

60V, 120mA Dual Single-Pole Relay One Normally-Open Pole & One Normally-Closed Pole

Parameter	Rating	Units
Blocking Voltage	60	V _P
Load Current	120	mA _{rms} / mA _{DC}
On-Resistance (max)	16	Ω
LED Current to operate	1	mA

Features

- $1500V_{rms}$ input/output isolation
- No EMI/RFI generation
- Immune to radiated EM fields
- Small 8-pin SOIC package

Applications

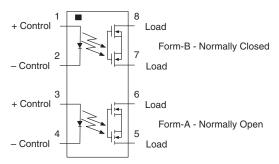
- Security
 - Passive infrared detectors (PIR)
 - · Data signaling
 - Sensor circuitry
- Instrumentation
- Multiplexers
- Data acquisition
- Electronic switching
- I/O subsystems
- Medical equipment—patient/equipment isolation
- Industrial controls

Description

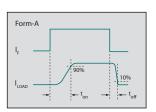
The CPC2317N is a miniature device with one independent normally-open (1-Form-A) solid state relay and one independent normally-closed (1-Form-B) solid state relay in an 8-pin SOIC package. It employs optically coupled MOSFET technology to provide $1500V_{rms}$ of input to output isolation.

The optically coupled outputs, which use Littelfuse IXYS Integrated Circuits' patented OptoMOS architecture, are controlled by a highly efficient infrared LED.

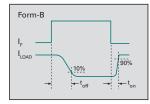
This device uses Littelfuse IXYS Integrated Circuits' state of the art, double-molded vertical construction packaging to produce one of the world's smallest relays. It is ideal for replacing larger, less-reliable reed and electromechanical relays.


Approvals

- UL Recognized Component: File # E76270
- EN 62368-1: TUV Certificate # B 082667 0008


Ordering Information

Part #	Description
CPC2317N	8-Pin SOIC (50/tube)
CPC2317NTR	8-Pin SOIC (2000/reel)


Pin Configuration

Switching Characteristics of Normally-Open (Form-A) Devices

Switching Characteristics of Normally-Closed (Form-B) Devices

Absolute Maximum Ratings @ 25°C

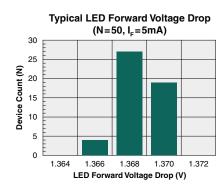
Parameter	Symbol	Rating	Unit
Blocking Voltage	V_L	60	V_P
Reverse Input Voltage	V _R	5	V
Input Control Current	1	50	mA
Peak (10ms)	I _F	1	Α
Total Power Dissipation 1	P _T	600	mW
Isolation Voltage, Input to Output	V _{ISO}	1500	$V_{\rm rms}$
Operational Temperature, Ambient	T _A	-40 to +85	°C
Storage Temperature	T _{STG}	-40 to +125	°C

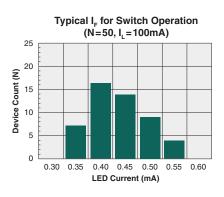
¹ Derate output power linearly 5mW / °C

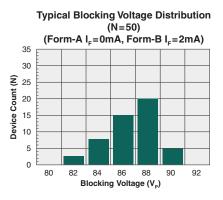
Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

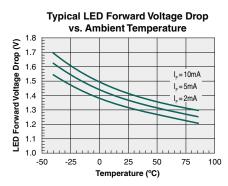
Typical values are characteristic of the device at +25°C, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

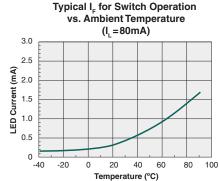
Electrical Characteristics @ 25°C

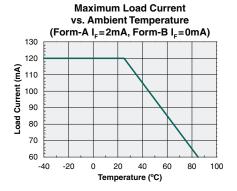

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Output Characteristics					1	
Blocking Voltage	$I_L=1\mu A$	V_{DRM}	60	-	-	V
Load Current						
Normally Open (Form-A) Continuous ¹	I _F =1mA				100	m Λ / m Λ
Normally Closed (Form-B) Continuous 1	I _F =0mA	l _L	-	-	120	$\rm mA_{rms}$ / $\rm mA_{DC}$
Peak	t =10ms	I _{LPK}	-	-	±350	mA
On-Resistance ²	I _L =120mA	R _{ON}	-	-	16	Ω
Switching Speeds						
Turn-On	I 5 A 1/ 401/	t _{on}	-	-	3	m.a
Turn-Off	I _F =5mA, V _L =10V	t _{off}	-	-	3	- ms
Off-State Leakage Current	$V_L = 60V_P$	I _{LEAK}	-	-	1	μΑ
Output Capacitance	V _L =50V, f=1MHz					
Normally Open (Form-A)	I _F =0mA		-	5	-	ъГ
Normally Closed (Form-B)	I _F =1mA	C _{OUT}	-	10	-	pF
Input Characteristics					J.	
Input Control Current to Activate ³	I _L =100mA	I _F	-	0.40	1	mA
Input Control Current to Deactivate	-	I _F	0.1	0.35	-	mA
Input Voltage Drop	I _F =5mA	V _F	0.9	1.36	1.5	V
Reverse Input Current	V _R =5V	I _R	-	-	10	μΑ
Common Characteristics		1 22		1	I	
Capacitance, Input to Output	V _{IO} =0V, f=1MHz	C _{IO}	-	1	-	pF

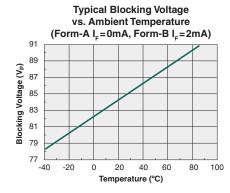

Load current derates linearly from 120mA @ 25°C to 60mA @ 85°C, and must be derated for both poles operating simultaneously.
Measurement taken within 1 second of on-time.

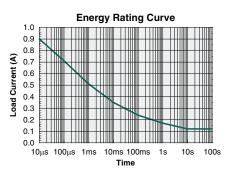

For applications requiring high temperature operation (greater than 60°C) a minimum LED drive current of 3mA is recommended.

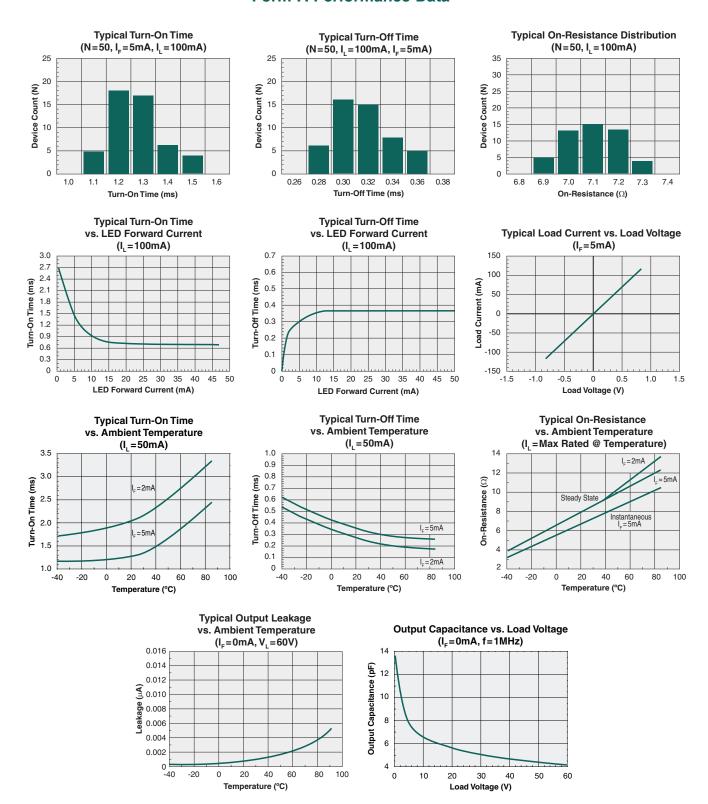



Common Performance Data*

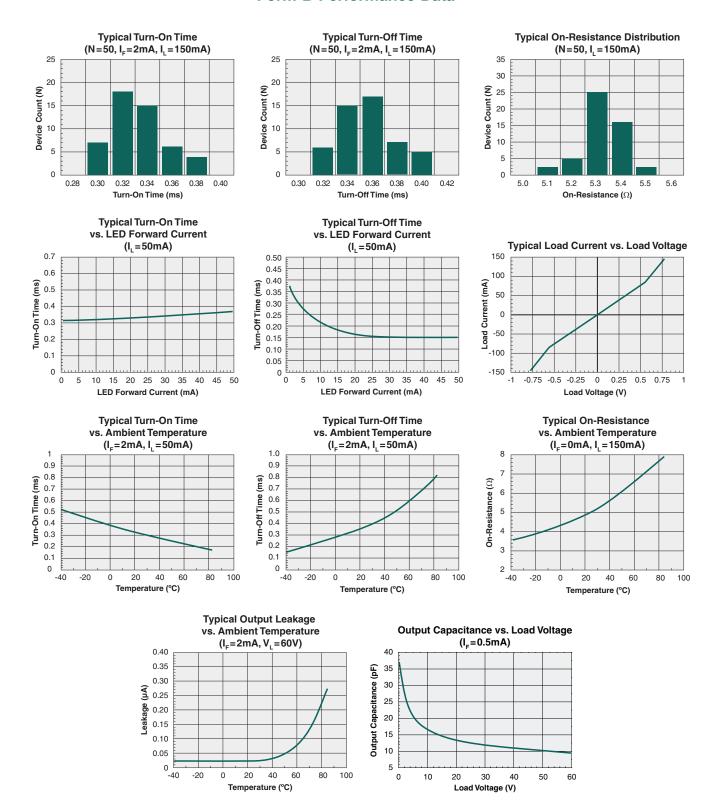








^{*}Unless otherwise noted, data presented in these graphs is typical of device operation at $T_A = 25$ °C.


Form-A Performance Data*

^{*}Unless otherwise noted, data presented in these graphs is typical of device operation at $T_A = 25$ °C.

Form-B Performance Data*

^{*}Unless otherwise noted, data presented in these graphs is typical of device operation at $T_A = 25$ °C.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. Littelfuse classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, **IPC/JEDEC J-STD-020**, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a **Moisture Sensitivity Level (MSL)** classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Classification
CPC2317N	MSL 3

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

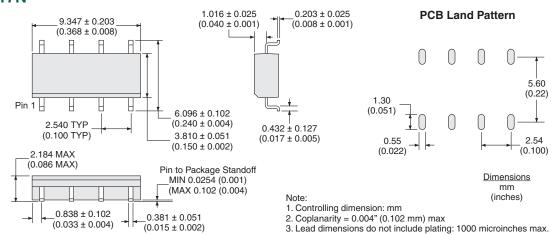
Soldering Profile

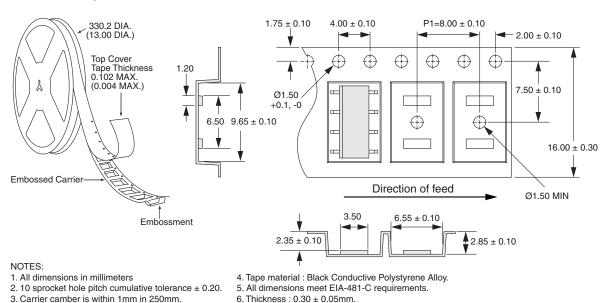
Provided in the table below is the **IPC/JEDEC J-STD-020** Classification Temperature (T_c) and the maximum dwell time (t_p) the body temperature of these surface mount devices may be (T_c - 5)°C or greater. The Classification Temperature sets the Maximum Body Temperature allowed for these devices during reflow soldering processes.

Device	Classification Temperature (T _c)	Dwell Time (t _p)	Max Reflow Cycles
CPC2317N	260°C	30 seconds	3

Board Wash

Littelfuse recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.





MECHANICAL DIMENSIONS

CPC2317N

CPC2317NTR Tape & Reel

For additional information please visit our website at: https://www.littelfuse.com

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics.