LM317, NCV317

Voltage Regulator Adjustable Output, Positive

1.5 A

The LM317 is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 1.5 A over an output voltage range of 1.2 V to 37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

The LM317 serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317 can be used as a precision current regulator.

Features

- Output Current in Excess of 1.5 A
- Output Adjustable between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Eliminates Stocking many Fixed Voltages
- Available in Surface Mount D2PAK-3, and Standard 3-Lead Transistor Package
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

${ }^{*} \mathrm{C}_{\text {in }}$ is required if regulator is located an appreciable distance from power supply filter.
${ }^{* *} \mathrm{C}_{0}$ is not needed for stability, however, it does improve transient response.

$$
\mathrm{V}_{\text {out }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)+\mathrm{I}_{\mathrm{Adj}} \mathrm{R}_{2}
$$

Since $I_{\text {Adj }}$ is controlled to less than $100 \mu \mathrm{~A}$, the error associated with this term is negligible in most applications.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

D2PAK-3 D2T SUFFIX
CASE 936

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

Heatsink surface connected to Pin 2.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 10 of this data sheet.

Figure 1. Standard Application

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input-Output Voltage Differential	$\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}$	-0.3 to 40	Vdc
Power Dissipation			
Case 221 A			
$\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	Internally Limited	W
Thermal Resistance, Junction-to-Ambient	θ_{JA}	65	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	θ_{JC}	5.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Case $936\left(\mathrm{D}^{2} \mathrm{PAK}-3\right)$			
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	Internally Limited	W
Thermal Resistance, Junction-to-Ambient	θ_{JA}	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	θ_{JC}	5.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature Range	T_{J}	-55 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{l}}-\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}\right.$ for D2T and T packages; $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 1); $\mathrm{I}_{\text {max }}$ and $\mathrm{P}_{\max }$ (Note 2); unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
Line Regulation (Note 3), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}$	1	Regline	-	0.01	0.04	\%/V
$\begin{aligned} & \text { Load Regulation (Note 3), } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max } \\ & \mathrm{V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V} \end{aligned}$	2	Regload	-	$\begin{aligned} & 5.0 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 25 \\ & 0.5 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \% \mathrm{~V}_{\mathrm{O}} \end{gathered}$
Thermal Regulation, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 4), 20 ms Pulse	-	Regtherm	-	0.03	0.07	\% $\mathrm{V}_{\mathrm{O}} / \mathrm{W}$
Adjustment Pin Current	3	$\mathrm{I}_{\text {Adj }}$	-	50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}$, $10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq \mathrm{I}_{\text {max }}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\text {max }}$	1, 2	$\Delta_{\text {Adj }}$	-	0.2	5.0	$\mu \mathrm{A}$
Reference Voltage, $3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\text {max }}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\text {max }}$	3	$\mathrm{V}_{\text {ref }}$	1.2	1.25	1.3	V
Line Regulation (Note 3), 3.0 $\mathrm{V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}$	1	Regline	-	0.02	0.07	\%/V
$\begin{aligned} & \text { Load Regulation (Note 3), } 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max } \\ & \mathrm{V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V} \end{aligned}$	2	Regload	-	$\begin{aligned} & 20 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 70 \\ & 1.5 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \% \mathrm{~V}_{\mathrm{O}} \end{gathered}$
