

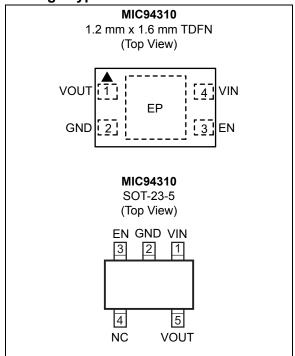
200 mA LDO with Ripple BlockerTM Technology

Features

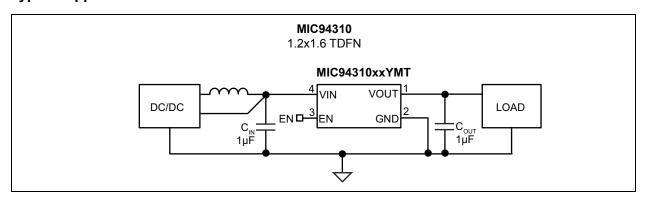
- 1.8V to 3.6V Input Voltage Range
- Active Noise Rejection Over a Wide Frequency Band: >50 dB from 10 Hz to 10 MHz at 200 mA Load
- · Rated to 200 mA Output Current
- · Fixed Output Voltages
- · Current-Limit and Thermal-Limit Protected
- 1.2 mm × 1.6 mm 4-Pin Thin DFN
- 5-Pin SOT-23
- · Logic-Controlled Enable Pin
- –40°C to +125°C Junction Temperature Range

Applications

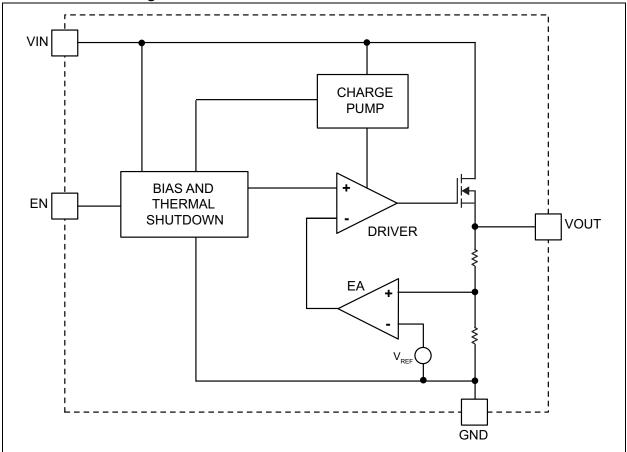
- · Smartphones/Smart Books
- · Tablet PC/Notebooks and Webcams
- · Digital Still and Video Cameras
- · Global Positioning Systems
- · Mobile Computing
- · Automotive and Industrial Applications


General Description

The MIC94310 Ripple Blocker™ is a monolithic integrated circuit that provides low-frequency ripple attenuation (switching noise rejection) to a regulated output voltage. This is important for applications where a DC/DC switching converter is required to lower or raise a battery voltage, but where switching noise cannot be tolerated by sensitive downstream circuits such as in RF applications. The MIC94310 maintains high power supply ripple rejection (PSRR) with input voltages operating near the output voltage level to improve overall system efficiency. A low-voltage logic enable pin facilitates ON/OFF control at typical GPIO voltage levels.


The MIC94310 operates from an input voltage of 1.8V to 3.6V.

Packaged in a 4-pin 1.2 mm \times 1.6 mm Thin DFN, or a 5-pin SOT-23, the MIC94310 has a junction operating temperature range of -40° C to $+125^{\circ}$ C.


Package Types

Typical Application Circuit

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage, V _{IN}	
Output Voltage, V _{OUT}	
Enable Voltage, V _{EN}	
ESD Rating (Note 1)	+3 kV

Operating Ratings ††

† Notice: Exceeding the "Absolute Maximum Ratings †" may damage the device.

†† Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 k Ω in series with 100 pF.

ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: Unless otherwise indicated, $V_{IN} = V_{EN} = V_{OUT} + 500 \text{ mV}$ ($V_{IN} = V_{EN} = 3.6 \text{V}$ for $V_{OUT} \ge 3.1 \text{V}$); $I_{OUT} = 1 \text{ mA}$; $C_{OUT} = 1 \text{ µF}$ (YMT), $C_{OUT} = 10 \text{ µF}$ (YM5); $I_{A} = 25 ^{\circ}\text{C}$, **bold** values indicate $-40 ^{\circ}\text{C} \le T_{J} \le +125 ^{\circ}\text{C}$.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Input Voltage	V _{IN}	1.8	_	3.6	V	_	
Output Voltage Accuracy	V _{OUT}	- 3	±1	+3	%	Variation from nominal V _{OUT}	
Dropout Voltage	V _{DO}	ı	20	50	mV	V _{IN} to V _{OUT} dropout at 100 mA output current	
		ı	40	100	mV	V _{IN} to V _{OUT} dropout at 200 mA output current	
Load Regulation	ΔV _{OUT}	1	4	1	mV	I _{OUT} = 1 mA to 100 mA	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	1	0.01	0.5	%	$V_{IN} = V_{OUT} + 500 \text{ mV to } 3.6 \text{V}$	
Ground Current	I _{GND}	_	170	250	μA	No load to full load	
Shutdown Current	I _{SHDN}	1	0.2	5	μA	V _{EN} = 0V	
	PSRR	1	85	1	dB	f = 100 Hz, I _{OUT} = 100 mA	
V _{IN} Ripple Rejection		1	68	1	dB	f = 100 kHz, I _{OUT} = 100 mA	
			57	_	dB	f = 1 MHz, I _{OUT} = 100 mA	
		1	50	1	dB	f = 10 MHz, I _{OUT} = 100 mA	
Current Limit	I _{LIM}	250	400	700	mA	V _{OUT} = 0V	
Total Output Noise	e _{no}		83	_	μV_{RMS}	f = 10 Hz to 100 kHz	
Turn-on Time	t _{ON}	1	70	1	μs	_	
Enable							
Input Logic Low Level	V _{EN_LOW}			0.4	V	_	
Input Logic High Level	V _{EN_HIGH}	1.0	_		V	_	
Enable Input Current	I _{EN}	_	0.01	1	μA		

Note 1: Specification for packaged product only.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges							
Junction Operating Temperature	TJ	-40	_	+125	°C	_	
Lead Temperature	_	_	_	+260	°C	Soldering, 10 sec.	
Storage Temperature Range	T _S	-65	_	+150	°C	_	
Package Thermal Resistances							
Thermal Resistance, TDFN	θ_{JA}	_	173	_	°C/W	_	
Thermal Resistance, SOT-23-5Ld	$\theta_{\sf JA}$	_	120	_	°C/W	_	

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

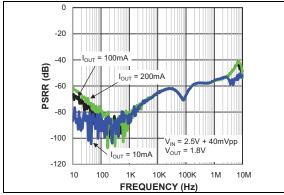


FIGURE 2-1: PSRR $C_{OUT} = 0.47 \mu F$.

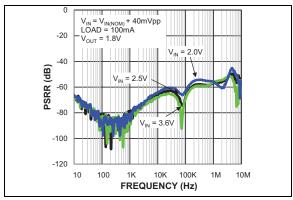


FIGURE 2-4: PSRR $C_{OUT} = 1 \mu F$.

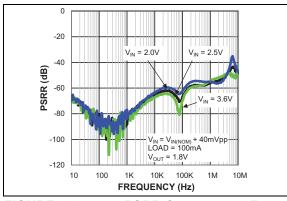


FIGURE 2-2: $PSRR C_{OUT} = 0.47 \mu F.$

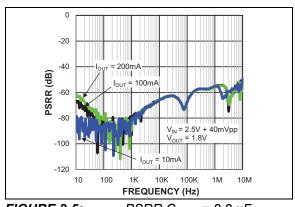
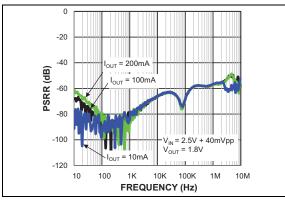



FIGURE 2-5: PSRR $C_{OUT} = 2.2 \mu F$.

FIGURE 2-3: PSRR $C_{OUT} = 1 \mu F$.

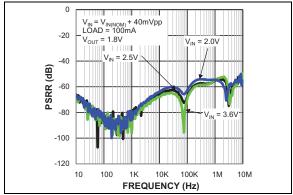


FIGURE 2-6: PSRR $C_{OUT} = 2.2 \mu F$.

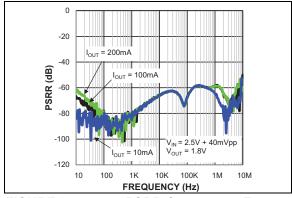


FIGURE 2-7:

 $PSRR\ C_{OUT} = 4.7\ \mu F.$

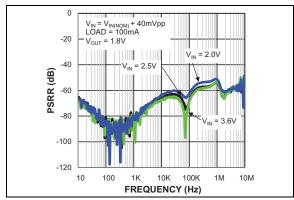


FIGURE 2-10:

 $PSRR C_{OUT} = 10 \mu F.$

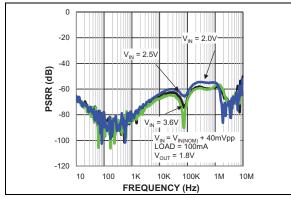


FIGURE 2-8:

 $PSRR\ C_{OUT} = 4.7\ \mu F.$

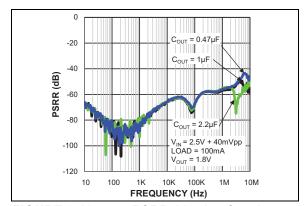


FIGURE 2-11:

PSRR (Varying C_{OUT}).

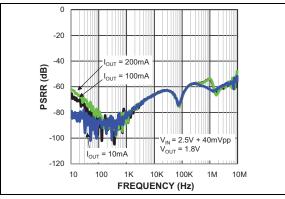
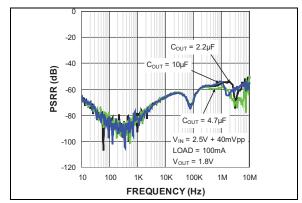



FIGURE 2-9:

 $PSRR\ C_{OUT} = 10\ \mu F.$

FIGURE 2-12:

PSRR (Varying C_{OUT}).

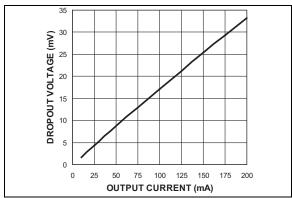


FIGURE 2-13: Drop Voltage vs. Output Current.

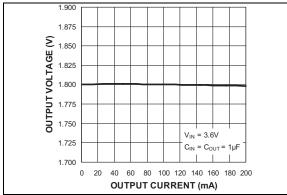
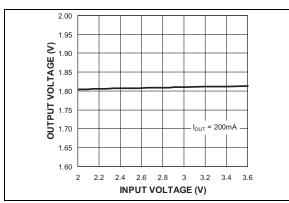



FIGURE 2-14: Output Voltage vs. Output Current.

FIGURE 2-15: Output Voltage vs. Input Voltage.

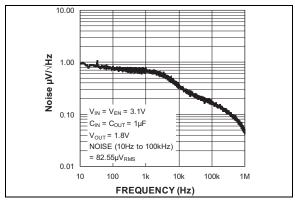


FIGURE 2-16: Output Noise Spectral Density.

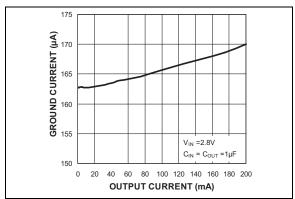


FIGURE 2-17: Ground Current vs. Output Current.

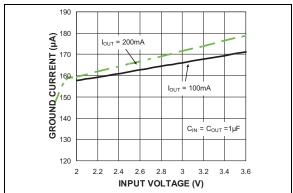
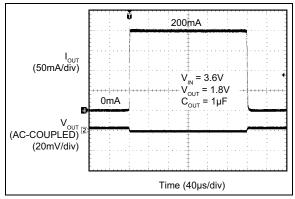
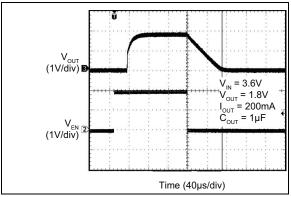
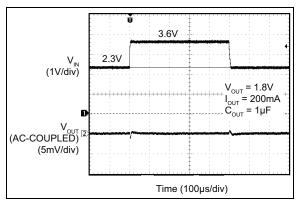
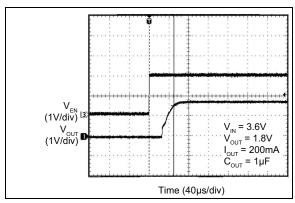




FIGURE 2-18: Ground Current vs. Input Voltage.


FIGURE 2-19: 200 mA).

Load Transient (0 mA to


FIGURE 2-22:

Enable Turn-Off.

FIGURE 2-20: 3.6V).

Line Transient (2.6V to

FIGURE 2-21:

Enable Turn-On.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

MIC94310 TDFN	MIC94310 SOT-23	Symbol	Description		
1	5	V _{OUT}	Power Switch Output.		
2	2	GND	Ground.		
3	3	EN	Enable Input. A logic HIGH signal on this pin enables the part. Logic LOW disables the part. Do not leave floating.		
4	1	VIN	Power switch input and chip supply.		
_	4	NC	No Connect. Not internally connected.		
EP	_	EPAD	Exposed Heatsink Pad. Connect to ground for best thermal performance.		

4.0 APPLICATION INFORMATION

The MIC94310 is a very-high PSRR, fixed-output, 200 mA LDO utilizing Ripple Blocker technology. The MIC94310 is fully protected from damage due to fault conditions, offering linear current limiting and thermal shutdown.

4.1 Input Capacitor

The MIC94310 is a high-performance, high-bandwidth device. An input capacitor of 0.47 μ F is required from the input to ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high-frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high-frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended.

4.2 Output Capacitance

In order to maintain stability, the MIC94310 requires an output capacitor of 0.47 µF or greater for the Thin DFN package and 10 µF or greater for the SOT-23 package. For optimal ripple rejection performance, a 1 µF capacitor is recommended for the Thin DFN package. A 10 µF capacitor is recommended for the SOT-23 package. The design is optimized for use with low-ESR ceramic chip capacitors. High-ESR capacitors are not because recommended they may high-frequency oscillation. The output capacitor can be increased, but performance has been optimized for a 1 µF ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric type ceramic capacitors are recommended because of their temperature performance. X7R type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change their value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with the Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

4.3 No Load Stability

The MIC94310 will remain stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications.

4.4 Enable/Shutdown

Forcing the enable (EN) pin low disables the MIC94310 and sends it into a "zero" off mode current state. In this state, current consumed by the MIC94310 goes nearly to zero. Forcing EN high enables the output voltage. The EN pin uses CMOS technology and cannot be left floating as it could cause an indeterminate state on the output.

4.5 Thermal Considerations

The MIC94310 is designed to provide 200 mA of continuous current in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example if the input voltage is 2.5V, the output voltage is 1.8V, and the output current equals 200 mA. The actual power dissipation of the Ripple Blocker™ can be determined using Equation 4-1:

EQUATION 4-1:

$$P_D = (V_{IN} - V_{OUT1})I_{OUT} + V_{IN}I_{GND}$$

Because this device is CMOS and the ground current is typically <170 μ A over the load range, the power dissipation contributed by the ground current is <1% and can be ignored for the calculation shown in Equation 4-2 and Equation 4-3.

