ROYALOHM

C O N F I D E N T I A L D O C U M E N T

SPECIFICATION FOR APPROVAL

OZDISAN ELEKTRONIK A.S.

Description: High Power Thick Film Chip Resistors (HP Series) AEC-Q200 Compliant

Royalohm Part no.:

HPxxxxxxxxxxxx (HP Series +/- 1%, 5%)

Approved by

RoHS V3 Compliant (EU) 2015/863

REACH Compliant

Royal Electronic Factory (Thailand) Co., Ltd.

20/1-2 Moo 2 Klong-Na, Muang

Chachoengsao 24000, Thailand

Tel: +66-38-822404-8

Fax: +66 38-981190 / 823765

E-mail Address: Export sales: Export@royalohm.com

Local sales: Local@royalohm.com

http://www.royalohm.com

Approved	Checked	Prepared
Mr. XP Hong	Mr. S. Polthanasan	Ms. P.Supatta

Issue Date: 2021/10/05

		Customer:	
Version	Date of Version	History	Remark
1	2021/10/05	1. HP Series (HP02, HP03, HP05, HP06,	
		HP07, HP10, HP11, HP12)	
		2. Resistance tolerance: ±1%, ±5%	

1. Scope:

This specification for approval relates to High Power Thick Film Chip Resistors manufactured by ROYALOHM's specifications.

2. Type designation:

The type designation shall be in the following form:

Ex.

Type	Power Rating	Resistance tolerance	Nominal Resistance
HP06	1/2W (0.5W)	F,J	75Ω

3. Ratings:

5. Tunings.								
Туре	HP02	HP03	HP05	HP06	HP07	HP10	HP11	HP12
Power Rating @70°C	1/10W	1/5W	1/3W	1/2W	3/4W	1 W	1.25W	2W
Max. Working Voltage	50V	75V	150V	200V	200 V	200 V	200 V	250V
Max. Overload Voltage	100 V	150 V	300 V	400 V	500 V	500 V	500 V	500 V
Dielectric Withstanding Voltage	100 V	300 V	500 V	500 V	500 V	500 V	500 V	500 V
Temperature Range				-55°	C∼ +155°C			
Ambient Temperature	70 ° C							
Resistance Range	$1\Omega\sim 10M\Omega$	$0.1\Omega \sim 10 M\Omega \qquad \qquad 10 m\Omega \sim 10 M\Omega$		~ 10MΩ	$0.1\Omega\sim 10M\Omega$	$10m\Omega\sim10M\Omega$	$0.1\Omega\sim 10M\Omega$	$10m\Omega\sim 10M\Omega$

3.1 Nominal Resistance

Effective figures of nominal resistance shall be in accordance :

E-24 values – these are preferred and will have standard MOQ

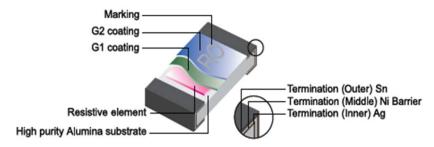
E-96 values - are available on case by case basis and availability and MOQ need to be confirmed with factory first

3.2 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating , as determined from the following formula :

$$RCWV = \sqrt{P \times R}$$

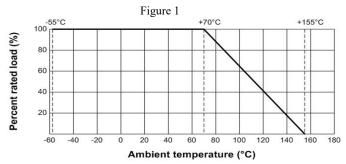
Note: Max. Working Voltage or $\sqrt{P \times R}$ whichever is lesser

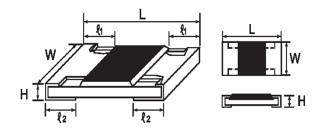

Max. Overload Voltage or 2.5 $\sqrt{P \times R}$ whichever is lesser

Where: RCWV = Rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (volt)

P = Power Rating (watt)

R = Nominal Resistance (ohm)


4. Construction:


5. Power rating and dimensions

5.1 Power rating:

Resistors shall have a power rating based on continuous load operation at an ambient temperature of 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, The load shall be derate as shown in figure 1.

