RTAN Series Tantalum Nitride Thin Film Chip Resistor

Stackpole Electronics, Inc.

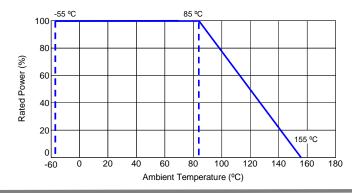
Resistive Product Solutions

Features:

- TaN thin film resistor
- Self-passivating technology is impervious to moisture
- Sulfur resistant (per ASTM B809-95 humid vapor test)
- Meets or exceeds 85 °C / 85% R.H. at 10% rated power humidity test
- AEC-Q200 qualified
- RoHS compliant and halogen-free

Applications:

- Automotive electronics
- Medical equipment
- Measuring instrumentation
- Communication devices


Electrical Specifications									
Type / Code	Power Rating @ 85°C	Maximum Working	Maximum Overload	Resistance Temperature	Ohmic Range (Ω) and Tolerance				
21	(Watts)	Voltage ⁽¹⁾ Voltage	Coefficient	0.05%, 0.1%, 0.25%, 0.5%, 1%					
RTAN0402	0.063 W	50 V	100 V	±10 ppm/ºC	40.2 - 34.8 K				
RTAN0603	0.15 W	75 V	150 V	±15 ppm/°C	40.2 - 130 K				
RTAN0805	0.2 W	100 V	200 V	±25 ppm/°C	10 - 348 K				
RTAN1206	0.4 W	200 V	400 V	±50 ppm/⁰C	10 - 1 M				

Operating Temperature: -55 ~ +155°C

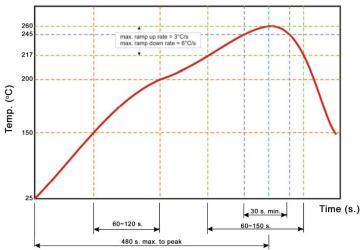
(1) Lesser of $\sqrt{P^*R}$ or maximum working voltage.

Mechanical Specifications											
Protective coat t End termination Resistive layer Ceramic substrate											
Type / Code	L	W	А	В	t	Unit					
RTAN0402	0.039 ± 0.004 1.00 ± 0.10	0.020 ± 0.002 0.50 ± 0.05	0.010 ± 0.006 0.25 ± 0.15	0.012 ± 0.004 0.30 ± 0.10	0.012 ± 0.004 0.30 ± 0.10	inches mm					
RTAN0603	0.061 ± 0.004 1.55 ± 0.10	0.031 ± 0.004 0.80 ± 0.10	0.012 ± 0.008 0.30 ± 0.20	0.012 ± 0.006 0.30 ± 0.15	0.018 ± 0.006 0.45 ± 0.15	inches mm					
RTAN0805	0.079 ± 0.004 2.00 \pm 0.10	0.049 ± 0.004 1.25 ± 0.10	$\begin{array}{r} 0.014 \pm 0.008 \\ 0.35 \pm 0.20 \end{array}$	0.016 ± 0.008 0.40 ± 0.20	0.020 ± 0.006 0.50 ± 0.15	inches mm					
RTAN1206	0.122 ± 0.004 3.10 ± 0.10	0.063 ± 0.004 1.60 ± 0.10	0.016 ± 0.008 0.40 ± 0.20	0.016 ± 0.008 0.40 ± 0.20	0.024 ± 0.006 0.60 ± 0.15	inches mm					

Power Derating Curve:

