FEATURES

- 2.8V to 5.5V Operating Range
- Adjustable Current Limit: 200mA to 2.25A(Typ.)
- Fold-back Short Circuit Protection
- 90uA Typical On-State Supply Current
- 5uA Maximum Standby Supply Current
- Independent Open-drain Fault Flag Pin
- Thermal Shutdown Protection
- Under Voltage Lockout(UVLO)
- Output Auto Discharge Function
- Reverse Current Protection
- TJ2242A: Active High Version

APPLICATION

- USB Peripherals
- General Purpose Power Switching
- ACPI Power Distribution
- Notebook PCs
- PDAs
- Hot Plug-in Power Supplies

DESCRIPTION

The TJ2242A is single-channel High-Side MOSFET switch optimized for adjustable current limited power distribution requiring circuit protection. The TJ2242A series support the following USB requirements. The TJ2242A series supply up to 2.25A as required by USB downstream devices. Maximum continuous current can be different on the types of package and ambient temperature. Switch's low on-resistance meets USB voltage drop requirement. Flag output indicates fault condition to the local USB controller. Soft-start prevents the transient voltage drop on the upstream port that can occur when the switch is enabled in bus-powered applications. Under voltage lockout (UVLO) feature disables the output switches until a valid input voltage. Auto discharge function quickly lowers the Vout to the ground level when the TJ2242A turns off. Also the TJ2242A includes thermal shutdown to prevent switch failure from high-current loads and reverse current protection circuit to prevent the reverse current from Vout pin to VIN pin.

SOT-23-6L

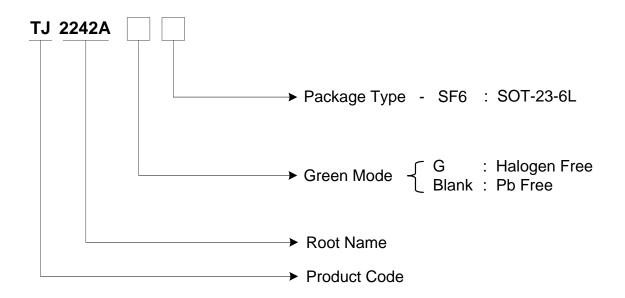
ORDERING INFORMATION

Device	Package
TJ2242AGSF6	SOT-23-6L

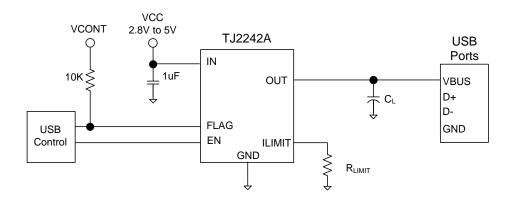
Absolute Maximum Ratings (Note 1)

Characteristic	Symbol	Min	Max	Unit
Supply Voltage	Vin	-0.3	6.5	V
Enable Input Voltage (Note 2)	V_{EN}	-0.3	6.5	V
Fault Flag Voltage	V _{FLAG}	-	6.5	V
Fault Flag Current	I _{FLAG}	-	10	mA
Output Voltage	Vout		6.5	V
Output Current	Іоит		Internally Limited	
Storage Temperature Range	T _{STG}	-65	150	°C

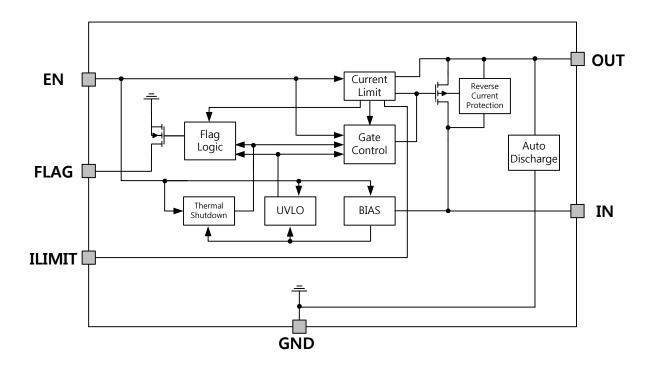
Operating Ratings (Note 3), (Note 4)

