

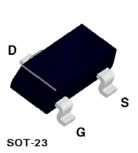
ON Semiconductor®

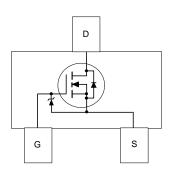
FDV301N Digital FET , N-Channel

General Description

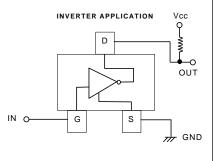
This N-Channel logic level enhancement mode field effect transistor is produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize onstate resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors. Since bias resistors are not required, this one N-channel FET can replace several different digital transistors, with different bias resistor values.

Features


■ 25 V, 0.22 A continuous, 0.5 A Peak.


$$R_{DS(ON)} = 5 \Omega @ V_{GS} = 2.7 V$$

 $R_{DS(ON)} = 4 \Omega @ V_{GS} = 4.5 V.$


- Very low level gate drive requirements allowing direct operation in 3V circuits. V_{GS(th)} < 1.06V.
- Gate-Source Zener for ESD ruggedness. >6kV Human Body Model
- Replace multiple NPN digital transistors with one DMOS FFT.

Mark:301

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless other wise noted

Symbol	Parameter	FDV301N	Units			
V _{DSS} , V _{CC}	Drain-Source Voltage, Power Supply Voltage	25	V			
V _{GSS} , V _I	Gate-Source Voltage, V _{IN}	8	V			
I _D , I _O	Drain/Output Current - Continuous	0.22	A			
		0.5				
P _D	Maximum Power Dissipation	0.35	W			
T _J ,T _{STG}	Operating and Storage Temperature Range	-55 to 150	℃			
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm)	6.0	kV			
THERMAL CHARACTERISTICS						
R _{eJA}	Thermal Resistance, Junction-to-Ambient	357	°C/W			

Inverter Electrical Characteristics (T _A = 25 °C unless otherwise noted)							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
I _{O (off)}	Zero Input Voltage Output Current	$V_{CC} = 20 \text{ V}, \ V_{i} = 0 \text{ V}$			1	μA	
V _{I (off)}	Input Voltage	$V_{CC} = 5 \text{ V}, \ I_{O} = 10 \mu\text{A}$			0.5	V	
V _{I (on)}		$V_0 = 0.3 \text{ V}, I_0 = 0.005 \text{ A}$	1			V	
R _{o (on)}	Output to Ground Resistance	$V_1 = 2.7 \text{ V}, I_0 = 0.2 \text{ A}$		4	5	Ω	

Electrical Characteristics (T_A = 25 °C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHARA	ACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		25			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25	I _D = 250 μA, Referenced to 25 °C		25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20 \text{ V}, \ V_{GS} = 0 \text{ V}$				1	μΑ
			T _J = 55°C			10	μA
I _{GSS}	Gate - Body Leakage Current	$V_{GS} = 8 \text{ V}, \ V_{DS} = 0 \text{ V}$				100	nA
ON CHARAC	CTERISTICS (Note)	·					
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 2	I _D = 250 μA, Referenced to 25 °C		-2.1		mV / °C
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		0.70	0.85	1.06	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 2.7 \text{ V}, I_D = 0.2 \text{ A}$			3.8	5	Ω
			T _J =125°C		6.3	9	
		$V_{GS} = 4.5 \text{ V}, I_D = 0.4 \text{ A}$			3.1	4	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 2.7 \text{ V}, \ V_{DS} = 5 \text{ V}$		0.2			Α
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 0.4 \text{ A}$			0.2		S
DYNAMIC CH	HARACTERISTICS	·					
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, \ V_{GS} = 0 \text{ V},$			9.5		pF
C _{oss}	Output Capacitance	f = 1.0 MHz	f = 1.0 MHz		6		pF
C _{rss}	Reverse Transfer Capacitance				1.3		pF
SWITCHING	CHARACTERISTICS (Note)						
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 6 \text{ V}, I_{D} = 0.5 \text{ A},$	$V_{DD} = 6 \text{ V}, \ I_{D} = 0.5 \text{ A}, \ V_{GS} = 4.5 \text{ V}, \ R_{GEN} = 50 \ \Omega$		3.2	8	ns
t,	Turn - On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 50 \Omega$			6	15	ns
$t_{D(off)}$	Turn - Off Delay Time				3.5	8	ns
t _r	Turn - Off Fall Time				3.5	8	ns
Q_g	Total Gate Charge	$V_{DS} = 5 \text{ V}, \ I_{D} = 0.2 \text{ A}, \ V_{GS} = 4.5 \text{ V}$			0.49	0.7	nC
Q_{gs}	Gate-Source Charge				0.22		nC
Q_{gd}	Gate-Drain Charge				0.07		nC
DRAIN-SOUP	RCE DIODE CHARACTERISTICS AND MAXIMU	JM RATINGS					
Is	Maximum Continuous Drain-Source Diode Forward Current				0.29	Α	
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.29 \text{ A}$ (Note)			0.8	1.2	V

