NO.: RD20191229002 TO: Ozdisan

APPROVAL SHEET No.: B-7715A

Series No.: KLJ

Specification No.:

APPROVAL SHEET

FOR AL. ELECTROLYTIC CAPACITORS

No.	(Customer No.)	(Koshin Part No.)	Description	ФDхL
1		PKLJ-050V220MF070-T/A3.5	50V22µF	8X7

APPROVED BY:

PLEASE SIGN RETURN US ONE COPY OF THE APPROVAL SHEET.

DESIGNED BY:MENGXIAOCONG CHECKED BY:JUANGYUANYUAN APPROVED BY: HAUNGXUEHUI

DATE: 2019-12-29

Standard Size map:

ΦD	8
F	3.5
Фф	0.45
L	7
a	1.0

Coefficient of Frequency for Ripple Current

Frequency (Hz) Capacitance (µF)	50•60	120	1K	10K	100K
CAP≤100	0.60	0.70	0.85	0.95	1.00
100 <cap≤1000< td=""><td>0.65</td><td>0.75</td><td>0.90</td><td>0.98</td><td>1.00</td></cap≤1000<>	0.65	0.75	0.90	0.98	1.00
CAP>1000	0.75	0.80	0.95	0.98	1.00

Coefficient of Temperature for Ripple Current

Temperature $(^{\circ}\mathbb{C})$	70	85	105
Coefficient	1.78	1.40	1.00

Series KLJ Capacitor

1. Our part No.:

For example

PKLJ	050 V	220	$\underline{\mathbf{M}}$	<u>F07</u> 0
Se rise code	rated voltage	capacitance	tolerance	case size symbol
PKLJ	50 v	22 µ F	$\pm 20\%$	Ф8Х7

2. Marking:

Include company's brand "Koshin", series code, rated voltage, capacitance, rated temperature range, polarity and tolerance of capacitance.

- 3. Specifications:
- 3.1 Temperature range: -40+105℃
- 3.2 Electrical characteristics
- 3.2.1 Capacitance tolerance : $\pm 20\%$

3.2.2 Tangent of loss angle (tan δ):

Rated voltage(V)	6. 3	10	16	25	35	50
tanδ (max.)	0. 22	0. 19	0. 16	0. 14	0. 12	0. 10

Note: 0.02 is added to each $1000\,\mu\,F$ increase over $1000\,\mu\,F$

3.2.3 Leakage current (µA):

Rated voltage(V)	6.3~ 50
Leakage current	Less than 0.01CV or 3 whichever is large (after 2 minutes)

Note: I : Leakage current (μ A) , C : Capacitance (μ F) , V : Rated DC working voltage (V)

1. Scope:

This specification applies to aluminium electrolytic capacitor ,used in electronic equipment.

2. Electrical characteristics:

2.	Electrical charact	eristics:			
NO.	ITEM		TEST METHOD		SPECIFICATION 规格
2.1	Rated voltage				Voltage range capacitance range ,see specification of
2.2	Capacitance	1. Meas	uring frequency:120Hz±12Hz		this series
2.3	Dissipation factor		suring voltage: ≤0.5Vrms+0.5VDC~2.0V	VDC)	
2.4	Leakage current	resistor R: 1000		through the 1000 Ω Cx h 开关 n for protect of	Dissipation factor, leakage current, see specification of this series.
		V: DC	voltage meter C_{χ} : Tes	meter ting capacitor	
2.5	Temperature characteristics	STEP	TEMPERATURE	STORAGE TIME	Step2. Low temperature
		1	20°C ±2°C	30minutes	impedance stability
		2	-40°C ±3°C	2hours	Less than specified value.
		3	20°C ±2°C	4hours	
		4	105℃±2℃	2hours	Step4.
		Step2.	Measure the impedance. $ Z $, 20° C, 120 Hz ± 2 HZ) Measure the impedance at thermal balance $ Z $, -40° C, 120 Hz ± 2 HZ)	ce after 2 hours.	Capacitance change: within ± 10% of the initial measured value.
			Measure the leakage current at thermal ba	llance after 2 hours.	Dissipation factor: Less than specified value.

NO.	ITEM	TEST METHOD	SPECIFICATION
2.6	Surge test	Rated surge voltage shall be applied (switch on)for 30±5 second and then shall be applied (switch off) with discharge for 5.5min at room temperature. This cycle shall be repeated for 1000 cycles. Duration of one cycle is 6±0.5 minutes	within±15% of the initial
			Leakage current: Within initial specified value.