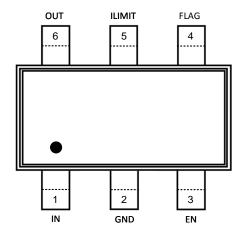

Characteristic	Symbol	Min	Max	Unit
Supply Voltage	Vin	2.8	5.5	V
Ambient Temperature Range	TA	-40	85	°C
Operating Junction Temperature Range	TJ	-40	125	°C
Thermal Resistance Junction-to-Ambient (Note 5)	ӨЈА	250 °C		°C/W
Thermal Resistance Junction-to-Case (Note 5)	Өлс	130 °C/		°C/W

Note:


- 1. Exceeding the absolute maximum ratings may damage the device.
- 2. It is recommended for V_{EN} voltage not to exceed V_{IN} voltage.
- 3. The device is not guaranteed to function outside its operating rating.
- 4. Devices are ESD sensitive. Handling precautions are recommended.
- 5. Test Condition for SOT-23-6L: Copper Area = 35mm², Board Size: 430mm X 430mm, 1.6T

Ordering Information


Package	Oder No.	Description	Marking	Compliance	Status
SOT-23-6L	TJ2242AGSF6	Adjustable, Active High	2242A	RoHS, Green	Contact Us

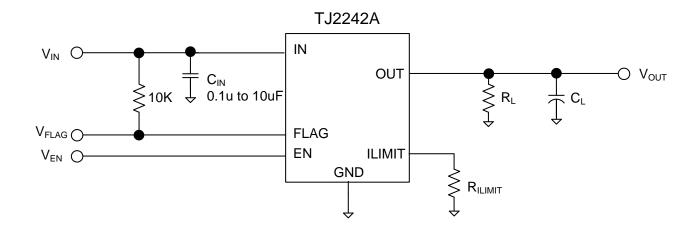

TYPICAL APPLICATION CIRCUIT

FUNCTION BLOCK DIAGRAM

PIN CONFIGURATION

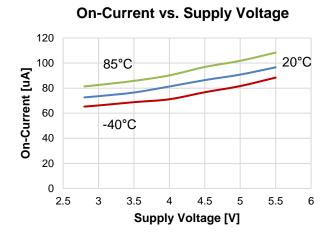
PIN DESCRIPTION

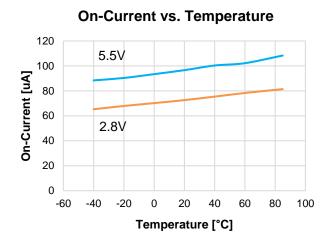
D'a Nama	Pin No.	Pin Description & Function		
Pin Name	SOT-23-6L			
IN	1	Supply Input: Output MOSFET source. Also supply IC's internal circuitry. Connect to positive supply.		
GND	2	Ground		
EN	3	Enable : Logic-Compatible enable input. Do not float.		
FLAG	4	Fault Flag : Active-low, open-drain output. Indicate Short circuit current and Thermal shutdown.		
ILIMIT	5	Current Limit Set: External resistor used to set current limit threshold.		
OUT	6	Switch Output : Output MOSFET drain. Typically connect to side of load.		

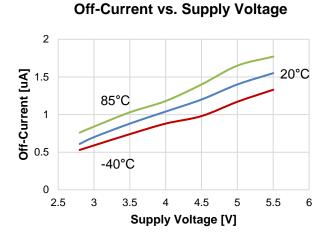

ELECTRICAL CHARACTERISTICS (Under the conditions of V_{IN} =+5V and T_A =25 $^{\circ}$ C)

