SN65C1167

DUAL DIFFERENTIAL DRIVERS AND RECEIVERS

Check for Samples: SN65C1167 SN75C1167 SN65C1168 SN75C1168

FEATURES

- Meet or Exceed Standards TIA/EIA-422-B and ITU Recommendation V. 11
- BiCMOS Process Technology
- Low Supply-Current Requirements: 9 mA Max
- Low Pulse Skew
- Receiver Input Impedance . . . 17 k Ω Typ
- Receiver Input Sensitivity . . . $\pm 200 \mathrm{mV}$
- Receiver Common-Mode Input Voltage Range of -7 V to 7 V
- Operate From Single 5-V Power Supply
- Glitch-Free Power-Up/Power-Down Protection
- Receiver 3-State Outputs Active-Low Enable for SN65C1167 and SN75C1167 Only
- Improved Replacements for the MC34050 and MC34051

SN65C1167 ... DB OR NS PACKAGE SN75C1167... DB, N, OR NS PACKAGE (TOP VIEW)

SN65C1168 . . . N, NS, OR PW PACKAGE SN75C1168 . . . DB, N, NS, OR PW PACKAGE (TOP VIEW)

DESCRIPTION

The SN65C1167, SN75C1167, SN65C1168, and SN75C1168 dual drivers and receivers are integrated circuits designed for balanced transmission lines. The devices meet TIA/EIA-422-B and ITU recommendation V.11.

The SN65C1167 and SN75C1167 combine dual 3-state differential line drivers and 3-state differential line receivers, both of which operate from a single $5-\mathrm{V}$ power supply. The driver and receiver have active-high and active-low enables, respectively, which can be connected together externally to function as direction control. The SN65C1168 and SN75C1168 drivers have individual active-high enables.

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE ${ }^{(1)}{ }^{(2)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	PDIP - N	Tube	SN75C1167N	SN75C1167N
			SN75C1168N	SN75C1168N
	SOP - NS	Tape and reel	SN75C1167NSR	75 C 1167
			SN75C1168NSR	75C1168
	SSOP - DB	Tape and reel	SN75C1167DBR	CA1167
			SN75C1168DBR	CA1168
	TSSOP - PW	Tube	SN75C1168PW	CA1168
		Tape and reel	SN75C1168PWR	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP - N	Tube	SN65C1168N	SN65C1168N
	SOP - NS	Tape and reel	SN65C1167NSR	65C1167
			SN65C1168NSR	65C1168
	SSOP - DB	Tape and reel	SN65C1167DBR	CB1167
	TSSOP - PW	Tube	SN65C1168PW	CB1168
		Tape and reel	SN65C1168PWR	

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/sc/packaging.
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the Tl web site at www.ti.com.

FUNCTION TABLES

Each Driver ${ }^{(1)}$

INPUT D	ENABLE	OUTPUTS	
	HE	Y	Z
H	H	H	L
L	H	L	H
X	L	Z	Z

(1) $H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance

Each Receiver ${ }^{(1)}$

DIFFERENTIAL INPUTS $\mathrm{A}-\mathrm{B}$	ENABLE RE	OUTPUT R
$\mathrm{V}_{\text {ID }} \geq 0.2 \mathrm{~V}$	L	H
$-0.2 \mathrm{~V}<\mathrm{V}_{\text {ID }}<0.2 \mathrm{~V}$	L	$?$
$\mathrm{~V}_{\text {ID }} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z
Open	L	H

(1) $\mathrm{H}=$ high level, $\mathrm{L}=$ low level, ? = indeterminate, $\mathrm{X}=$ irrelevant, $\mathrm{Z}=$ high impedance (off), Open = input disconnected or connected driver off

LOGIC DIAGRAM (POSITIVE LOGIC)

SN65C1167/SN75C1167

SCHEMATIC OF INPUTS

SCHEMATIC OF OUTPUTS

SN65C1167

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range ${ }^{(2)}$		-0.5	7	V
	Input voltage range	Driver	-0.5	$\mathrm{V}_{C C}+0.5$	
V_{1}	In	A or B, Receiver	-11	14	
$\mathrm{V}_{\text {ID }}$	Differential input voltage range ${ }^{(3)}$	Receiver	-14	14	V
V_{0}	Output voltage range	Driver	-0.5	7	V
$\mathrm{I}_{\text {K }}$ or l_{OK}	Clamp current range	Driver		± 20	mA
		Driver		± 150	
10	Output current range	Receiver		± 25	m
ICC	Supply current			200	mA
	GND current			-200	mA
T_{J}	Operating virtual junction temperature			150	${ }^{\circ} \mathrm{C}$
		DB package		82	
	Package thermal impedance ${ }^{(4)}$ (5)	N package		67	CW
$\theta_{\text {JA }}$	(${ }^{\text {a }}$	NS package		64	C/w
		PW package		108	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages values except differential input voltage are with respect to the network GND.
(3) Differential input voltage is measured at the noninverting terminal with respect to the inverting terminal.
(4) Maximum power dissipation is a function of $T_{J}(\max), \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any allowable ambient temperature is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can affect reliability.
(5) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

				MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage			4.5	5	5.5	V
$\mathrm{V}_{\text {IC }}$	Common-mode input voltage ${ }^{(1)}$	Receiver				± 7	V
$V_{\text {ID }}$	Differential input voltage	Receiver				± 7	V
V_{IH}	High-level input voltage	Except A, B		2			V
V_{IL}	Low-level input voltage	Except A, B				0.8	V
ІОн	High-level output current	Receiver				-6	mA
		Driver				-20	
loL	Low-level output current	Receiver				6	mA
		Driver				20	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		SN75C1167, SN75C1168	0		70	${ }^{\circ} \mathrm{C}$
			SN65C1167, SN65C1168	-40		85	

(1) Refer to TIA/EIA-422-B for exact conditions.

DRIVER SECTION

Electrical Characteristics ${ }^{(1)}$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP ${ }^{(2)}$	MAX	UNIT	
V_{IK}	Input clamp voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.5	V	
$\mathrm{V}_{\text {OH }}$	High-level output voltage	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.8 \\ & \mathrm{~V}, \end{aligned}$	$\mathrm{IOH}=-20 \mathrm{~mA}$	2.4	3.4		V	
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.8 \\ & \mathrm{~V}, \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.2	0.4	V	
\|V ${ }_{\text {ODI } 1 \mid}$	Differential output voltage	$\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}$			2		6	V	
\|VOD2		Differential output voltage ${ }^{(1)}$	$R_{L}=100 \Omega$, See Figure 1			2	3.1		V
$\Delta\left\|\mathrm{V}_{\mathrm{OD}}\right\|$	Change in magnitude of differential output voltage						± 0.4	V	
Voc	Common-mode output voltage						± 3	V	
$\Delta \mid \mathrm{V}_{\mathrm{OCl}}$	Change in magnitude of common-mode output voltage						± 0.4	V	
$\mathrm{l}_{\text {O(OFF) }}$	Output current with power off	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}$				100		
			$\mathrm{V}_{\mathrm{O}}=-0.2$				-100	A	
loz	High-impedance-state output current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$					20		
		$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$					-20	A	
I_{H}	High-level input current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or V_{IH}					1	$\mu \mathrm{A}$	
ILL	Low-level input current	$\mathrm{V}_{1}=$ GND or $\mathrm{V}_{\text {IL }}$					-1	$\mu \mathrm{A}$	
los	Short-circuit output current ${ }^{(3)}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND,			-30		-150	mA	
ICC	Supply current (total package) ${ }^{(4)}$	No load, Enabled	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$	GND		4	6	mA	
			$\mathrm{V}_{1}=2.4$	0.5 V		5	3		
Ci_{i}	Input capacitance					6		pF	

(1) Refer to TIA/EIA-422-B for exact conditions.
(2) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
(4) This parameter is measured per input, while the other inputs are at V_{CC} or GND.

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{(1)}$	MAX	UNIT
$t_{\text {PHL }}$	Propagation delay time, high- to low-level output	$\begin{aligned} & \mathrm{R} 1=\mathrm{R} 2=50 \Omega, \\ & \mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=40 \mathrm{pF}, \end{aligned}$ See Figure 2	$\mathrm{R} 3=500 \Omega \text {, }$S1 is open,		7	12	ns
$\mathrm{t}_{\text {PLH }}$	Propagation delay time, low- to high-level output				7	12	ns
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew				0.5	4	ns
t_{r}	Rise time	$\begin{aligned} & \mathrm{R} 1=\mathrm{R} 2=50 \Omega, \\ & \mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=40 \mathrm{pF}, \\ & \text { SeeFigure } 3 \end{aligned}$	$\mathrm{R} 3=500 \Omega \text {, }$ S1 is open,		5	10	ns
t_{f}	Fall time				5	10	ns
tpzH	Output enable time to high level	$\begin{aligned} & \mathrm{R} 1=\mathrm{R} 2=50 \Omega, \\ & \mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=40 \mathrm{pF}, \\ & \text { See Figure } 4 \end{aligned}$	$R 3=500 \Omega,$$\mathrm{S} 1 \text { is closed, }$		10	19	ns
tpzL	Output enable time to low level				10	19	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable time from low level	$\begin{aligned} & \mathrm{R} 1=\mathrm{R} 2=50 \Omega, \\ & \mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=40 \mathrm{pF}, \end{aligned}$ See Figure 4	$\mathrm{R} 3=500 \Omega \text {, }$ S1 is closed,		7	16	ns
tpLZ	Output disable time from high level				7	16	ns

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

RECEIVER SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP ${ }^{(1)}$	MAX	UNIT	
$\mathrm{V}_{\text {IT }+}$	Positive-going input threshold voltage, differential input						0.2	V	
$V_{\text {IT- }}$	Negative-going input threshold voltage, differential input				$-0.2^{(2)}$			V	
$\mathrm{V}_{\text {hys }}$	Input hysteresis ($\mathrm{V}_{\mathrm{IT}+}-\mathrm{V}_{\mathrm{IT}}$)					60		mV	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage, $\overline{\mathrm{RE}}$	SN75C1167	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V	
V_{OH}	High-level output voltage		$\mathrm{V}_{\text {ID }}=200 \mathrm{mV}$,	$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	3.8	4.2		V	
V_{OL}	Low-level output voltage		$\mathrm{V}_{\text {ID }}=-200 \mathrm{mV}$,	$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$		0.1	0.3	V	
loz	High-impedance-state output current	SN75C1167	$\mathrm{VO}=\mathrm{VCC}$ or GND			± 0.5	± 5	$\mu \mathrm{A}$	
1	Line input current		Other input at 0 V	$\mathrm{V}_{1}=10 \mathrm{~V}$			1.5	mA	
			$\mathrm{V}_{1}=-10 \mathrm{~V}$			-2.5			
1	Enable input current, $\overline{\mathrm{RE}}$	SN75C1167		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1	$\mu \mathrm{A}$
r_{i}	Input resistance		$\mathrm{V}_{\text {IC }}=-7 \mathrm{~V}$ to 7 V , Other input at 0 V		4	17		k Ω	
$I_{\text {cc }}$	Supply current (total package)		No load, Enabled	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND		4	6	mA	
			$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ or $0.5 \mathrm{~V}^{(3)}$		5	9			

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.
(3) Refer to TIA/EIA-422-B for exact conditions.

Switching Characteristics

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{(2)}$	MAX	UNIT
tpLH	Propagation delay time, low- to high-level output	See Figure 5	9	17	27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay time, high- to low-level output		9	17	27	ns
$\mathrm{t}_{\text {TLH }}$	Transition time, low- to high-level output	$\mathrm{V}_{\text {IC }}=0 \mathrm{~V}$, See Figure 5		4	9	ns
$\mathrm{t}_{\text {THL }}$	Transition time, high- to low-level output			4	9	ns
$\mathrm{t}_{\text {PzH }}$	Output enable time to high level	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~kW}$, See Figure 6		13	22	ns
$\mathrm{t}_{\text {PzL }}$	Output enable time to low level			13	22	ns
tphz	Output disable time from high level			13	22	ns
	Output disable time from low level			13	22	ns

(1) Measured per input while the other inputs are at $V_{C C}$ or GND
(2) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver Test Circuit, V_{OD} and V_{OC}
A. $\mathrm{C} 1, \mathrm{C} 2$, and C 3 include probe and jig capacitance.
B. The input pulse is supplied by a generator having the following characteristics: $P R R=1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}$ $\leq 6 \mathrm{~ns}$.

Figure 2. Driver Test Circuit and Voltage Waveforms
C. $\mathrm{C} 1, \mathrm{C} 2$, and C 3 include probe and jig capacitance.
D. The input pulse is supplied by a generator having the following characteristics: $P R R=1 \mathrm{MHz}, 50 \%$ duty cycle, $t_{r}=t_{f}$ ≤ 6 ns.

Figure 3. Driver Test Circuit and Voltage Waveforms
E. $\mathrm{C} 1, \mathrm{C} 2$, and C 3 include probe and jig capacitance.
F. The input pulse is supplied by a generator having the following characteristics: $P R R=1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}$ ≤ 6 ns.

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 4. Driver Test Circuit and Voltage Waveforms
G. $\quad C_{L}$ includes probe and jig capacitance.
H. The input pulse is supplied by a generator having the following characteristics: $P R R=1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}$ ≤ 6 ns.

Figure 5. Receiver Test Circuit and Voltage Waveforms
I. $\quad \mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.

J . The input pulse is supplied by a generator having the following characteristics: $P R R=1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}$ $\leq 6 \mathrm{~ns}$.

Figure 6. Receiver Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN65C1167NSR	ACTIVE	SO	NS	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65 C 1167	Samples
SN65C1167NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65C1167	Samples
SN65C1168N	ACTIVE	PDIP	N	16	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	N / A for Pkg Type	-40 to 85	SN65C1168N	Samples
SN65C1168NSR	ACTIVE	SO	NS	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65C1168	Samples
SN65C1168NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65C1168	Samples
SN65C1168PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CB1168	Samples
SN65C1168PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CB1168	Samples
SN65C1168PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CB1168	Samples
SN75C1167DB	ACTIVE	SSOP	DB	16	80	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM		CA1167	Samples
SN75C1167DBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA1167	Samples
SN75C1167N	ACTIVE	PDIP	N	16	25	Green (RoHS \& no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	SN75C1167N	Samples
SN75C1167NSR	ACTIVE	SO	NS	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C1167	Samples
SN75C1167NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75 C 1167	Samples
SN75C1168DBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA1168	Samples
SN75C1168N	ACTIVE	PDIP	N	16	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	N / A for Pkg Type	0 to 70	SN75C1168N	Samples
SN75C1168NE4	ACTIVE	PDIP	N	16	25	Green (RoHS \& no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	SN75C1168N	Samples
SN75C1168NSR	ACTIVE	SO	NS	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75 C 1168	Samples

Orderable Device	Status \qquad (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking \qquad (4/5)	Samples
SN75C1168NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C1168	Samples
SN75C1168PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA1168	Samples
SN75C1168PWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA1168	Samples
SN75C1168PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA1168	Samples
SN75C1168PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA1168	Samples
SN75C1168PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA1168	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by Tl to Customer on an annual basis.

TAPE AND REEL INFORMATION

$*$ All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	$\mathbf{B 0}$ $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
SN65C1167NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN65C1168NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN65C1168PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN75C1167NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN75C1168PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65C1167NSR	SO	NS	16	2000	367.0	367.0	38.0
SN65C1168NSR	SO	NS	16	2000	367.0	367.0	38.0
SN65C1168PWR	TSSOP	PW	16	2000	853.0	449.0	35.0
SN75C1167NSR	SO	NS	16	2000	367.0	367.0	38.0
SN75C1168PWR	TSSOP	PW	16	2000	853.0	449.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