5.2 Dimension:

Tyma			Dimension (mm)			
Туре	L	W	Н	€1	€2	
HP02 (0402)	1.00 ± 0.10	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25 ± 0.10	
HP03 (0603)	1.60 ± 0.10	0.80 + 0.15 - 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	
HP05 (0805)	2.00 ± 0.15	1.25 + 0.15 - 0.10	0.55 ± 0.10	0.40 ± 0.20	0.40 ± 0.20	
HP06 (1206)	3.10 ± 0.15	1.55 + 0.15 - 0.10	0.55 ± 0.10	0.45 ± 0.20	0.45 ± 0.20	
HP07 (1210)	3.10 ± 0.10	2.60 ± 0.20	0.55 ± 0.10	0.50 ± 0.25	0.50 ± 0.20	
HP10 (2010)	5.00 ± 0.10	2.50 ± 0.20	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20	
HP11 (1812)	4.50 ± 0.20	3.20 ± 0.20	0.55 ± 0.20	0.50 ± 0.20	0.50 ± 0.20	
HP12 (2512)	6.35 ± 0.10	3.20 ± 0.20	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20	

Power Rating Resistance range and T.C.R.:

Туре	Power Rating at 70 °C	Tolerance %	Resistance Range	TCR PPM/°C	Standard Series		
			$1\Omega \le R \le 10\Omega$	±400			
HP02 (0402)	1/10W	± 1 ,± 5	$10\Omega < R \le 100\Omega$	±200	E-96, E-24		
			$100\Omega \le R \le 10M\Omega$	±100			
HD02 (0(02)	1 /FW/	. 1 . 5	0.1Ω≤R≤0.2Ω	±200	E 06 E 24		
HP03 (0603)	1/5W	± 1 ,± 5	0.2Ω <u><</u> R≤10MΩ	±100	E-96, E-24		
			$0.01\Omega \le R \le 0.015\Omega$	±800			
			$0.015\Omega < R \le 0.025\Omega$	±600			
HP05 (0805)	1/3W	± 1 ,± 5	$0.025\Omega < R \le 0.05\Omega$	±400	E-96, E-24		
			0.05Ω <r≤0.1ω< td=""><td>±200</td><td colspan="3" rowspan="2"></td></r≤0.1ω<>	±200			
			0.1Ω <r≤10mω< td=""><td>±100</td></r≤10mω<>	±100			
	06) 1/2W		$0.01\Omega \le R \le 0.015\Omega$	±700			
		± 1 ,± 5	0.015Ω <r< <math="">0.03\Omega</r<>	±400			
HP06 (1206)			$0.03\Omega \leq R \leq 0.05\Omega$	±300	E-96, E-24		
			0.05Ω≤R<0.1Ω	±150			
			0.1Ω <r≤10mω< td=""><td>±100</td></r≤10mω<>	±100			
HP07 (1210)	3/4W	± 1 ,± 5	0.1Ω≤R≤ 10MΩ	±100	E-96, E-24		
			0.01Ω≤R< 0.015Ω	±800			
HP10 (2010)	1W	± 1 ,± 5	$0.015\Omega \le R < 0.05\Omega$	±600	E-96, E-24		
			0.05Ω <u><</u> R≤10MΩ	±100			
HP11 (1812)	1.25W	± 1 ,± 5	0.1Ω≤R≤ 10MΩ	±100	E-96, E-24		
			0.01Ω≤R< 0.02Ω	±800			
HP12 (2512)	2W	± 1 ,± 5	$0.020\Omega \le R \le 0.05\Omega$	±400	E-96, E-24		
			$0.05\Omega < R \le 10M\Omega$	±100			

6. Marking:

6.1 Resistors

A. Chip Resistors type HP02 No marking

B. \pm 1% Tolerance HP03 E-96 series use below decoding method:

Mutiplier Code:

Code	A	В	C	D	E	F	G	Н	X	Y	Z
Multipl	er 10	10	10	10	10	10	10	10	-1 10	-2 10	-3 10

Coding		Formula	Example:	10.2K Ω =	= 102	X	10 Ω	=	02C
XX	_	<u>X</u>			√ 02		¢ C		
	Resistance Code		Multiplier Code	33.2 Ω	= 332	X	-1 10 Ω ↓ X	=	51X

Value	Code								
100	01	162	21	261	41	422	61	681	81
102	02	165	22	267	42	432	62	698	82
105	03	169	23	274	43	442	63	715	83
107	04	174	24	280	44	453	64	732	84
110	05	178	25	287	45	464	65	750	85
113	06	182	26	294	46	475	66	768	86
115	07	187	27	301	47	487	67	787	87
118	08	191	28	309	48	499	68	806	88
121	09	196	29	316	49	511	69	825	89
124	10	200	30	324	50	523	70	845	90
127	11	205	31	332	51	536	71	866	91
130	12	210	32	340	52	549	72	887	92
133	13	215	33	348	53	562	73	909	93
137	14	221	34	357	54	576	74	931	94
140	15	226	35	365	55	590	75	953	95
143	16	232	36	374	56	604	76	976	96
147	17	237	37	383	57	619	77		
150	18	243	38	392	58	634	78		
154	19	249	39	402	59	649	79		
158	20	255	40	412	60	665	80		

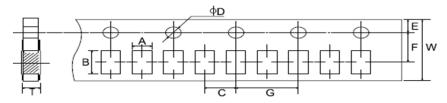
B. Marking for HP03 E-24 series 1% tolerance, the value that no have multiplier code indicate marking follow this: The first two digits are significant figures of resistance and the third one denoted number of zeros and under line the marking letters.

Ex. <u>122</u> 1.2K Ω

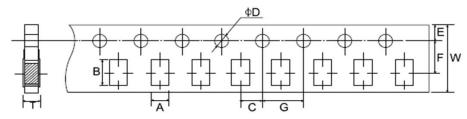
High Power Thick Film Chip Resistors AEC-Q200 Compliant C. ± 5% Tolerance HP03, HP05, HP06, HP07, HP10, HP11, HP12: the first two digits are significant figures of resistance and the third onedenoted number of zeros. 333 $33 \text{K}\Omega$ Ex. D. For ohmic values below 10 Ω Ex. 2R2 2.2Ω E. For E-96 series [$\pm 1\%$ (F) tolerance] in HP03 size 3 digit system (due to space restrictions) please refer to page 4 for coding formula Ex. 02C 10.2KΩ $F. \pm 1\%$ Tolerance HP05, HP06, HP07, HP11, HP10, HP12 : 4 Digits, the first three digits are singnificant figures of resistance and the fourth digit denoted number of zeros.Letter"R" is for decimal point. Ex. 2701 $2.7 K\Omega$ G. Chip Resistors type HP02 No marking H. Marking for $\pm 1\%, \pm 5\%$ Tolerance HP05, HP06, HP07, HP10, HP11, HP12 (Only for $0.01\Omega \sim 0.099\Omega$) : 4 Digits Ex. R091 0.091Ω R010 0.01Ω Ex. 6.2 Labels Label shall be marked with the following item: A. Nominal Resistance and Resistance Tolerance B. Power Rating and Size C. Quantity D. Part No. E. P.O.No. F. Lot No. Ex. CHIP RESISTOR RESISTANCE WATTAGE: 1/5W HP03 SIZE: QUANTITY: 5,000 PCS Pb-Free PART NO.: P.O.NO.: LOT NO.: 825723 HP03W5F750JT5E

Remark: For HP03 ± 1 %: Label is 75R, value is 75 Ω , marking is 85X

H	ligh Power Thick Film Chip	Resistors AEC-Q200 Compliant
7. Performance	specification:	
Characteristics	Limits	Test Methods (AEC - Q200)
Operational Life	Resistance change rate is $\pm 1\%$: $\pm (1.0\% + 0.1\Omega)$ max $\pm 5\%$: $\pm (3.0\% + 0.1\Omega)$ Max.	125°C, at35% of operating power, 1000H(1.5 hours "ON", 0.5 hour "OFF"). (MIL-STD-202 Method 108)
Temperature Coefficient	Resistance change rate is $1\Omega {\le} \ R {\le} 10\Omega : \pm 400 PPM/^{\circ}C$ $10\Omega {<} \ R {\le} 100\Omega : \pm 200 PPM/^{\circ}C$ $100\Omega {<} \ R {\le} 10M\Omega : \pm 100 PPM/^{\circ}C$	Natural resistance change per temp. degree centigrade. R2-R1 R1(t2-t1) R1: Resistance value at room temperature (T1) R2: Resistance value at room temp. plus 100 °C(T2) Test pattern: room temp. (T1), room temp. +100°C(T2)
Short Time Overload	Resistance change rate is $\pm 1\%$: $\pm (1.0\% + 0.1\Omega)$ Max $\pm 5\%$: $\pm (2.0\% + 0.1\Omega)$ Max	2.5x Rated voltage or Max. Overload Voltage whichever is lower for 5 seconds, then check the resistance.
External Visual	No Mechanical Pamage	Electrical test not required.Inspect device construction, marking and workmanship (MIL-STD-883 Method 2009)
Physical Dimension	Reference 2.0 Dimension Standards	Verify physical dimensions to the applicable device detail specification. Note: User(s) and Suppliers spec. Electrical test not required. (JESD22 MH Method JB-100)
Resistance to Solvent	Marking Unsmeared	Note: Add Aqueous wash chemical – OKEM Clean or equivalen Do not use banned solvents. (MIL-STD-202 Method 215)
Terminal Strength	Not broken	Force of 1.8kg for 60 seconds. (JIS-C-6429)
High Temperature Exposure (Storage)	Resistance change rate is $\pm (1.0\% + 0.1\Omega)$ max	1000hrs. @T=155°C.Unpowered. Measurement at 24±2 hours after test conclusion. (MIL-STD-202 Method 108)
Temperature Cycling	Resistance change rate is 1% : $\pm (0.5\% + 0.1\Omega)$ Max. 5% : $\pm (1.0\% + 0.1\Omega)$ Max.	1000 Cycles (-55°C to +155°C). Measurement at 24±2 hours after test conclusion. (JESD22 Method JA-104)
Moisture Resistance	Resistance change rate is 1% : $\pm (0.5\% + 0.1\Omega)$ Max. 5% : $\pm (3.0\% + 0.1\Omega)$ Max.	Temp.(C) 65C 25 Tes 3 Nes 2.5 Nes 2.5 Nes 3 Nes 2.5 Ne
Biased Humidity	Resistance change rate is 1% : $\pm (1.0\%+0.1\Omega)$ Max. 5% : $\pm (3.0\%+0.1\Omega)$ Max.	10% rated power, 85°C/85%RH, 1000H,Measurement at 24 hours after test conclusion. (MIL-STD-202 Method 103)

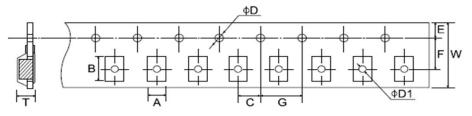

Hi	gh Power Thick Film Chip l	Resistors AEC-Q200 Compliant
7. Performance	specification:	
Characteristics	Limits	Test Methods (AEC - Q200)
Mechanical Shock	Resistance change rate is $\pm (1.0\% + 0.1\Omega)$ max	Wave Form: Tolerance for half sine shock pulse. Peak value is 100g's. Normal duration (D) is 6. (MIL-STD-202 Method 213)
Vibration	Resistance change rate is $\pm (1.0\%+0.1\Omega)$ max	5g's for 20 min., 12cycle each of 3 orientations. Note: Use 8"*5"PCB. 031" thick 7 secure points (onone) long side and 2 secure points at corners of opposite sides. Parts mounted within 2' from any secure point. Test from 10-2000Hz. (MIL-STD-202 Method 204)
Thermal Shock	Resistance change rate is $\pm (1.0\% + 0.1\Omega)$ max	-55°C/+155°C,Note: Number of cycles required -300, Maximum transfer time -20 seconds, Dwell time -15 minutes. Air-Air. (MIL-STD-202 Method 107)
ESD	Resistance change rate is $\pm (10\% + 0.1\Omega)$ max	With the electrometer in direct contact with the discharge tip, verify the voltage setting at levels of ±500V,±1KV, ±2KV, ±4KV,±8KV, The electrometer reading shall be within ±10% for voltages from 500V to ≤800V. (AEC-Q200-002)
Solderability	95% coverage Min.	For both leaded & SMD. Electrical test not required. Magnification 50X. Conditions: a) Method B 4hrs at 155°C dry heat, the dip in bath with 245°C,5s. b) Method B: at 215°C,5s. c) Method D: at 260°C, 60s. (J-STD-002)
Flammability	No ignition of the tissue paper or scorching or the pinewood board	V-0 or V-1 are acceptable. Electrical test not required. (UL-94)
Board Flex	Resistance change rate is $\pm (1.0\% + 0.05\Omega)$ max	2mm (Min) (JIS-C-6429)
Flame Retardance	No flame	Temperature sensing at 500°C, Voltage power subjected to 32VDC current clamped up to 500ADC and decreased in 1.0VDC/hour. (AEC-Q200-001)
Resistance to Soldering Heat	Resistance change rate is $\pm (1.0\% + 0.05\Omega)$ max.	Condition B No per-heat of samples. Note: Single Wave Solder-Procedure 2 for SMD and Procedure 1 for Leaded with solder within 1.5mm of device body. (MIL-STD-202 Method 210)

^{*} Sulfuration test: H2S 3~5PPM 50°C±2°C 91%~93%RH 1000H


8. Packing specification:

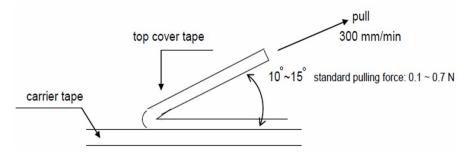
* Taping Dimension (mm)

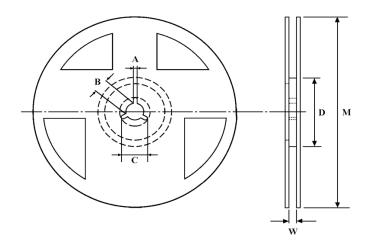
A. Paper taping



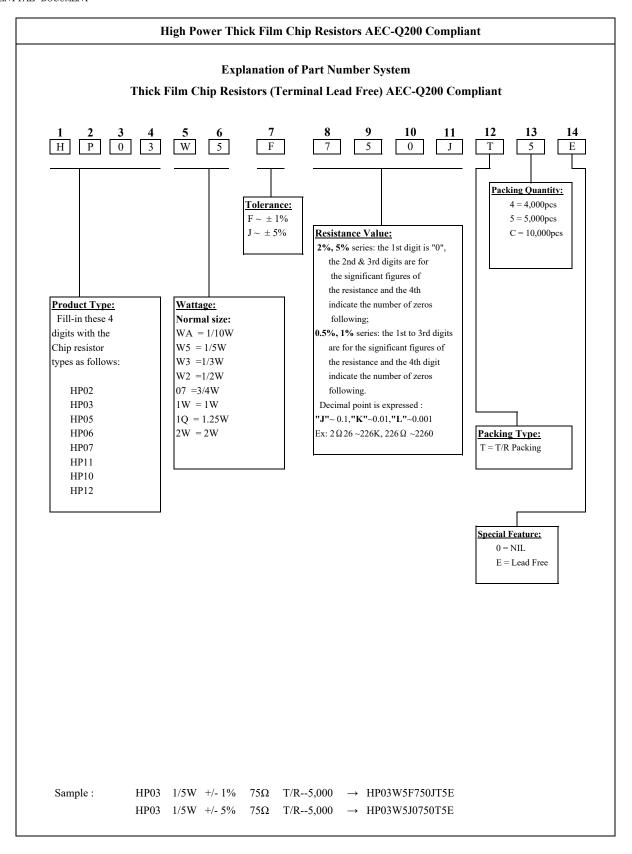
Туре	A ± 0.1	$B\pm0.1$	$C \pm 0.05$	φ D +0.1 - 0	E ± 0.1	F ± 0.05	$G \pm 0.1$	$W\pm0.2$	$T\pm0.05$
HP02	0.65	1.2	2.0	1.5	1.75	3.5	4.0	8.0	0.42

Туре	A ± 0.2	$B\pm0.2$	$C \pm 0.05$	φ D +0.1 - 0	E ± 0.1	$F \pm 0.05$	G ± 0.1	$W \pm 0.2$	T ± 0.1
HP03	1.10	1.90	2.0	1.5	1.75	3.5	4.0	8.0	0.67
HP05	1.65	2.40	2.0	1.5	1.75	3.5	4.0	8.0	0.81
HP06	2.00	3.60	2.0	1.5	1.75	3.5	4.0	8.0	0.81
HP07	2.80	3.50	2.0	1.5	1.75	3.5	4.0	8.0	0.75


B. Embossed taping


Туре	A ±0.2	B ±0.2	C ±0.05	φ D+0.1 -0	φ D1+0.1 -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ± 0.1
HP10	2.90	5.60	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0
HP11	3.50	4.80	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0
HP12	3.50	6.70	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0

* Peeling Strength of Top Cover Tape


Test Condition: 0.1 to 0.7 N at a peel-off speed of 300 mm $\!/$ min.

* Reel Dimension (mm)

Type	Packaging	Quantity Per Reel	$A \pm 0.5$	$B \pm 0.5$	$C \pm 0.5$	D ± 1	$M\pm 2$	$W\pm 1$
HP02	Paper	10,000 pcs.	2	13	21	60	178	10
HP03	Paper	5,000 pcs.	2	13	21	60	178	10
HP05	Paper	5,000 pcs.	2	13	21	60	178	10
HP06	Paper	5,000 pcs.	2	13	21	60	178	10
HP07	Paper	5,000 pcs.	2	13	21	60	178	10
HP10	Embossed	4,000 pcs.	2	13	21	60	178	13.8
HP11	Embossed	4,000 pcs.	2	13	21	60	178	13.8
HP12	Embossed	4,000 pcs.	2	13	21	60	178	13.8

Environment Related Substance

This product complies to EU RoHS directive, EU PAHs directive, EU PFOS directive and Halogen free.

Ozone layer depleting substances.

Ozone depleting substances are not used in our manufacturing process of this product.

This product is not manufactured using Chloro fluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs),

Hydrobromofluorocarbons (HBFCs) or other ozone depleting substances in any phase of the manufacturing process.

Storage Condition (MSL1)

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $25^{\circ}\text{C} \pm 10^{\circ}\text{C}$ and a relative humidity of $60\%\text{RH} \pm 10\%\text{RH}$, chemical and dust free atmosphere

Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures.

- 1. In salty air or in air with a high concentration of corrosive gas, such as Cl₂, H₂S, NH₃, SO₂, or NO₂
- 2. In direct sunlight

This production is used for automotive electronics, ROYALOHM will not be responsible for any damage, expense or loss caused by the use of this specification in any special environment. This series of product are suitable for automotive electronics applications, as show below, if there are other application, you need to confirm with ROYALOHM whether they are applicable:

- a. Control unit for informatiom, entertainment, navigation, audio;
- b. Control unit for comfortable doors, windows, seat;
- c. Control unit for internal lighting.