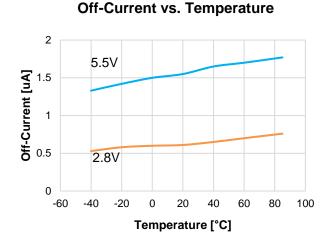
PARAMETER	Symbol	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	VIN		2.8		5.5	V
Recommended Maximum Continuous Current (Note 8)		SOT-23-6L package		1.5		А
Complex Company	1	Enable off, OUT = Open		1	5	uA
Supply Current	Icc	Enable on, OUT = Open		90	130	uA
Enable Input Threshold	V _{EN}	(Note 9)	0.8		2.0	V
Enable Input Current	I _{EN}	V _{EN} = 0V to 5.5V	-1	0.01	1	uA
Enable Input Capacitance	CEN			1		pF
Switch Resistance	R _{DS(ON)}	$V_{IN} = 5V$, $I_{OUT} = 0.5A$		100	120	mΩ
Output Turn-On Delay	T _{DON}	$R_L = 5\Omega$ each output, $C_L = 1 u F$, $R_{ILIMIT} = 8 k \Omega$		0.5	5	ms
Output Turn-On Rise Time	T _R	$R_L = 5\Omega$ each output, $C_L = 1 u F$, $R_{ILIMIT} = 8 k \Omega$		2.5	5	ms
Output Turn-Off Delay	T _{DOFF}	$R_L = 5\Omega$ each output, $C_L = 1 u F$, $R_{ILIMIT} = 8 k \Omega$		5	150	us
Output Turn-Off Fall Time	T _F	$R_L = 5\Omega$ each output, $C_L = 1 u F$, $R_{ILIMIT} = 8 k \Omega$		10	100	us
Output Leakage Current	I _{LEAK}	V _{EN} ≤ 0.8V		0.01	5	uA
		$R_{\text{ILIMIT}} = 80 \text{k}\Omega$		200		mA
Current Limit Threshold (Note 10)	I _{LIM}	$R_{ILIMIT} = 16k\Omega$		1033		mA
(Note 10)		$R_{ILIMIT} = 8k\Omega$		2095		mA
		$R_{ILIMIT} = 80k\Omega$, $V_{OUT} = 0V$		112		mA
Short Circuit Current Limit	Isc	RILIMIT = $16k\Omega$, Vout = $0V$		578		mA
		RILIMIT = $8k\Omega$, Vout = $0V$		1173		mA
Over-Temperature	T _{SD}	Thermal Shutdown Temperature		150		°C
Shutdown Threshold (Note11)	T _{HYS}	Hysteresis		20		°C
Error Flag Output Resistance	R _{FO}	V _{IN} = 5V, I _L = 10mA		20		Ω
Error Flag Off Current	I _{FOH}	V _{FLAG} = 5V		0.01	10	uA
Output Discharge Resistance	R _{DISC}	V _{IN} = 5V, V _{EN} = 0V		100		Ω
	UVLO	V _{IN} = Increasing	2.25	2.4	2.55	V
UVLO Threshold		V _{IN} = Decreasing	2.1	2.25	2.4	V
Overcurrent Flag Response Delay	T_{DFOV}	$V_{IN} = 5V$, apply $V_{OUT} = 0V$ until FLAG low		7	15	ms
Current Limit Response Time	T _{LIM}	(Note 12)		1		us

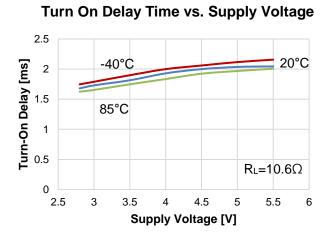
Note:

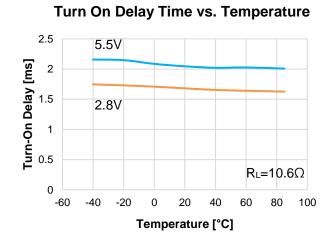

- 8. Maximum Continuous Current depends on device junction temperature and system level considerations, such as power dissipation, thermal resistance of PKG and board layout.
- 9. OFF is $V_{EN} \le 0.8V$ and ON is $V_{EN} \ge 2.0V$ for the TJ2242A.
- 10. It is recommended that current limit level set to 1.5 times more than constant current for a stable power supply.
- 11. Guaranteed by design. Not tested.
- 12. T_{LIM} is the response time to operate current limit when the peak value of the current is increased more than set limit value.