3. Mechanical characteristics:

NO.	ITEM		TE	EST METHO	D		SPECIFICATION
3.1	Lead strength	(A)Tensile s wire lead te	_				
		d(mm)	≤0.5	0.5 <d≤0.8< td=""><td>0.8≤d≤1.25</td><td></td><td></td></d≤0.8<>	0.8≤d≤1.25		
		load(kg)	0.5	1.0	2.0		
					the constant to		
					y and each lea her mechanica		
		(B) Bend wire lead te	•	gth:			When the capacitance is measured, there shall be no intermittent contacts, or open-or
		d(mm)	≤0.5	0.5 <d≤0.8< td=""><td>0.8<d≤1.25< td=""><td>5</td><td>short-circuiting.</td></d≤1.25<></td></d≤0.8<>	0.8 <d≤1.25< td=""><td>5</td><td>short-circuiting.</td></d≤1.25<>	5	short-circuiting.
		load(kg)	0.5	0.5	1.0		
		specified as rotated slow position, ba opposite di	kially to exwly from ck to the rection are of capa	each lead. The the vertical posiund back the thick the t	sition apply the ne capacitor sha il to the horiz tion. The 90° i e original pos ot have change	all be contal in the ition.	There shall be no such mechanical damage as terminal damage etc. Capacitance change: within ± 5% of the initial specified value.

NO.	ITEM	TEST METHOD	SPECIFICATION
3.2	Vibration resistance	The frequency of the vibration shall vary uniformly within the range 10 to 55 Hz with the amplitude of 0.75mm, completing the cycle in the internal of one	Appearance: no abnormal.
		minute. The capacitor shall be securely mounted by its leads with hold the body of capacitor. The capacitor shall be vibrated in three mutually perpendicular directions for a period of 2 hours in each direction.	Capacitance change: within \pm 5% of initial measured value.
3.3	Solder ability	The leads are dipped in the solder bath of Sn at 245°C±5°C for 2±0.5 seconds. The dipping depth should be set at 1.5~2.0 mm.	The solder alloy shall cover the 95% or more of dipped lead's area.

4. Reliability:

	ITEM	TEST METHOD	SPECIFICATION
NO.			
4.1	Soldering heat resistance	The leads immerse in the solder bath of Sn at $260^{\circ}\text{C}\pm5^{\circ}\text{C}$ for $10\pm1\text{seconds}$ until a distance of $1.5\sim2.0\text{mm}$ from the case.	No visible damage or leakage of electrolyte. Capacitance change: Within±5% of the initial measured value
			Tanδ: Less than specified value. Leakage current: Less than specified value
4.2	Damp head (steady state)	Subject the capacitor to 40 $^{\circ}\text{C} \pm 2 ^{\circ}\text{C}$ and 90% to 95% relative humidity for 504 hours.	Capacitance change: Within \pm 20% of the initial measured value Tan δ : Less than 1.2 specified value. Leakage current: Less than specified value Impedance: Less than 1.2 specified value.

NO	ITEM	TEST METHOD	SPECIFICATION	
4.3	Load life	After 1000 hours continuous applic ripple current and DC rated volt Measurements shall be performed a room temperature.	Capacitance change: Within \pm 20% of the initial value. Tan δ :less than 200% specified value	
4.4	Shelf life	After storage for 500 hours at 105 application ,Measurements shall be p 16 hrs at room temperature after appl	Leakage current: Less than initial specified value. Appearance :no Abnormal	
4.5	Storage at low temperature	The capacitor shall be stored at temp 16 hours, during which time b atmospheric conditions for 16 hours measurements shall be made.	Capacitance change: Within \pm 10% of the initial value.	
			Value Leakage current: Less than specified value. Appearance :no Abnormal.	
4.6	Pressure relief	AC test: Applied voltage : AC voltage not rated direct voltage or 250V AC which rated direct voltage or 250	Series resistor $\frac{1000 \Omega}{100 \Omega}$ $\frac{100 \Omega}{100 \Omega}$ $\frac{100 \Omega}{100 \Omega}$ $\frac{100 \Omega}{100 \Omega}$ $\frac{100 \Omega}{100 \Omega}$ $\frac{1000 \Omega}{1000 \Omega}$	AC test circuit S R C S S C X S S S C X S S S S S S S S S S

NO.	ITEM	TEST METHOD	SPECIFICATION	
4.6	Pressure relief	DC test Send the following electricity while applying the inverse voltage. Where case size D≤22.4mm:1 A d.c.max D>22.4mm:10 A d.c.max Note: 1.This requirement applies to capacitors with a diameter of 6 mm or more. 2. When the pressure relief device does not open even 30 minutes after commencement of test, the test may be ended.	DC test circuit S CX The pressure relief device shall open in such a way as to avoid any damage of fire or explosion of capacitor elements(terminal and metal foil etc.) or cover.	
4.7	Temp cycle	LSL temperature($^{\circ}$ C):-40 \pm 3 time(H): 0.5H/timeX5 times USL temperature($^{\circ}$ C):105 \pm 2 time(H): 0.5H/timeX5 times Judgement: CAP: \triangle C/C \leq \pm 10%, Appearance no Abnormal. No electrolyte leakage.		
4.8	Thermal shock	dry heat temperature (°C): 105 ± 2 time(H): 16 moist heat temperature (°C): 55 time(H): 24/cold temperature (°C): -40 ± 2 time(H): 2/ moist heat temperature (°C): 55 time(H): 24: Judgement: CAP, \triangle C/C $\le\pm10\%$, Tan δ : Less than 1.2 specified value, Leakage current: Less than specified value. Appearance no Abnormal. No electrolyte leakage.		
5 N	[arkino	For example:		

5. Marking

For example:

5.1. Marking on capacitors includes:

a. Manufacture's name or trade mark

Koshin

b. Rated voltage and capacity

--V--uF

c. Sleeve material-Series

®KLJ

d. Capacitance tolerance code-Rated temperature

(M) 105°C

e. Polarity of the terminals

5.2 Marking color:

Sleeve color: Purple PET

Marking color: White

Detergent needing attention

Hydrogen carbide liquid and halogen liquid can cause Aluminium Electrolytic Capacitor corrode. Some of Safe and Unsafe detergent are as follows

Safe	Unsafe
Dimethylbenzene	1,1,2-trichloroethane
Ethanol	1,2,2- trichloroethane
Butanol	Tetrachloroethylene
Methanol	Chloroform(colorless volatilizable liquid)
Propanol	Dichloromethane
Detergent	Trichloroethylene

Taping size $\Phi 8$

TP3.5mm pitch tape packing

Taping code number: T/A3.5

Item	Symbol	Dimension	Tolerance	Reference
Lead-wire diameter	Φd	0.45	±0.05	
Distance between centers of leads	F1	3.5	±0.5	
Height of component form tape center	Н	18.5	+0.75 -0.5	
Component spacing	P	12.7	±1.0	
Perforation pitch	P0	12.7	±0.3	
Hole center to lead distance	P1	4.6	±0.5	
Hole center to component center	P2	6.35	±1.0	
Carrier tape width	W	18.0	±0.5	
Hole down tape width	W0	6.0-13.0	±0.1	
Feed hole position	W1	9.0	±0.5	
Hole down tape width	W2	0.5-1.5		
Diameter of sprocket holes	Ф D0	4.0	±0.2	
Body inclination forward or backward	Δh	0	±1.0	
Tape base thickness	t0	0.38	±0.05	
Total thickness of the combined carrier tape and hold down tape	Т	0.5	±0.2	
Cut off position of defectives	L	11.0	or less	

Aluminum Electrolytic Capacitor Specification				
Series	PKLJ	50 V 22 μF	Part No.	PKLJ-050V220MF070-T/A3.5
Customer No.	1		Case size	ФD 8 X L 7
	Items		Standard	
	Operating temperature range		- 40 ~ + 105 °C	
	Capacitance tolerance		±20% (20°C ,120Hz)	
Specification	Dissipat	ion factor (MAX)	(Less than) 10% (20℃ ,120Hz)	
Specification	Leakage current (MAX)		(Less than) 11 μA (20°C 50 V 2 min)	
	ESR (MAX)		/	
	Ripple current (MAX)		63 mArms (120Hz ,105℃)	
	Load life		1000hrs	
	S1	eeve color	Purple(PET)	
	Mar	king color	White	
	(Dimensions)			
Outline	4±0.5 MAX	Markings	per clad steel wire(t Φ0. 45±0. 05	Flat Rubber Lead space 3.5±0.5 [Remarks:Taping space:3.5±0.5] (unit):mm
Recorder	Recorder (The first edition):2019-12-29			
Wrote by: Men	gXiaoCong	Checked by: Jia	angYuanYuan	Approved by: HuangXueHui