1~ Rectifier
$\mathrm{V}_{\text {RRM }}=1200 \mathrm{~V}$
$\mathrm{I}_{\text {DAV }}=130 \mathrm{~A}$
$\mathrm{I}_{\text {FSM }}=1800 \mathrm{~A}$

1~ Rectifier Bridge

Part number

VBO130-12NO7

NNㅌ2873

Applications:

- Diode for main rectification
- For one phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: PWS-E

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Easy to mount with two screws
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			1300	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			1200	V
$\mathrm{I}_{\text {R }}$	reverse current	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=1200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} \mathrm{~J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \mathrm{~J}}=150^{\circ} \mathrm{C} \end{aligned}$			200	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\mathbf{V}_{\text {F }}$	forward voltage drop	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=120 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=240 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.10 \\ & 1.26 \end{aligned}$	V V
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=120 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=240 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{vs}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1.00 \\ & 1.21 \end{aligned}$	V
Idav	bridge output current	$\begin{array}{ll} \mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C} & \\ \text { rectangular } \quad \mathrm{d}=0.5 \end{array}$	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=150^{\circ} \mathrm{C}$			130	A
$\begin{aligned} & V_{\mathrm{F} 0} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$			$\mathrm{T}_{\mathrm{vs}}=150^{\circ} \mathrm{C}$				
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case					0.5	K/W
$\mathbf{R}_{\text {thch }}$	thermal resistance case to heatsink				0.2		K/W
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			250	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.80 \\ & 1.95 \end{aligned}$	$\begin{aligned} & \mathrm{kA} \\ & \mathrm{kA} \end{aligned}$
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.53 \\ & 1.65 \end{aligned}$	$\begin{aligned} & \mathrm{kA} \\ & \mathrm{kA} \end{aligned}$
12t	value for fusing	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}), \text { sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 16.2 \\ & 15.7 \end{aligned}$	$\begin{aligned} & k^{k A^{2} \mathrm{~S}} \\ & k A^{2} \mathrm{~S} \end{aligned}$
		$\begin{aligned} & \hline \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 11.7 \\ & 11.3 \end{aligned}$	$\begin{aligned} & k A^{2} \mathrm{~S} \\ & k A^{2} \mathrm{~S} \end{aligned}$
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		35		pF

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VBO130-12NO7	VBO130-12NO7	Box	5	474010

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v} j}=150^{\circ} \mathrm{C}$

Rectifier

$\mathrm{V}_{0 \max }$ threshold voltage $0.77 \quad \mathrm{~V}$
$\mathbf{R}_{0 \text { max }}$ slope resistance * $2.2 \mathrm{~m} \Omega$

Outlines PWS-E

Rectifier

Fig. 1 Forward current vs. voltage drop per diode

Fig. 2 Surge overload current vs. time per diode

Fig. $3 I^{2} t$ vs. time per diode

Fig. 5 Max. forward current vs. case temperature per diode

R_{i}	t_{i}
0.050	0.02
0.003	0.01
0.120	0.225
0.217	0.8
0.110	0.58

Fig. 6 Transient thermal impedance junction to case vs. time per diode

