5.5	0	5.5	V
	Output volta	High or low state	0	$\mathrm{V}_{\text {c }}$	0	V_{CC}	
	Ouput vol	3-state	0	5.5	0	5.5	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$				-4	
I_{O}	-level output current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$				-8	mA
${ }_{\text {OH }}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-12		-12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		-24		-24	
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$				4	
	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$				8	A
OL	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		12		12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		24		24	
$\Delta t / \Delta v$	Input transition rise or fall rate			10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

(1) All unused control inputs of the device must be held at $\mathrm{V}_{C C}$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{cc}	SN54LVCH244A			SN74LVCH244A			UNIT	
			MIN	TYP ${ }^{(1)}$	MAX	MIN	TYP(1)	MAX			
V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			1.65 V to 3.6 V				$\mathrm{V}_{\mathrm{CC}}-0.2$			V
			2.7 V to 3.6 V	$\mathrm{V}_{C C}-0.2$							
	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		1.65 V				1.2				
	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$		2.3 V				1.7				
	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$		2.7 V	2.2			2.2				
			3 V	2.4			2.4				
	$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		3 V	2.2			2.2				
$\mathrm{V}_{\text {OL }}$	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		1.65 V to 3.6 V	0.2			0.2			V	
			2.7 V to 3.6 V								
	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$		1.65 V						0.45		
	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		2.3 V						0.7		
	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		2.7 V			0.4			0.4		
	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		3 V			0.55			0.55		
1	$\mathrm{V}_{1}=0$ to 5.5 V		3.6 V			± 5			± 5	$\mu \mathrm{A}$	
$\mathrm{l}_{\text {off }}$	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		0						± 10	$\mu \mathrm{A}$	
$I_{\text {(hold) }}$	$\mathrm{V}_{1}=0.58 \mathrm{~V}$		1.65 V				(2)			$\mu \mathrm{A}$	
	$\mathrm{V}_{1}=1.07 \mathrm{~V}$						(2)				
	$\mathrm{V}_{1}=0.7 \mathrm{~V}$		2.3 V				45				
	$\mathrm{V}_{1}=1.7 \mathrm{~V}$						-45				
	$\mathrm{V}_{1}=0.8 \mathrm{~V}$		3 V	75			75				
	$\mathrm{V}_{1}=2 \mathrm{~V}$			-75			-75				
	$\mathrm{V}_{1}=0$ to $3.6 \mathrm{~V}^{(3)}$		3.6 V	± 500			± 500				
l_{0}	$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V		3.6 V			± 15			± 10	$\mu \mathrm{A}$	
I_{cc}	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	$\mathrm{I}_{0}=0$	3.6 V			10			10	$\mu \mathrm{A}$	
	$3.6 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}^{(4)}$					10			10		
$\Delta \mathrm{l}_{\mathrm{CC}}$	One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at $V_{C C}$ or GND		2.7 V to 3.6 V	500			500			$\mu \mathrm{A}$	
C_{i}	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		3.3 V		4	12	4			pF	
Co	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		3.3 V		5.5	12		5.5		pF	

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) This information was not available at the time of publication.
(3) This is the bus-hold maximum dynamic current required to switch the input from one state to another.
(4) This applies in the disabled state only.

WITH 3-STATE OUTPUTS
SCES0090-JULY 1995-REVISED FEBRUARY 2007

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVCH244A			UNIT
			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN MAX	MIN	MAX	
t_{pd}	A	Y	7.5	1	6.5	ns
$\mathrm{t}_{\text {en }}$	$\overline{\mathrm{OE}}$	Y	9	1	8	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y	8	1	7	ns

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN74LVCH244A								UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t_{pd}	A	Y	(1)	(1)	(1)	(1)		6.9	1.5	5.9	ns
$\mathrm{t}_{\text {en }}$	$\overline{\mathrm{OE}}$	Y	(1)	(1)	${ }^{(1)}$	(1)		8.6	1	7.6	ns
$\mathrm{t}_{\text {dis }}$	OE	Y	(1)	(1)	(1)	(1)		6.8	1.5	5.8	ns

(1) This information was not available at the time of publication.

Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance per buffer/driver	Outputs enabled		$\mathrm{f}=10 \mathrm{MHz}$	(1)	${ }^{(1)}$	47	pF
		Outputs disabled	(1)		(1)	2		

(1) This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	$\mathrm{V}_{\text {LOAD }}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PZH }}$	GND

LOAD CIRCUIT

V_{CC}	INPUTS		V_{M}	$\mathrm{V}_{\mathrm{LOAD}}$	C_{L}	R_{L}	V_{Δ}
	V_{I}	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$					
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	500Ω	0.15 V
2.7 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

[^0]NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{\text {PZL }}$ and $t_{P Z H}$ are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-9754201Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & \text { 9754201Q2A } \\ & \text { SNJ54LVCH } \\ & \text { 244AFK } \end{aligned}$	Samples
5962-9754201QRA	ACTIVE	CDIP	J	20	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962-9754201QR } \\ & \text { A } \\ & \text { SNJ54LVCH244AJ } \end{aligned}$	Samples
5962-9754201QSA	ACTIVE	CFP	W	20	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962-9754201QS } \\ & \text { A } \\ & \text { SNJ54LVCH244AW } \end{aligned}$	Samples
5962-9754201V2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & 5962- \\ & 9754201 \mathrm{~V} 2 \mathrm{~A} \\ & \text { SNV54LVCH } \\ & 244 \mathrm{AFK} \end{aligned}$	Samples
5962-9754201VSA	ACTIVE	CFP	W	20	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & 5962-9754201 \text { VS } \\ & \text { A } \\ & \text { SNV54LVCH244AW } \end{aligned}$	Samples
SN74LVCH244ADBQR	ACTIVE	SSOP	DBQ	20	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LVCH244A	Samples
SN74LVCH244ADBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LCH244A	Samples
SN74LVCH244ADGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LCH244A	Samples
SN74LVCH244ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH244A	Samples
SN74LVCH244ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH244A	Samples
SN74LVCH244ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH244A	Samples
SN74LVCH244APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LCH244A	Samples
SN74LVCH244APWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LCH244A	Samples

PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2020

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74LVCH244APWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LCH244A	Samples
SN74LVCH244APWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LCH244A	Samples
SN74LVCH244APWT	ACTIVE	TSSOP	PW	20	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LCH244A	Samples
SN74LVCH244ARGYR	ACTIVE	VQFN	RGY	20	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LCH244A	Samples
SNJ54LVCH244AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & \text { 9754201Q2A } \\ & \text { SNJ54LVCH } \\ & \text { 244AFK } \\ & \hline \end{aligned}$	Samples
SNJ54LVCH244AJ	ACTIVE	CDIP	J	20	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & 5962-9754201 Q R \\ & \text { A } \\ & \text { SNJ54LVCH244AJ } \end{aligned}$	Samples
SNJ54LVCH244AW	ACTIVE	CFP	W	20	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962-9754201QS } \\ & \text { A } \\ & \text { SNJ54LVCH244AW } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

INSTRUMENTS
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LVCH244A, SN54LVCH244A-SP, SN74LVCH244A

- Catalog: SN74LVCH244A, SN54LVCH244A
- Military: SN54LVCH244A
- Space: SN54LVCH244A-SP

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications
- Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
SN74LVCH244ADBQR	SSOP	DBQ	20	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVCH244ADBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LVCH244ADGRR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVCH244ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LVCH244ANSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LVCH244APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74LVCH244APWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LVCH244ARGRR	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVCH244ADBQR	SSOP	DBQ	20	2500	367.0	367.0	38.0
SN74LVCH244ADBR	SSOP	DB	20	2000	367.0	367.0	38.0
SN74LVCH244ADGVR	TVSOP	DGV	20	2000	853.0	449.0	35.0
SN74LVCH244ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LVCH244ANSR	SO	NS	20	2000	367.0	367.0	45.0
SN74LVCH244APWR	TSSOP	PW	20	2000	367.0	367.0	38.0
SN74LVCH244APWT	TSSOP	PW	20	250	367.0	367.0	38.0
SN74LVCH244ARGYR	VQFN	RGY	20	3000	853.0	449.0	35.0

W (R-GDFP-F20)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within Mil-Std 1835 GDFP2-F20

FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004

DBQ (R-PDSO-G20) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$ per side.
D. Falls within JEDEC MO-137 variation AD.
DBQ (R-PDSO-G20)

PLASTIC SMALL OUTLINE PACKAGE

Example Board Layout

Stencil Openings
Based on a stencil thickness
of $.127 \mathrm{~mm}(.005$ inch $)$.

5,4

4210335-3/D 03/14

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-150.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

PW (R-PDSO-G20)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed 0,15 each side
D Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

$P W$ (R-PDSO-G20)	PLASTIC SMALL OUTLINE
Example Board Layout	Based on a stencil thickness of .127 mm (.005inch).

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4225320/A 09/2019
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

SOLDER MASK DETAILS

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: VOLTAGE WAVEFORMS
 ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