EQUATION 4-2:

$$P_D = (2.3V - 1.8V) \times 200 \text{ mA}$$

EQUATION 4-3:

$$P_D = 0.14W$$

To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device and the Equation 4-4:

EQUATION 4-4:

$$P_{D(MAX)} = \left(\frac{T_{J(MAX)} - T_A}{\theta_{JA}}\right)$$

 $T_{J(MAX)}$ = 125°C, the maximum junction temperature of the die, θ_{JA} thermal resistance = 173°C/W for the Thin DFN package.

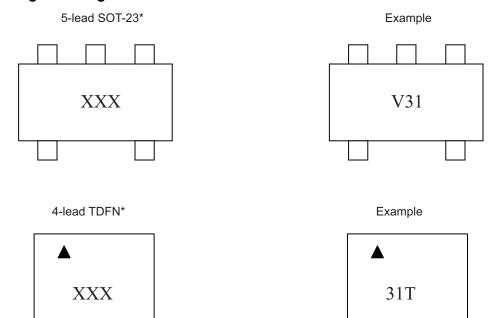
Substituting P_D for $P_{D(MAX)}$ and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit.

For proper operation, the maximum power dissipation must not be exceeded.

For example, when operating the MIC94310-GYMT at an input voltage of 2.5V and 200 mA load with a minimum footprint layout, the maximum ambient operating temperature (T_A) can be determined as follows:

EQUATION 4-5:

$$0.14W = (125^{\circ}C - T_A)/(173^{\circ}C/W)$$

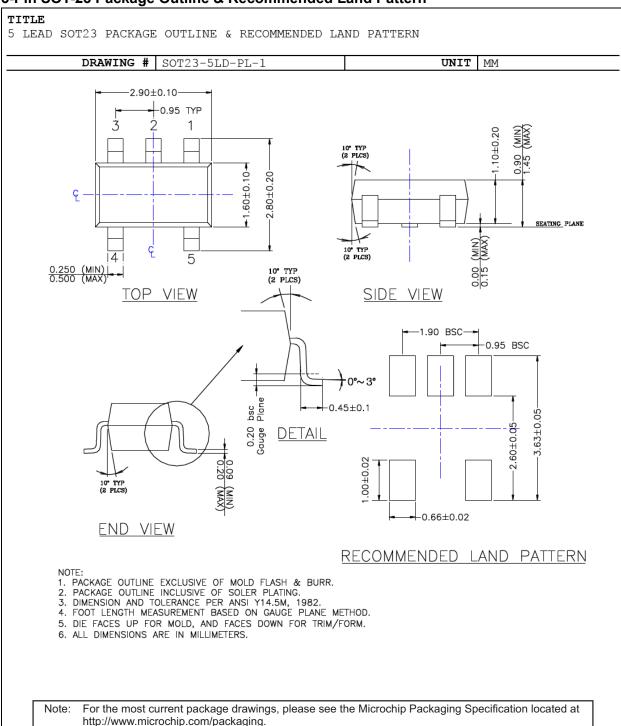

EQUATION 4-6:

$$T_A = 101 \degree C$$

Therefore, the maximum ambient operating temperature allowed in a 1.2 mm × 1.6 mm Thin DFN package is 101°C.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information


Legend: XX...X Product code or customer-specific information Year code (last digit of calendar year) Υ ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) (e3) This package is Pb-free. The Pb-free JEDEC designator (@3)) can be found on the outer packaging for this package. •, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark). Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo. Underbar () and/or Overbar () symbol may not be to scale.

4-Lead 1.2 mm × 1.6 mm Thin DFN Package Outline & Recommended Land Pattern

TITLE 4 LEAD TDFN 1.2x1.6mm PACKAGE OUTLINE & RECOMMENDED LAND PATTERN DRAWING # | TDFN1216-4LD-PL-1 UNIT MM - 0.86±0.05 - 1.20±0.05 -0.25±0.05 PIN #1 ID R0.10 3 3 4 0.50±0.05 1.60±0.05 0.35±0.05 2 0.50 BSC PIN 1 TRIANGLE BY MARKING TOP VIEW BOTTOM VIEW NDTE: 1, 2, 3 NOTE: 1, 2, 3 0.86±0.05 0.60±0.02 0.25±0.02 0.55±0.05 SEATING PLANE 0.00-0.05 0.152 REF -R0.15 0.30±0.02 0.50±0.02 1.40 BSC SIDE VIEW NOTE: 1, 2, 3 0.50±0.02 0.50 BSC RECOMMENDED LAND PATTERN NOTE: 4, 5 NOTE: MAX PACKAGE WARPAGE IS 0.05mm. MAX ALLOWABLE BURR IS 0.076mm IN ALL DIRECTIONS. PIN #1 IS ON TOP WILL BE LASER MARKED. 4. GREEN SHADED AREA INDICATES SOLDER STENCIL OPENING (OPTIONAL) FOR IMPROVED THERMAL PERFORMANCE. RECOMMENDED SIZE is 0.60mm x 0.30mm. 5. RED CIRCLE REPRESENTS THERMAL VIA & SHOULD BE CONNECTED TO GND FOR MAX PERFORMANCE. RECOMMENDED DIAMETER is 0.30mm - 0.35mm. For the most current package drawings, please see the Microchip Packaging Specification located at

http://www.microchip.com/packaging.

5-Pin SOT-23 Package Outline & Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (October 2018)

- Converted Micrel document MIC94310 to Microchip data sheet template DS20006105A.
- Minor grammatical text changes throughout.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.		- <u>X</u>	X	XX	- <u>XX</u>	Examples:			
Device:		Outpu Voltag	t Temperature	Package	Media Type	a)	MIC94310-4YMT-T5:	200 mA LDO with Ripple Blocker® Technology, 1.2V Output Voltage, -40°C to +85°C Tempera- ture Range, 5-Lead	
Output Voltage:	4 F G D J	= = =	1.2V 1.5V 1.8V 1.85V 2.5V	Apple Blocker	Commondy	b)	MIC94310-4YMT-TR:	TDFN, 5,000/Reel 200 mA LDO with Ripple Blocker® Technology, 1.2V Output Voltage, –40°C to +85°C Temperature Range, 5-Lead TDFN, 5,000/Reel	
Temperature	L N P S	= = =	2.7V 2.8V 2.85V 3.0V 3.3V			c)	MIC94310-4YM5-T5:	200 mA LDO with Ripple Blocker® Technology, 1.2V Output Voltage, -40°C to +85°C Tempera- ture Range, 5-Lead SOT- 23, 5,000/Reel	
Range: Packages:	MT M5		4-Lead 1.2 mm × 1.6 5-Lead SOT-23			d)	MIC94310-4YM5-TR:	200 mA LDO with Ripple Blocker® Technology, 1.2V Output Voltage, -40°C to +85°C Tempera- ture Range, 5-Lead SOT-23, 5,000/Reel	
Media Type:	TR TR T5	= =	3,000/Reel (SOT-23) 5,000/Reel (TDFN) 500/Reel			e)	MIC94310-4YMT-T5:	200 mA LDO with Ripple Blocker® Technology, 1.2V Output Voltage, -40°C to +85°C Tempera- ture Range, 5-Lead TDFN, 5,000/Reel	
						f)	MIC94310-4YMT-TR:	200 mA LDO with Ripple Blocker® Technology, 1.2V Output Voltage, -40°C to +85°C Tempera- ture Range, 5-Lead TDFN, 5,000/Reel	
						g)	MIC94310-4YM5-T5:	200 mA LDO with Ripple Blocker® Technology, 1.2V Output Voltage, -40°C to +85°C Tempera- ture Range, 5-Lead SOT- 23, 5,000/Reel	
						h)	MIC94310-4YM5-TR:	200 mA LDO with Ripple Blocker® Technology, 1.2V Output Voltage, -40°C to +85°C Tempera- ture Range, 5-Lead SOT-23, 5,000/Reel	
						Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.			

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net. PICkit, PICtail, PowerSmart, PureSilicon. QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-3745-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829 China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79 **Germany - Garching**

Germany - Haan Tel: 49-2129-3766400

Tel: 49-8931-9700

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820