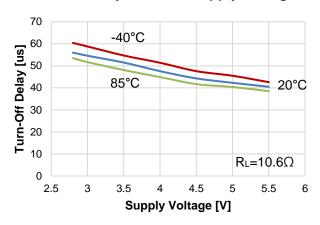

Test Circuit

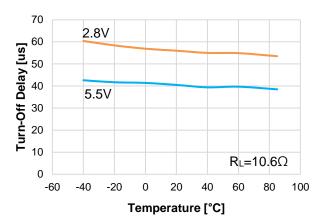


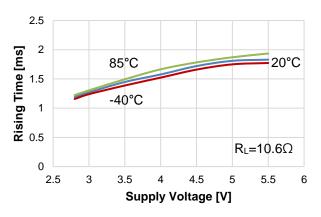

TYPICAL PERFORMANCE CHARACTERISTICS

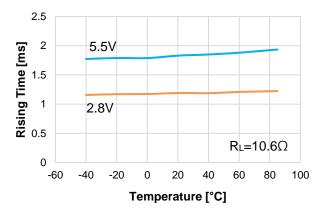

- V_{IN}=5V, V_{EN}=5V, T_A=25°C, R_{ILIMIT}=10KΩ, C_{IN}=1uF, No Load, C_L=10uF unless otherwise noted

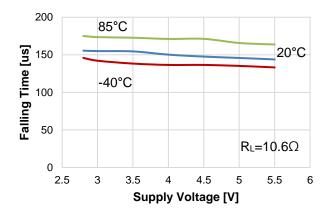


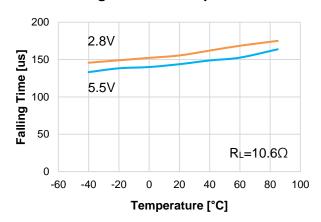


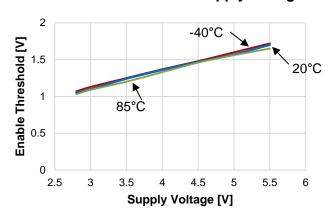


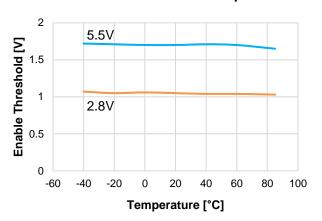

Turn Off Delay Time vs. Supply Voltage

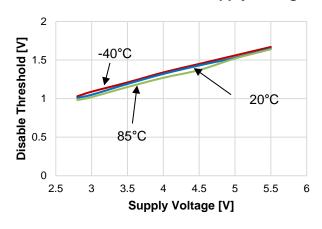

Turn Off Delay Time vs. Temperature

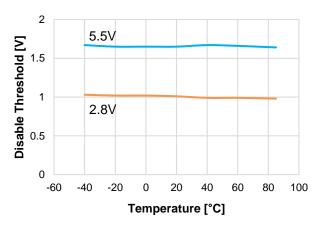

Rising Time vs. Supply Voltage

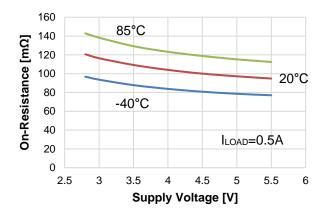

Rising Time vs. Temperature

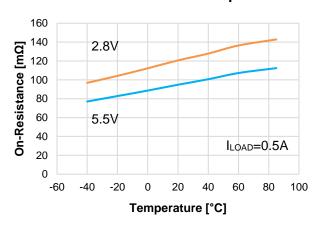

Falling Time vs. Supply Voltage

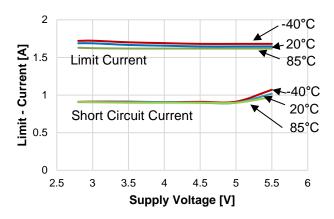

Falling Time vs. Temperature

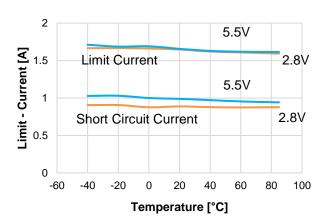

Enable Threshold vs. Supply Voltage

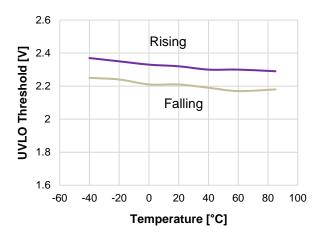

Enable Threshold vs. Temperature


Disable Threshold vs. Supply Voltage

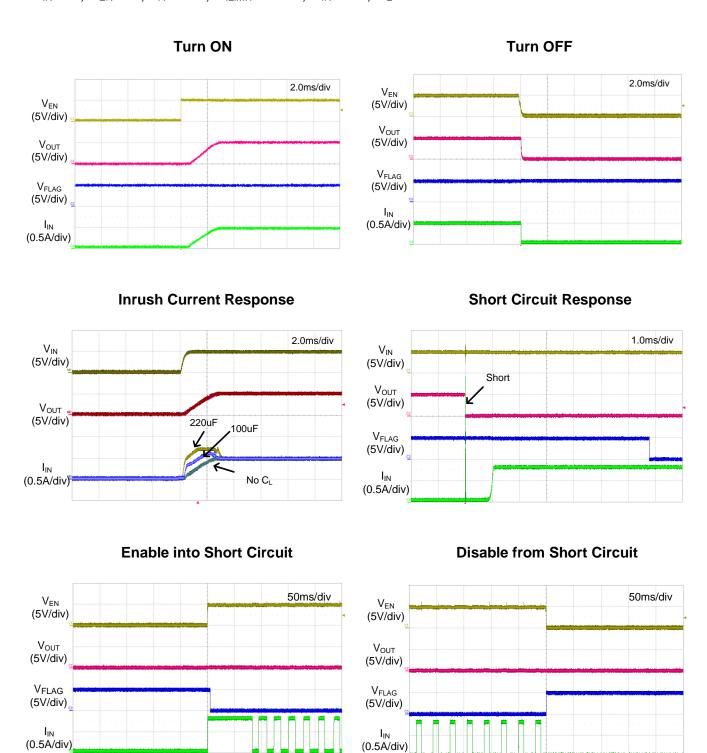

Disable Threshold vs. Temperature


On-Resistance vs. Supply Voltage

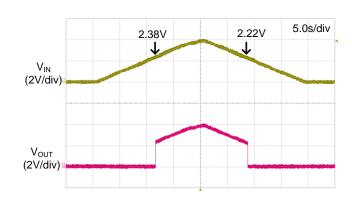

On-Resistance vs. Temperature

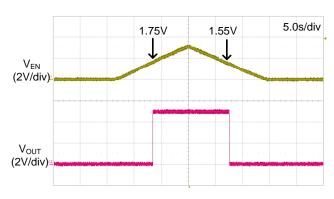

Current Limit & I_{SC} vs. Supply Voltage

Current Limit & I_{SC} vs. Temperature


UVLO Threshold vs. Temperature

Mar. 2017 – Rev 1.0.2 -11 -


TYPICAL OPERATING CHARACTERISTICS


- V_{IN} =5V, V_{EN} =5V, T_A =25°C, R_{ILIMIT} =12K Ω , C_{IN} =1uF, C_L =10uF unless otherwise noted.

UVLO

Enable Threshold

Thermal Shutdown

Function Description

Supply Filtering

A 0.1uF to 10uF bypass capacitor from IN pin to GND pin is recommended to control power supply transients. Recommend X5R or X7R dielectrics when using ceramic capacitors for input/output. Without this bypass capacitor, an output short can cause ringing from supply lead inductance on the input and damage the internal control circuitry.

Input or output transients must not exceed the absolute maximum supply voltage (V_{IN(MAX)} = 6.5V).

Power Dissipation

The device's junction temperature depends on several factors such as the load, PCB layout, ambient temperature, and package type. Equations that can be used to calculate power dissipation of each channel and junction temperature are found below:

 $P_D = R_{DS(ON)} x I_{OUT}^2$

Total power dissipation of the device will be the summation of P_D for both channels. To relate this to junction temperature, the following equation can be used:

 $T_J = P_D \times \theta_{JA} + T_A$

Where:

 T_J = Junction temperature

 T_A = Ambient temperature

 Θ_{JA} = Thermal resistance of the package

Enable/Shutdown

The EN control pin must be driven to a logic high or logic low for a clearly defined signal input. Floating these control lines may cause unpredictable operation.

Fault Flag

The FLAG signal is open-drained output of N-channel MOSFET, the FLAG output is pulled low to signal the following fault conditions: output short to GND and thermal shutdown.

Soft-Start Condition

The TJ2242A has high impedance when off, which gradually shifts to low impedance as the chip turns on. This prevents an inrush current from causing voltage drops that result from charging a capacitive load and can pull the USB voltage bus below specified levels. This satisfies the USB voltage drop requirements for bus-powered applications.

The TJ2242A can provide inrush current limiting for applications with large load capacitances where C_L >10uF.

Current Sense

A sense MOSFET monitors the current supplied to the load. The sense MOSFET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate-source voltage and drives the power MOSFET into its saturation region, which switches the output into a constant-current mode and holds the current constant while varying the voltage on the load. When operating region of power MOSFET is close to saturation region, ON resistance of power MOSFET is made significantly increase. It can cause the operation of thermal protection before reaching to current limit level.

Over-Current and Short-Circuit Protection

The TJ2242A features an over-current protection circuitry to protect the device against overload conditions.

The current limit threshold is user programmable via an external resistor. The TJ2242A provides an

adjustable current limit threshold between 200mA and 2.25A(Typ.). The recommended 1% resistor range for R_{ILIMIT} is 7.46k Ω to 80.06k Ω . It protects the output MOSFET switch from damage due to undesirable short circuit conditions of excess inrush current often encountered during hot plug-in. Also the TJ2242A is including a fold back current limiting function for short-circuit protection. In the event of an output short-circuit condition, the current flowing through the switch is about 40~50% smaller than the current limit threshold(I_{LIM}). A short circuit current limit condition will signal the error flag. These features can protect the load system effectively at any accidental circumstances.

The following equations can be used to calculate the resulting current limit threshold and short circuit current for determining external resistor value (RILIMIT). However, in the equation do not consider tolerance factors like that processing variation from part to part, as well as variations in the voltage at IN and OUT, plus the operating temperature. Therefore current limit may be operated more than the calculated value.

When input voltage oscillates by external factors, input current also oscillates. It can cause the malfunction to current limit operation. In case of the peak value of current is increased more than set limit value, the current limit function of TJ2242A operates. Then the RMS value of the current limit may operate lower than a targeted level.

Equations for current limit:

 $I_{LIM(TYP)} = 17479.6 \times R_{ILIMIT}[k\Omega]^{-1.02}$

 $I_{LIM(MIN)} = I_{LIM(TYP)}[mA] \times 0.98 - 90$

 $I_{LIM(MAX)} = I_{LIM(TYP)}[mA] \times 1.02 + 90$

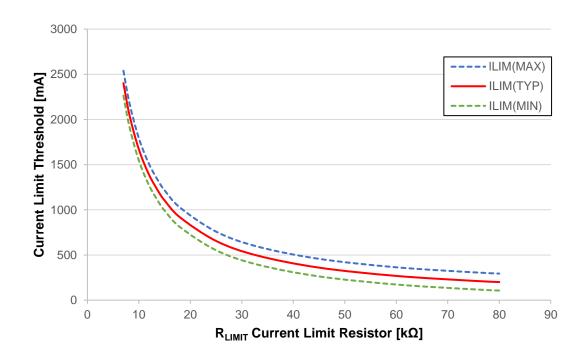


Table 1. Recommended RILIMIT Resistor Selections

	Actual Limits(mA)			
R _{ILIMIT} (kΩ)	ILIM(MIN)	ILIM(TYP)	ILIM(MAX)	I _{SC(TYP)}
80.06	106	200	294	112
53.80	204	300	396	168
40.58	302	400	498	224
32.61	400	500	600	280
27.27	498	600	702	336
23.44	596	700	804	392
20.57	694	800	906	448
18.32	792	900	1008	504
16.53	890	1000	1110	560
15.05	988	1100	1212	616
13.82	1086	1200	1314	672
12.78	1184	1300	1416	728
11.88	1282	1400	1518	784
11.11	1380	1500	1620	840
10.42	1478	1600	1722	896
9.82	1576	1700	1824	952
9.29	1674	1800	1926	1008
8.81	1772	1900	2028	1064
8.38	1870	2000	2130	1120
7.98	1968	2100	2232	1176
7.63	2066	2200	2334	1232
7.46	2115	2250	2385	1260

Thermal Shutdown Protection

Thermal shutdown limits the TJ2242A junction temperature and protects the device from damage as a result of overheated.

Thermal protection turns off when the TJ2242A's junction temperature 150 °C reached, allowing it to cool down until 130 °C. The TJ2242A is reactivated when a junction temperature drops to approximately 130 °C. It depends on the power dissipation, thermal resistance, and ambient temperature.

Under Voltage Lockout

Under Voltage Lockout (UVLO) prevents the output MOSFET from turning on until V_{IN} exceeds approximately 2.4V. After the switch turns on, if the voltage drops below 2.25V typically, UVLO shuts off the output MOSFET. Under voltage detection functions only works when the switch is enabled.

Auto Discharge Function

When the switch turns off from disable control input, UVLO or OTP, auto discharge function turns on. The auto-discharge function quickly lowers the V_{OUT} to the ground level by releasing the electrical charge accumulated in the external capacitor.

Reverse Current Protection

The Reverse Current Protection circuit prevents the reverse current from V_{OUT} pin to V_{IN} pin when V_{OUT}

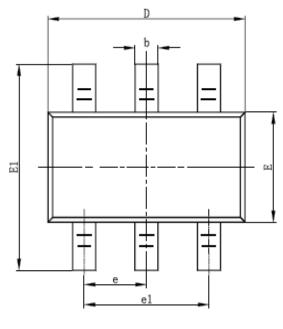
becomes higher than V_{IN}.

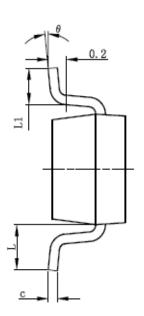
Printed Circuit Layout

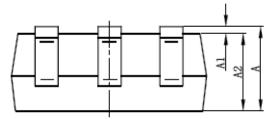
The power circuitry of USB printed circuit boards requires a customized layout to maximize thermal dissipation and to minimize voltage drop and EMI.

Mar. 2017 – Rev 1.0.2 -17-

REVISION NOTICE


The description in this datasheet can be revised without any notice to describe its electrical characteristics properly.


REVISION HISTORY


Revision Number	Revision Date	Remark	
R0.2	2016. 09	-	
R1.0.1	2016. 11	Revision of Electrical Characteristic(Output Turn on Delay, Turn on Rise Time, Turn off Delay, Turn off Fall Time)	
R1.0.2	2017. 03	 Add Thermal Resistance in Page 2. Add Description(RILIMIT) of CONDITIONS on Electrical Characteristic in Page 6. (Output Turn on Delay, Output Turn on Rise Time, Output Turn off Delay, Output Turn off Fall Time) Correct Some Typos. 	

SOT23-6LD

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.400	0.012	0.016	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.95	0TYP	0.037TYP		
e1	1.800	2.000	0.071	0.079	
L	0.70	0.0 OREF		BREF	
L1	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	