RTAN Series

Tantalum Nitride Thin Film Chip Resistor


Performance Characteristics								
Test	Test Method	Test Specification	Test Condition					
			DC resistance values measurement Temperature Coefficient of Resistance (TCR) Natural resistance change per change in degree centigrade					
Electrical Characteristics	IEC-60115-1 4.8	Within the specified tolerance	$\frac{R_2 - R_1}{R_1 (t_2 - t_1)} \times 10^6 (\text{ppm/°C}) t_1: 20 \text{ °C} +5^\circ\text{C} / -1^\circ\text{C}$ R1: Resistance at reference temperature (20 °C +5 °C / -1 °C)					
			R2: Resistance at test temperature (-55 °C or +125 °C)					
Short Time Overload	IEC-60115-1 4.13	Δ R/R max. ± (0.1% + 0.02 Ω)	Permanent resistance change after a 5 second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.					
Resistance to Soldering Heat	ering Heat AEC-Q200-15 Δ R/R max. ± (0.1%		Un-mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at 260 ± 5 °C					
Solderability IEC-60068-2-58 Good tinning (>95% cove No visible damage		Good tinning (>95% covered) No visible damage	Un-mounted chips completely immersed for 2 ± 0.5 seconds in a SAC solder bat at 235 ± 5 °C					
Thermal Shock MIL-STD-202 Method 107		No visible damage $\Delta R/R$ max. ± (0.1%+0.02 Ω)	Test -55 to 125 °C / dwell time 15 minutes/max. transfer time 20 seconds 1000 cycles					
Load Life and Moisture AEC-Q200-7		Δ R/R max. ± (0.1% + 0.02 Ω)	1000 +48 / -0 hours, loaded with 10% rated power in humidity chamb controller at +85 °C / 85% R.H.					
Load Life IEC-60115-1 4.25		Δ R/R max. ± (0.1% + 0.02 Ω)	1000 +48 / -0 hours, loaded with RCWV or Vmax in chamber controll $85 \pm 2^{\circ}$ C, 1.5 hours ON and 0.5 hours OFF					
High Temperature Load Life	AEC-Q200-8 MIL-STD-202-108	Δ R/R max. ± (0.1% + 0.02 Ω)	1000 hours at 125 \pm 2 °C, loaded with rated power continuously					
High Temperature Exposure	AEC-Q200-3	Δ R/R max. ± (0.1% + 0.02 Ω)	1000 hours at 125 °C, unpowered					
Biased Humidity	AEC-Q200-6 MIL-STD-202 Method 106	Δ R/R max. ± (0.1% + 0.02 Ω)	65 ± 2° C, 80 ~ 100% R.H., 10 cycles, 24 hours/cycle					
Mechanical Shock	MIL-STD-202 Method 213	Δ R/R max. ± (0.1% + 0.02 Ω)	1/2 Sine Pulse / 150 g Peak / Velocity 15.4 foot/second					
Vibration	MIL-STD-202 Method 204	Δ R/R max. ± (0.1% + 0.02 Ω)	5 g's for 20 minutes, 12 cycles each of 3 orientations					
Terminal Strength	AEC-Q200-6	No breaking	1 Kg. for 60 seconds					
Bending Strength	AEC-Q200-21	Δ R/R max. ± (0.1% + 0.02 Ω)	Bending 2 mm for 60 seconds					

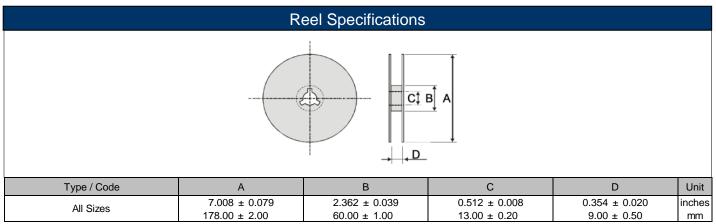
Storage conditions: Temperature 5 to 40 °C. Humidity: 20 to 70% R.H.

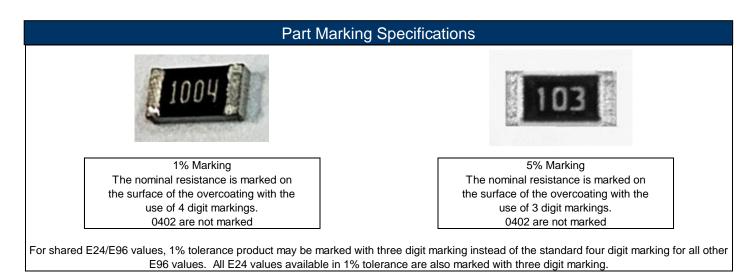
Soldering Condition:

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds. Therefore, it is possible to mount surface mount resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface mount resistors are tested for solderability at 235 °C during 2 seconds within lead-free solder bath. The test condition for no leaching is 260 °C for 30 seconds. Typical examples of soldering profile and condition that provide reliable joints without any damage are given on the picture on the right.

Stackpole Electronics, Inc.


Resistive Product Solutions


RTAN Series

Tantalum Nitride Thin Film Chip Resistor

Resistive Product Solutions

Packaging Specifications												
Type / Code	А	В	W	F	E	P1	PO	D	Т	Unit		
RTAN0402	0.047 ± 0.004	0.028 ± 0.004	0.315 ± 0.012	0.138 ± 0.008	0.069 ± 0.004	0.079 ± 0.004	0.157 ± 0.004	0.059 ± 0.004	0.016 ± 0.002	inches		
	1.20 ± 0.10	0.70 ± 0.10	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10	2.00 ± 0.10	4.00 ± 0.10	1.50 ± 0.10	0.40 ± 0.05	mm		
RTAN0603	0.075 ± 0.008	0.043 ± 0.008	0.315 ± 0.012	0.138 ± 0.008	0.069 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.059 ± 0.004	0.026 ± 0.002	inches		
	1.90 ± 0.20	1.10 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	1.50 ± 0.10	0.65 ± 0.05	mm		
RTAN0805	0.094 ± 0.008	0.065 ± 0.008	0.315 ± 0.012	0.138 ± 0.008	0.069 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.059 ± 0.004	0.039 max.	inches		
	2.40 ± 0.20	1.65 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	1.50 ± 0.10	1.00 max.	mm		
RTAN1206	0.142 ± 0.008	0.079 ± 0.008	0.315 ± 0.012	0.138 ± 0.002	0.069 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.059 ± 0.004	0.039 max.	inches		
	3.60 ± 0.20	2.00 ± 0.20	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	1.50 ± 0.10	1.00 max.	mm		

Resistive Product Solutions

Tantalum Nitride Thin Film Chip Resistor

Mark Instructions for 0603 1% Chip Resistors (per EIA-J)											
A two-digit	number is a	-		•	,			his is follow	•	pha characte	er which is
	used as a multiplier. Each letter from "Y" to "F" represents a specific multiplier as follows:										
Y = 0.1									1,000		
X = 1								D = 1	,		
A = 10								E = 10	,		
		B =	100					F = 1,0	00,000		
EXAMPLE:											
	Chip M	larking			Expla	nation				llue	
	01	1B		"01"	= 10 ohm a	nd "B" = 100)		10 x 100	= 1 Kohm	
	25	5C		"25"	= 17.8 ohm	and "C" = 1	,000	1	17.8 x 1,000	= 17.8 Kohr	n
	93	3D		"93"	= 90.9 ohm	and "D" = 1	0,000	9	0.9 x 10,000) = 909 Kohr	n
					E	96					
1%	#	1%	#	1%	#	1%	#	1%	#	1%	#
10.0	01	14.7	17	21.5	33	31.6	49	46.4	65	68.1	81
10.2	02	15.0	18	22.1	34	32.4	50	47.5	66	69.8	82
10.5	03	15.4	19	22.6	35	33.2	51	48.7	67	71.5	83
10.7	04	15.8	20	23.2	36	34.0	52	49.9	68	73.2	84
11.0	05	16.2	21	23.7	37	34.8	53	51.1	69	75.0	85
11.3	06	16.5	22	24.3	38	35.7	54	52.3	70	76.8	86
11.5	07	16.9	23	24.9	39	36.5	55	53.6	71	78.7	87
11.8	08	17.4	24	25.5	40	37.4	56	54.9	72	80.6	88
12.1	09	17.8	25	26.1	41	38.3	57	56.2	73	82.5	89
12.4	10	18.2	26	26.7	42	39.2	58	57.6	74	84.5	90
12.7	11	18.7	27	27.4	43	40.2	59	59.0	75	86.6	91
13.0	12	19.1	28	28.0	44	41.2	60	60.4	76	88.7	92
13.3	13	19.6	29	28.7	45	42.2	61	61.9	77	90.9	93
13.7	14	20.0	30	29.4	46	43.2	62	63.4	78	93.1	94
14.0	15	20.5	31	30.1	47	44.2	63	64.9	79	95.3	95
14.3	16	21.0	32	30.9	48	45.3	64	66.5	80	97.6	96

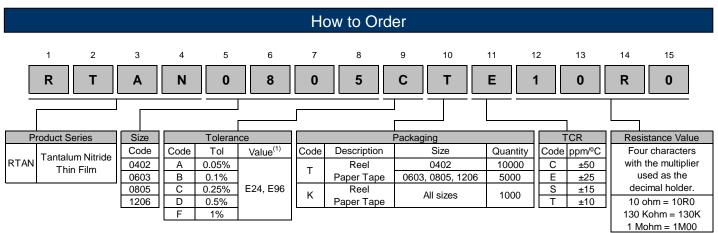
RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status										
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)					
RTAN	Tantalum Nitride Thin Film Chip Resistor	SMD	YES	100% Matte Sn	Always	Always					

Resistive Product Solutions

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

(1) E192 values may be available.