Note:
Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%.

Typical Electrical Characteristics

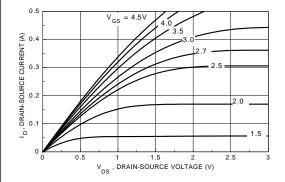
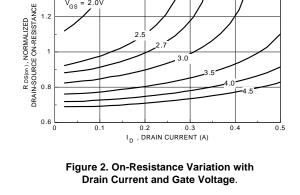



Figure 1. On-Region Characteristics.

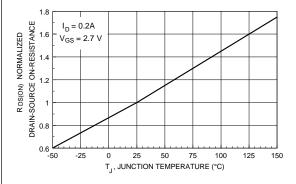


Figure 3. On-Resistance Variation with Temperature.

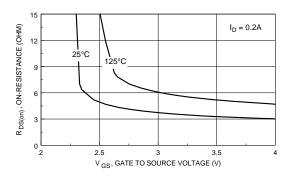


Figure 4. On Resistance Variation with Gate-To-Source Voltage.

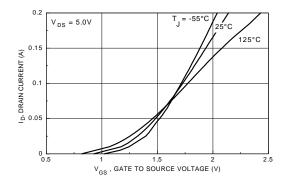


Figure 5. Transfer Characteristics.

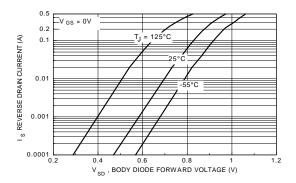


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical And Thermal Characteristics

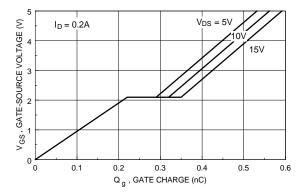


Figure 7. Gate Charge Characteristics.

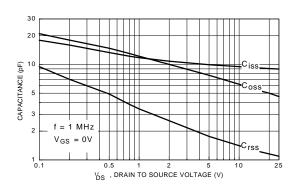


Figure 8. Capacitance Characteristics.

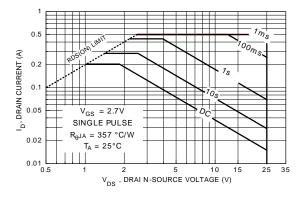


Figure 9. Maximum Safe Operating Area.

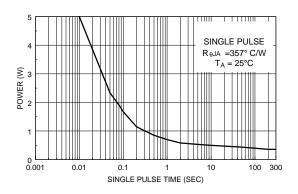


Figure 10. Single Pulse Maximum Power Dissipation.

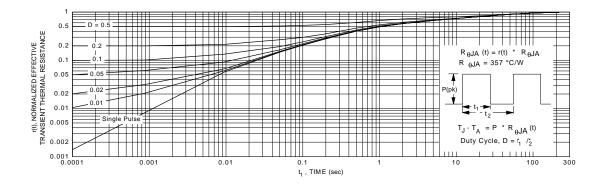


Figure 11. Transient Thermal Response Curve.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative