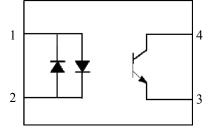


DESCRIPTION

The IS180 series of optically coupled isolator consist of two infrared light emitting diodes in reverse parallel connection and optically coupled to an NPN silicon photo transistor in a space efficient Mini Flat Package.

FEATURES


- AC Isolation Voltage 3750V_{RMS}
- Wide Operating Temperature Range . -55°C to +100°C
- Lead Free and RoHS Compliant
- UL File E91231 Package Code "FPA"

APPLICATIONS

- **Computer Terminals**
- Industrial System Controllers
- **Measuring Instruments**
- System Appliances

ORDER INFORMATION

Available in Tape and Reel with 3000pcs per reel

ABSOLUTE MAXIMUM RATINGS

Input Diode

Forward Current	±50mA
Reverse Voltage	6V
Power dissipation	70mW

Output Transistor

Collector to Emitter Voltage BV_{CEO} Emitter to Collector Voltage BV_{ECO} Collector Current **Power Dissipation**

Total Package

Operating Temperature Storage Temperature **Total Power Dissipation** Lead Soldering Temperature (for 10s)

-55 to +100 °C -55 to +150 °C 170mW 260°C

35V

6V

50mA

150mW

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1UD, United Kingdom Tel: +44 (0)1429 863 609 Fax : +44 (0)1429 863 581 e-mail: sales@isocom.co.uk http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD Hong Kong Office,

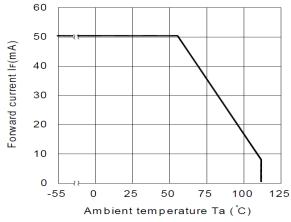
Block A, 8/F, Wah Hing Industrial mansion, 36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong. Tel: +852 2995 9217 Fax : +852 8161 6292 e-mail sales@isocom.com.hk

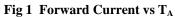
ELECTRICAL CHARACTERISTICS (Ambient Temperature = 25°C unless otherwise specified)

INPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward Voltage	\mathbf{V}_{F}	$I_F = \pm 20 mA$		1.2	1.4	V
Terminal Capacitance	Ct	V = 0V, f = 1KHz		30	250	pF

OUTPUT


Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector—Emitter breakdown Voltage	BV _{CEO}	$I_{\rm C} = 0.1 {\rm mA}, I_{\rm F} = 0 {\rm mA}$	35			V
Emitter—Collector breakdown Voltage	BV _{ECO}	$I_E = 10 \mu A, I_F = 0 m A$	6			V
Collector-Emitter Dark Current	I _{CEO}	$V_{CE} = 20V, I_F = 0mA$			100	nA


COUPLED

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Current Transfer Ratio	CTR	$I_F = \pm 1 \text{mA}, V_{CE} = 5 \text{V}$	20		400	%
		Optional CTR Grades A	50		150	
Collector—Emitter Saturation Voltage	V _{CE(sat)}	$I_F = \pm 20 \text{mA}, I_C = 1 \text{mA}$			0.2	V
Input to Output Isolation Voltage	V _{ISO}	Note 1	3750			V _{RMS}
Input to Output Isolation Resistance	R _{ISO}	V _{IO} = 500V Note 1	5x10 ¹⁰			Ω
Floating Capacitance	C _f	V = 0V, f = 1MHz		0.5	1	pF
Output Rise Time	t _r	N		4	18	μs
Output Fall Time	t _f	$V_{CE} = 2V, Ic = 2mA, R_L = 100\Omega$		3	18	μs

Note 1 : Measure with input leads shorted together and output leads shorted together.

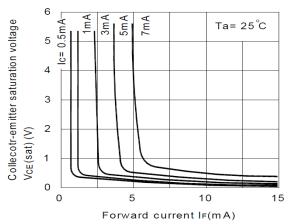
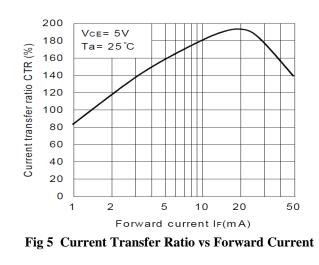



Fig 3 Collector-emitter Saturation Voltage vs Forward Current

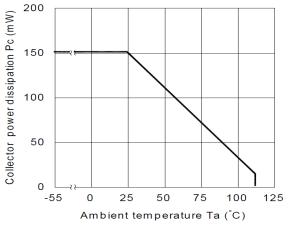


Fig 2 Collector Power Dissipation vs T_A

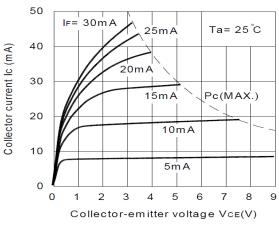


Fig 4 Collector Current vs Collector-emitter Voltage

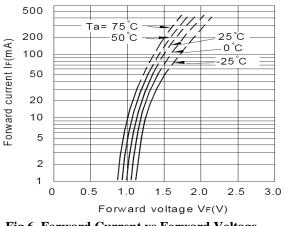
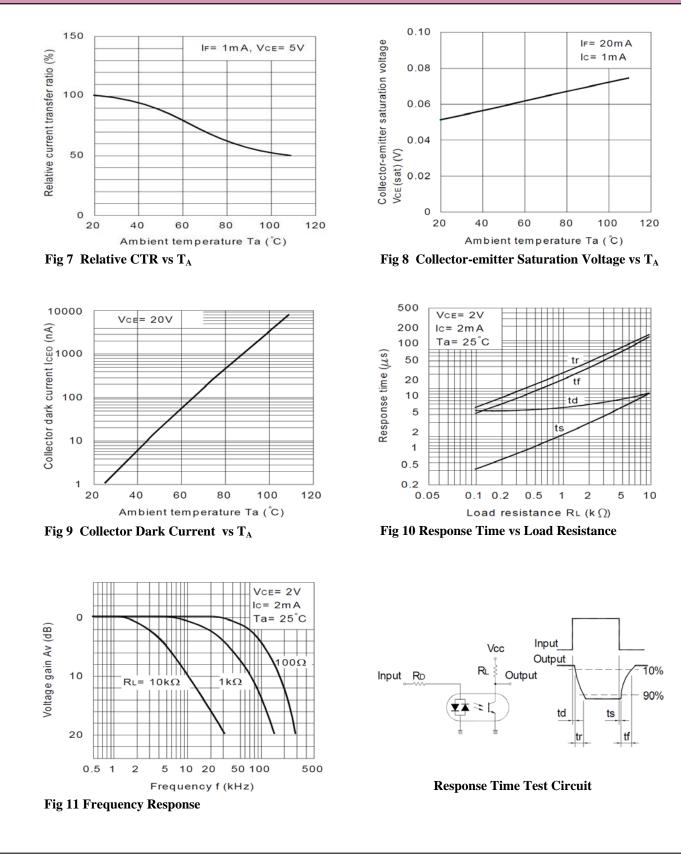
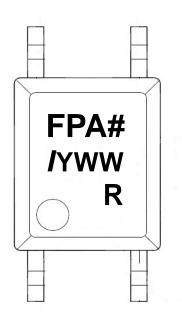
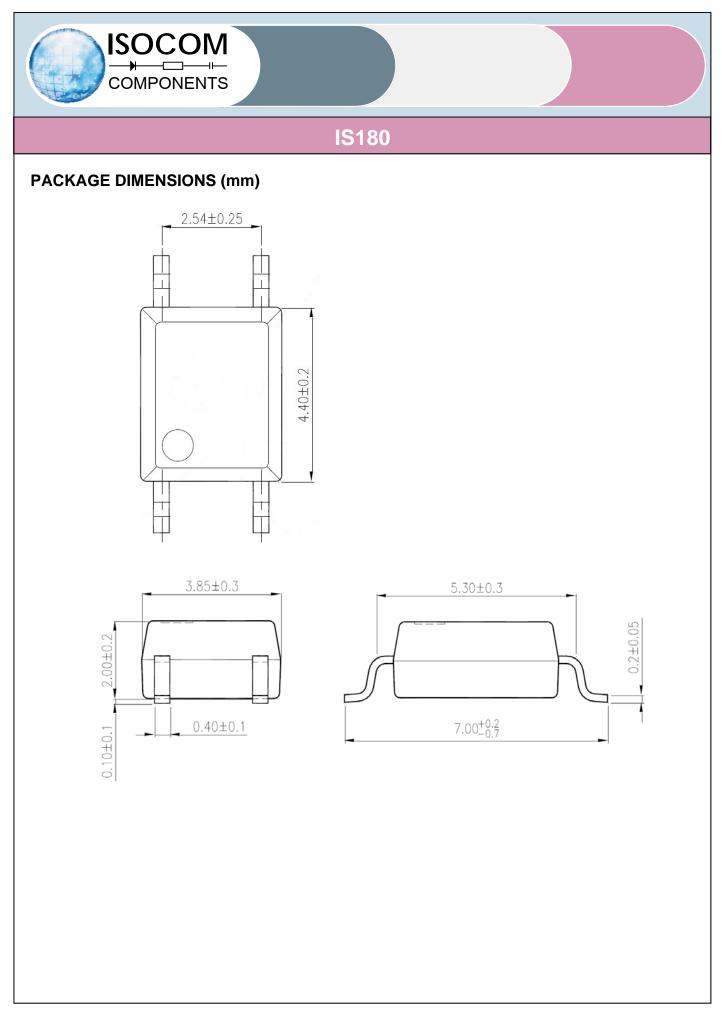



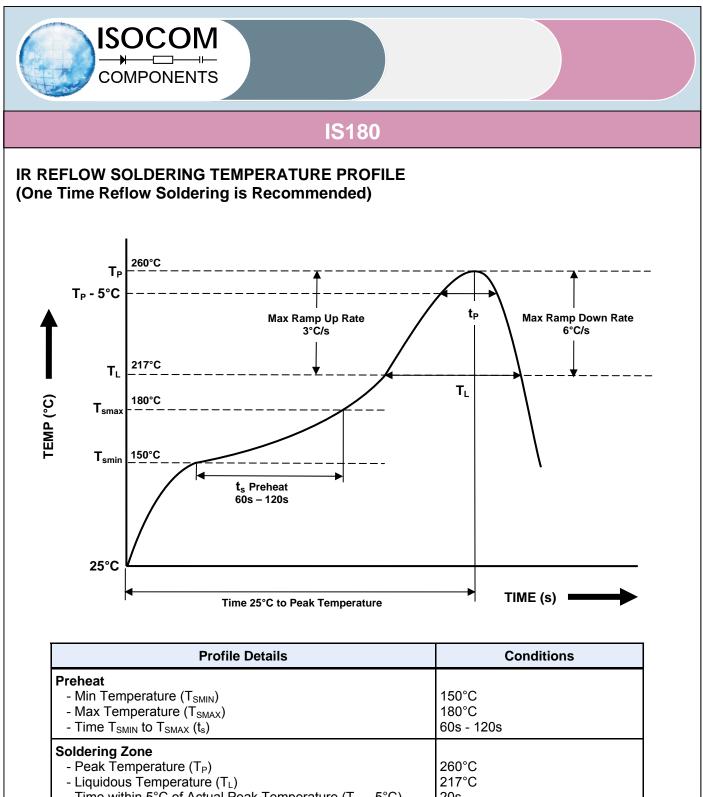
Fig 6 Forward Current vs Forward Voltage



STANDARD PACKING QUANTITY


IS180			
After PN	PN	Description	Packing quantity
None	IS180, IS180A	Surface Mount Tape & Reel	3000 pcs per reel

DEVICE MARKING



FPA#	denotes Device Part Number where "#" is internal control number
1	denotes Isocom
Y	denotes 1 digit Year code
WW	denotes 2 digit Week code

R denotes CTR Grade

	200 0
- Liquidous Temperature (T _L)	217°C
- Time within 5°C of Actual Peak Temperature ($T_P = 5^{\circ}C$)	20s
- Time maintained above T_L (t_L)	60s
- Ramp Up Rate (T_L to T_P)	3°C/s max
- Ramp Down Rate (T_P to T_L)	3 - 6°C/s
Average Ramp Up Rate (T_{smax} to T_P)	3°C/s max
Time 25°C to Peak Temperature	8 minutes max

NOTES :

- Isocom is continually improving the quality, reliability, function or design and Isocom reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/application where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc., please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales for advice.
- The contents described herein are subject to change without prior notice.
- Do not immerse device body in solder paste.

Disclaimer

ISOCOM

COMPONENTS

ISOCOM is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing ISOCOM products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such ISOCOM products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that ISOCOM products are used within specified operating ranges as set forth in the most recent ISOCOM products specifications.

____ The ISOCOM products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These ISOCOM products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of ISOCOM products listed in this document shall be made at the customer's own risk.

____ Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

____ The products described in this document are subject to the foreign exchange and foreign trade laws.

_____The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by ISOCOM Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of ISOCOM Components or others.

_ The information contained herein is subject to change without notice.