Temperature Stability ($\mathrm{l}_{\text {low }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {high }}$)	3	Ts	-	0.7	-	\% V_{O}
Minimum Load Current to Maintain Regulation ($\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}$)	3	$I_{\text {Lmin }}$	-	3.5	10	mA
$\begin{aligned} & \text { Maximum Output Current } \\ & \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 15 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \text { T Package } \\ & \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~T} \text { Package } \end{aligned}$	3	$I_{\text {max }}$	$\begin{gathered} 1.5 \\ 0.15 \end{gathered}$	$\begin{aligned} & 2.2 \\ & 0.4 \end{aligned}$	-	A
RMS Noise, \% of $\mathrm{V}_{\mathrm{O}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	-	N	-	0.003	-	\% V_{O}
```Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) (Note 5) Without \(\mathrm{C}_{\text {Adj }}\) \(\mathrm{C}_{\text {Adj }}=10 \mu \mathrm{~F}\)```	4	RR	$66$	$\begin{array}{r} 65 \\ 80 \\ \hline \end{array}$	-	dB
Thermal Shutdown (Note 6)	-	-	-	180	-	${ }^{\circ} \mathrm{C}$
Long-Term Stability, $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}$ (Note 7), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ for Endpoint Measurements	3	S	-	0.3	1.0	$\begin{aligned} & \hline \% / 1.0 \\ & \text { kHrs. } \end{aligned}$
Thermal Resistance Junction-to-Case, T Package	-	$\mathrm{R}_{\text {өJC }}$	-	5.0	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. $\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}=0^{\circ}$ to $+125^{\circ} \mathrm{C}$, for LM317T, D2T. $\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}=-40^{\circ}$ to $+125^{\circ} \mathrm{C}$, for LM317BT, BD2T, $\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}=-55^{\circ}$ to $+150^{\circ} \mathrm{C}$, for NCV317BT, BD2T.
2. $I_{\max }=1.5 \mathrm{~A}, \mathrm{P}_{\max }=20 \mathrm{~W}$
3. Load and line regulation are specified at constant junction temperature. Changes in $\mathrm{V}_{\mathrm{O}}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
4. Power dissipation within an IC voltage regulator produces a temperature gradient on the die, affecting individual IC components on the die. These effects can be minimized by proper integrated circuit design and layout techniques. Thermal Regulation is the effect of these temperature gradients on the output voltage and is expressed in percentage of output change per watt of power change in a specified time.
5. $\mathrm{C}_{\text {Adj }}$, when used, is connected between the adjustment pin and ground.
6. Thermal characteristics are not subject to production test.
7. Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.


Figure 2. Representative Schematic Diagram


Figure 3. Line Regulation and $\Delta I_{\text {Adj }} /$ Line Test Circuit


Figure 4. Load Regulation and $\Delta I_{\text {Adj }}$ Load Test Circuit


Figure 5. Standard Test Circuit


Figure 6. Ripple Rejection Test Circuit


Figure 7. Load Regulation


Figure 9. Adjustment Pin Current


Figure 11. Temperature Stability


Figure 8. Current Limit


Figure 10. Dropout Voltage


Figure 12. Minimum Operating Current


Figure 13. Ripple Rejection versus Output Voltage


Figure 15. Ripple Rejection versus Frequency


Figure 14. Ripple Rejection versus Output Current


Figure 16. Output Impedance


Figure 17. Line Transient Response


Figure 18. Load Transient Response

## LM317, NCV317

## APPLICATIONS INFORMATION

## Basic Circuit Operation

The LM317 is a 3-terminal floating regulator. In operation, the LM317 develops and maintains a nominal 1.25 V reference ( $\mathrm{V}_{\text {ref }}$ ) between its output and adjustment terminals. This reference voltage is converted to a programming current ( $\mathrm{I}_{\mathrm{PROG}}$ ) by $\mathrm{R}_{1}$ (see Figure 17), and this constant current flows through $\mathrm{R}_{2}$ to ground.

The regulated output voltage is given by:

$$
v_{\text {out }}=v_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
$$

Since the current from the adjustment terminal $\left(\mathrm{I}_{\text {Adj }}\right)$ represents an error term in the equation, the LM317 was designed to control $\mathrm{I}_{\text {Adj }}$ to less than $100 \mu \mathrm{~A}$ and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM317 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.


Figure 19. Basic Circuit Configuration

## Load Regulation

The LM317 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor $\left(\mathrm{R}_{1}\right)$ should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of $R_{2}$ can be returned near the load ground to provide remote ground sensing and improve load regulation.

## External Capacitors

A $0.1 \mu \mathrm{~F}$ disc or $1.0 \mu \mathrm{~F}$ tantalum input bypass capacitor $\left(\mathrm{C}_{\mathrm{in}}\right)$ is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ( $\mathrm{C}_{\mathrm{Adj}}$ ) prevents ripple from being amplified as the output voltage is increased. A $10 \mu \mathrm{~F}$ capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.
Although the LM317 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance $\left(\mathrm{C}_{\mathrm{O}}\right)$ in the form of a $1.0 \mu \mathrm{~F}$ tantalum or $25 \mu \mathrm{~F}$ aluminum electrolytic capacitor on the output swamps this effect and insures stability.

## Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.
Figure 18 shows the LM317 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ( $\mathrm{C}_{\mathrm{O}}>25 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{Adj}}>10 \mu \mathrm{~F}$ ). Diode $\mathrm{D}_{1}$ prevents $\mathrm{C}_{\mathrm{O}}$ from discharging thru the IC during an input short circuit. Diode $\mathrm{D}_{2}$ protects against capacitor $\mathrm{C}_{\text {Adj }}$ discharging through the IC during an output short circuit. The combination of diodes $D_{1}$ and $D_{2}$ prevents $C_{\text {Adj }}$ from discharging through the IC during an input short circuit.


Figure 20. Voltage Regulator with Protection Diodes


Figure 21. D²PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Figure 22. "Laboratory" Power Supply with Adjustable Current Limit and Output Voltage

## LM317, NCV317



Figure 23. Adjustable Current Limiter


Figure 25. Slow Turn-On Regulator


* $D_{1}$ protects the device during an input short circuit.

Figure 24. 5.0 V Electronic Shutdown Regulator


Figure 26. Current Regulator

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
LM317BD2TG	$\mathrm{T}_{J}=-40^{\circ}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \hline D^{2} \text { PAK-3 } \\ & \text { (Pb-Free) } \end{aligned}$	50 Units / Rail
LM317BD2TR4G		$\begin{aligned} & \mathrm{D}^{2} \text { PAK-3 } \\ & \text { (Pb-Free) } \end{aligned}$	800 Tape \& Reel
LM317BTG		$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
LM317D2TG	$\mathrm{T}_{J}=0^{\circ}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \hline D^{2} \text { PAK-3 } \\ & \text { (Pb-Free) } \end{aligned}$	50 Units / Rail
LM317D2TR4G		$\mathrm{D}^{2} \mathrm{PAK}-3$   (Pb-Free)	800 Tape \& Reel
LM317TG		$\begin{gathered} \hline \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
NCV317BD2TG*	$\mathrm{T}_{J}=-55^{\circ}$ to $+150^{\circ} \mathrm{C}$	$\begin{aligned} & \hline \text { D }^{2} \text { PAK-3 } \\ & \text { (Pb-Free) } \end{aligned}$	50 Units / Rail
NCV317BD2TR4G*		$\begin{aligned} & \hline D^{2} \text { PAK-3 } \\ & \text { (Pb-Free) } \end{aligned}$	800 Tape \& Reel
NCV317BTG*		$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MARKING DIAGRAMS


## LM317, NCV317

## PACKAGE DIMENSIONS



## LM317, NCV317

## PACKAGE DIMENSIONS

## TO-220, SINGLE GAUGE T SUFFIX <br> CASE 221AB ISSUE A



1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCHES
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND

LEAD IRREGULARITIES ARE ALLOWED.
4. PRODUCT SHIPPED PRIOR TO 2008 HAD DIMENSIONS $\mathrm{S}=0.045-0.055$ INCHES ( $1.143-1.397 \mathrm{MM}$ )

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.020	0.024	0.508	0.61
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

> ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns ine rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

