NST3904F3T5G

NPN General Purpose Transistor

The NST3904F3T5G device is a spin-off of our popular SOT-23/SOT-323/SOT-563/SOT-963 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-1123 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

Features

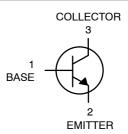
- h_{FE}, 100-300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$
- Reduces Board Space
- This is a Pb-Free Device

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V_{CEO}	40	Vdc
Collector - Base Voltage	V_{CBO}	60	Vdc
Emitter - Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	I _C	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, T _A = 25°C Derate above 25°C	P _D (Note 1)	290 2.3	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	432	°C/W
Total Device Dissipation, T _A = 25°C Derate above 25°C	P _D (Note 2)	347 2.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 2)	360	°C/W
Thermal Resistance, Junction-to-Lead 3	R _{ΨJL} (Note 2)	143	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. 100 mm² 1 oz, copper traces.
- 2. 500 mm² 1 oz, copper traces.

ON Semiconductor®

http://onsemi.com

SOT-1123 CASE 524AA STYLE 1

MARKING DIAGRAM

2 = Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NST3904F3T5G	SOT-1123 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NST3904F3T5G

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C unless otherwise noted})$

C	Symbol	Min	Max	Unit		
OFF CHARACTERISTICS		1		•	II.	
Collector - Emitter Breakdown Volta	V _{(BR)CEO}	40	_	Vdc		
Collector - Base Breakdown Voltag	V _{(BR)CBO}	60	-	Vdc		
Emitter – Base Breakdown Voltage	V _{(BR)EBO}	6.0	-	Vdc		
Collector Cutoff Current (V _{CE} = 30	lector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		-	50	nAdc	
ON CHARACTERISTICS (Note 3)		•	•	•	•	
DC Current Gain		h _{FE}	40 70 100 60 30	- 300 - -	-	
Collector – Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$		V _{CE(sat)}	- -	0.2 0.3	Vdc	
Base – Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		V _{BE(sat)}	0.65 -	0.85 1.0	Vdc	
SMALL-SIGNAL CHARACTERIS	TICS				•	
Current - Gain - Bandwidth Produc	f _T	200	_	MHz		
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF	
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF	
Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 k Ω , f = 1.0 kHz)		NF	-	5.0	dB	
SWITCHING CHARACTERISTICS	3					
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$	t _d	_	35		
Rise Time	(I _C = 10 mAdc, I _{B1} = 1.0 mAdc)	t _r	-	35	ns	
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc)	t _s	-	275	200	
Fall Time	(I _{B1} = I _{B2} = 1.0 mAdc)	t _f	-	50	ns	

^{3.} Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2.0%.

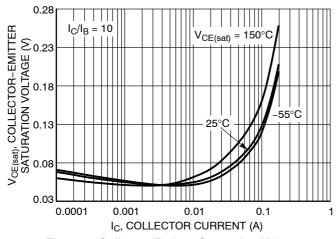


Figure 1. Collector Emitter Saturation Voltage vs.
Collector Current

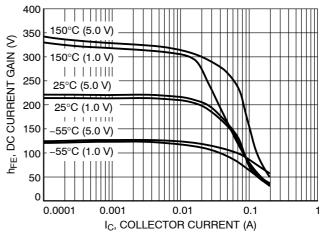


Figure 2. DC Current Gain vs. Collector Current

NST3904F3T5G

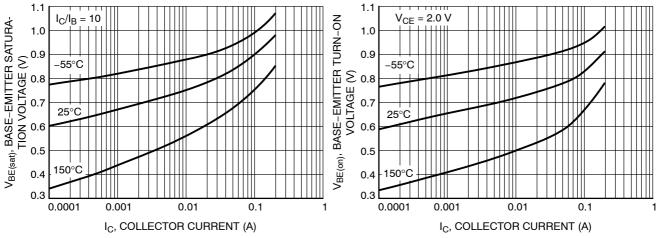


Figure 3. Base Emitter Saturation Voltage vs.
Collector Current

Figure 4. Base Emitter Turn-On Voltage vs.
Collector Current

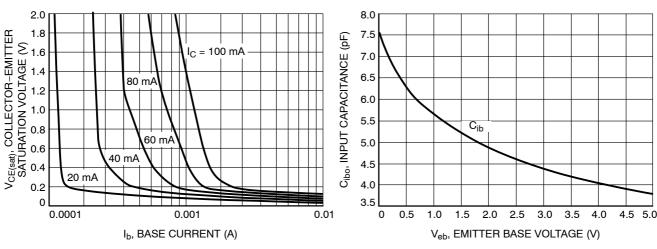
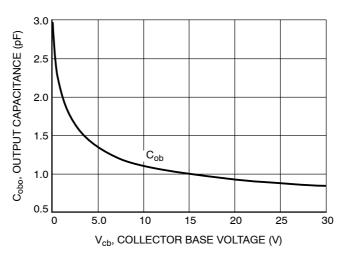
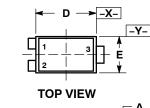
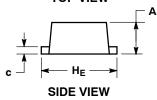


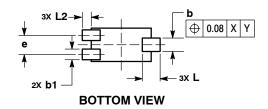
Figure 5. Saturation Region

Figure 6. Input Capacitance

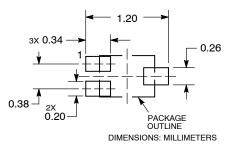



Figure 7. Output Capacitance




SOT-1123 CASE 524AA ISSUE C

DATE 29 NOV 2011


SCALE 8:1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE
- MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.34	0.40		
b	0.15	0.28		
b1	0.10	0.20		
c	0.07	0.17		
D	0.75	0.85		
Е	0.55	0.65		
е	0.35	0.40		
HE	0.95	1.05		
L	0.185 REF			
L2	0.05 0.15			

GENERIC MARKING DIAGRAM*

= Specific Device Code Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	SOURCE
3. COLLECTOR	CATHODE	CATHODE	ANODE	3. DRAIN

DOCUMENT NUMBER:	98AON23134D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-1123, 3-LEAD, 1.0X0.6X0.37, 0.35P		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative