NAU85L20 # **Dual Audio ADC with Integrated FLL and Microphone Preamplifier** ### **Description** The NAU85L20 is a low power, high quality, 2-channel ADC for microphone array application. The NAU85L20 integrates programmable gain preamplifiers for stereo differential microphones, significantly reducing external component requirements. A fractional FLL is available to accurately generate any audio sample rate using any commonly available system clock source from 8KHz through 33MHz. Audio data can be directed to I2S data out lines. The NAU85L20 operates with analog supply voltages from 1.6V to 2V, while the digital core can operate down to 1.2V to conserve power. Internal register controls enable flexible power saving modes by powering down subsections of the chip under software control. The NAU85L20 is specified for operation from -40°C to +85°C, and is available in a 28-lead QFN package. #### **Features** - 101dB SNR (A-weighted) @ 0dB gain, VDDA=1.8V, Fs = 48 kHz, OSR=128x - 91dB THD+N @ 0dB gain, 0.8Vrms in, VDDA=1.8V, Fs=48 kHz, OSR=128x - -124dB Channel Crosstalk @ 0dB gain, 0.9Vrms in, VDDA=1.8V, Fs=48 kHz, OSR=128x - Integrated programmable gain microphone amplifier - On-chip FLL - I2C Serial control interface with read/write capability - Supports sample rates from 8 kHz to 48 kHz at 24bit resolution - Two separate microphone bias supplies for low noise microphone biasing. - Standard audio data bus interfaces: I2S, Left or Right justified, Two's compliment, MSB first - 32-bit audio sub frames - Package: Pb free 28L-QFN - Temperature range: -40 to 85° # **Block Diagram** # **Table of Contents** | BI | | DIAGRAM | 1 | |----|------------|---|----| | ΡI | N DIAC | GRAM | 4 | | | Orderir | ng Information | 4 | | ΡI | N DES | CRIPTION | 5 | | ΕI | LECTR | ICAL CHARACTERISTICS | 6 | | 1 | GE | ENERAL DESCRIPTION | ξ | | 2 | AN | IALOG INPUTS | ç | | | 2.1 | ADC and Digital Signal Processing | 10 | | | 2.2 | ADC Digital Block | 10 | | | 2.2. | 1 Input Limiter / Automatic Level Control (ALC) | 11 | | | 2.2. | 2 ADC Digital Volume Control | 15 | | | 2.2. | 3 ADC Programmable High Pass Filter | 15 | | | 2.2. | 4 Programmable Notch Filter | 16 | | | 2.3 | Audio Data Companding | 16 | | | 2.3. | 1 μ-law | 17 | | | 2.3. | 2 A-law | 17 | | | 2.4 | Digital Interfaces | 17 | | 3 | PC | OWER SUPPLY | 17 | | | 3.1 | Power on and off reset | 17 | | | 3.2 | Reference Voltage Generation | 18 | | | 3.3 | Microphone Bias Generation | 19 | | 4 | CL | OCKING AND SAMPLE RATES | 19 | | | 4.1 | PCM Clock Generation | 21 | | | 4.2 | Frequency Locked Loop (FLL) | | | 5 | CC | ONTROL INTERFACES | 24 | | | 5.1 | Selection of Control Mode | | | | 5.2 | 2-Wire-Serial Control Mode (I ² C Style Interface) | | | | 5.3 | 2-Wire Protocol Convention | | | | 5.4 | 2-Wire Write Operation | | | | 5.5 | 2-Wire Read Operation | | | | 5.6 | Digital Serial Interface Timing | | | _ | 5.7 | Software Reset | | | 6 | | GITAL AUDIO INTERFACE | | | | 6.1 | Right-Justified Audio Data | | | | 6.2 | Left-Justified Audio Data | | | | 6.3
6.4 | I2S Audio Data Mode PCM A Audio Data | | | | 6.5 | PCM B Audio Data | | | | 6.6 | PCM Time Slot Audio Data | | | 7 | | GISTER MAP | | | 8 | | PICAL APPLICATION DIAGRAM | | | 9 | | CKAGE INFORMATION | | | J | 1 / | NOTO NOTE THAT OTNIVIZATION | 40 | | 9.1 | VERSION HISTORY | 46 | |-----|----------------------|----| | 10 | ORDERING INFORMATION | 46 | # Pin Diagram # **Ordering Information** | Part Number | Dimension | Package | Package Material | |-------------|-----------|---------|------------------| | NAU85L20YG | 4 x 4 mm | 28 QFN | Green | # **Pin Description** | Pin# | Name | Type | Functionality | |------|------------|----------------|---| | | | * * | | | 1 | MIC2P/LIN2 | Analog Input | MICP Input 2 / Line In Input 2 | | 2 | MIC2N | Analog Input | MICN Input 2 | | 3 | VREF | Reference | Decoupling for Mid-rail Reference Voltage | | 4 | MICREF | Analog Output | Decoupling for MIC Reference Voltage | | 5 | VDDC | Supply | Digital Core Supply | | 6 | VSSD | Supply | Digital Ground | | 7 | VDDB | Supply | Digital Buffer (Input/Output) Supply | | 8 | MCLKO | Digital Output | Output from PLL | | 9 | NC | | | | 10 | DO12 | Digital Output | Digital Audio ADC Data Output for ADC 1 and 2 | | 11 | BCLK | Digital I/O | Digital Audio Bit Clock | | 12 | FS | Digital I/O | Digital Audio Frame Sync | | 13 | MCLKI | Digital Input | Master Clock Input | | 14 | CSB | Digital Input | 3-Wire MPU Chip Select/I2C address LSB | | 15 | SCL | Digital Input | 3-Wire MPU Clock Input/I2C Clock (SCL) | | 16 | SDA | Digital I/O | 3-Wire MPU Data Input/I2C Data I/O (SDA) | | 17 | MODE | Digital Input | Control Interface Mode Selection Pin (I2C=1, SPI=0) | | 18 | VDDA | Supply | Analog Power Supply | | 19 | VSSA | Supply | Analog Ground | | 20 | MIC1N | Analog Input | MICN Input 1 | | 21 | MIC1P/LIN1 | Analog Input | MICP Input 1 / Line In Input 1 | | 22 | NC | | | | 23 | NC | | | | 24 | MICBIAS1 | Analog Output | Microphone Bias for Microphone ADC 1 | | 25 | MICVDD | Supply | Microphone Supply | | 26 | MICBIAS2 | Analog Output | Microphone Bias for Microphone ADC 2 | | 27 | NC | | | | 28 | NC | | | # **Electrical Characteristics** Conditions: VDDA = VDDC=1.8V, VDDB = 3.3V, MICVDD=3.3V, MCLK = 12.88MHz, T_A = +25°C, 1 kHz signal, Fs = 48 kHz, 24-bit audio data, with differential inputs unless otherwise stated. | Symbol | Parameter | Conditions | Typical | Limit | Units (Limit) | |-------------------|--|--|---------|-------|------------------| | | | V _{DD} A in Shutdown Mode | 0.5 | 1 | | | | | V _{DD} A When V _{DD} C=1.2V | 16.7 | | | | ISD | Shutdown Current | V _{DD} B | 0.2 | 1 | μA | | | | V _{DD} C | 2 | 10 | | | | | V _{DD} MIC | 0.5 | 1 | | | ADC | | | | | | | THD+N | ADC Total Harmonic Distortion
+ Noise | Reference= @ 0dB gain, 0.8Vrms in, VDDA=1.8V, Fs=48 kHz, OSR=128x | 91 | | dB | | SNR | Signal to Noise Ratio | Reference = VOUT(0dBFS), A-
Weighted, MIC Input, MIC Gain =
0dB,fs = 8KHz, Mono Differential Input | 100 | | dB | | | | Reference = VOUT(0dBFS), A-
Weighted, MIC Input, MIC Gain =
6dB,fs = 8KHz, Mono Differential Input | 98 | | dB | | | | Reference = VOUT(0dBFS), A-
Weighted, dual Input, Gain = 12dB,fs =
16KHz | 96 | | dB | | | | Reference= MIC Gain= 0dB gain, (A-
weighted) VDDA=1.8V, Fs = 48 kHz,
OSR=128x | 101 | | dB | | PSRR | Power Supply Rejection Ratio | V _{RIPPLE} = 200mVP_P applied to AVDD,
f _{RIPPLE} = 217Hz, Input Referred,
MIC_GAIN = 0dB Differential Input | 65 | | dB | | Xtalk | ADC channel cross talk | MIC Input, MIC_GAIN = 0dB, VIN = 0.8Vrms, f=1KHz, Fs = 48KHz, Channel 1(3) to Channel 2 (4) | -124 | | dB | | FS _{ADC} | ADC Full Scale Input Level | AV _{DD} = 1.8V | 1 | | V _{RMS} | | MICBIAS | , | | | ı | | | V _{BIAS} | Output Voltage | Programmable 2.1V to 2.8V in 0.1V Steps | 2.5 | | V | | l _{OUT} | Output Current | | | 4 | mA | | eos | Output Noise | A-weighted 20Hz-20kHz | -115 | | dBV | #### Notes - 1. Full Scale input level is relative to the magnitude of VDDA and can be calculated as FS = 1V_{ms}*VDDA/1.8. - 2. Distortion is measured in the standard way as the combined quantity of distortion products plus noise. The signal level for distortion measurements is at 3dB below full scale, unless otherwise noted. - 3. Unused analog input pins should be left as no-connection. - 4. Unused digital input pins should be tied to ground. Tel: 1-408-544-1718 Fax: 1-408-544-1787 # Digital I/O | Parameter | Symbol | Comments/Conditions | | Min | Max | Units | |------------------------|-----------------|---------------------|-------------|-------------|-------------|-------| | Input LOW level | VIL | VDD | VDDB = 1.8V | | 0.33 * VDDB | V | | mpat 2011 lovoi | V 1L | VDD | 0B = 3.3V | | 0.37 * VDDB | , | | Input HIGH level | V _{IH} | VDDB = 1.8V | | 0.67 * VDDB | | V | | mpat morniovo. | • 10 | VDD | 0B = 3.3V | 0.63 * VDDB | | , | | Output HIGH level | V _{OH} | I _{Load} = | VDDB = 1.8V | 0.9 * VDDB | | V | | Guipat i ii Giri iovoi | VOH | 1mA | VDDB = 3.3V | 0.95 * VDDB | | , | | Output LOW level | Vol | I _{Load} = | VDDB = 1.8V | | 0.1 * VDDB | V | | 33,53, 23,410,401 | • OL | 1mA | VDDB = 3.3V | | 0.05 * VDDB | , | # **Recommended Operating Conditions** | Condition | Symbol | Min | Typical | Max | Units | |---|----------------|------|---------|------|-------| | Digital Supply Range with sample rate > 48 kHz or FLL enabled | VDDC | 1.62 | 1.8 | 1.98 | V | | Digital Supply Range with sample rate <= 48kHz and FLL disabled | VDDC | 1.2 | 1.8 | 1.98 | V | | Digital I/O Supply Range | VDDB | 1.62 | 1.8 | 3.6 | V | | Analog Supply Range | VDDA | 1.62 | 1.8 | 1.98 | V | | Microphone Bias Supply Voltage | VDDMIC | 1.8 | 4.2 | 5.5 | V | | Temperature Range | T _A | -40 | | +85 | °C | CAUTION: Below condition needed to be followed for regular operation: VDDB > VDDC - 0.6V # **Absolute Maximum Ratings** | Parameter | Min | Max | Units | |---|------------|------------|-------| | Digital Supply Range (VDDC) | -0.3 | 2.2 | V | | Digital I/O Supply Range (VDDB) | -0.3 | 6.0 | V | | Analog Supply Range (VDDA) | -0.3 | 2.2 | V | | Microphone Bias Supply Voltage (MICVDD) | -0.3 | 6.0 | V | | Voltage Input Digital Range | VSSD - 0.3 | VDDB + 0.3 | V | | Voltage Input Analog Range | VSSA - 0.3 | VDDA + 0.3 | V | | Junction Temperature, T _J | -40 | +150 | °C | | Storage Temperature | -65 | +150 | °C | CAUTION: Do not operate at or near the maximum ratings listed for extended periods. Exposure to such conditions may adversely influence product reliability and result in failures not covered by warranty. CAUTION: The
following condition need to be followed for maximum ratings: VDDB > VDDC - 0.6V. # 1 General Description The NAU85L20 is a low power, high quality, 2-channel ADC for microphone array applications. There are eight analog inputs with individual input PGA gain stages and are passed to the ADC path for signal processing. A low noise microphone bias circuit supplies a programmable voltage reference for one or more electret microphones on two buffered MICBIAS outputs that are available to separately supply microphones associated with channels 1 & 2. The digital audio data from the ADC's can be processed by a Volume Control, High Pass filter, and ALC before it is passed on to the serial I2S interface. This digital serial output data can be available in separate dual channel formats on ADCOUT12 for channel 1 & 2. The device clock can be locked to an external clock reference or generated internally by the on-chip FLL. The registers that control the NAU85L20 can be programmed through standard I2C or SPI interface. ## 2 Analog Inputs NAU85L20 has two low noise, high common mode rejection ratio analog microphone differential inputs – MIC1/MIC1P together are MIC.1, MIC2N/MIC2P together are MIC.2. Each of these microphone inputs are followed by a -1dB to 36dB PGA gain stage with a fixed 12kOhm input impedance. All inputs are maintained at a DC bias at approximately 1/2 of the VDDA supply voltage. Connections to these inputs should be AC-coupled by means of DC blocking capacitors suitable for the device application. The differential microphone input structure is essential in noisy digital systems where amplification of low-amplitude analog signals is necessary such as in portable digital media devices and cell phones. Differential inputs are also very useful to reduce ground noise in systems in which there are ground voltage differences between different chips and components. When properly implemented, the differential input architecture offers an improved power-supply rejection ratio (PSRR) and higher ground noise immunity. A detailed diagram of the input PGA connections and associated registers is shown in Figure 1. The PGA inputs can also be disconnected from the amplifier for applications where the inputs are shared with other devices. In addition, there is a pre-charge circuit that can speed up charging the external coupling capacitor set with FEPGA2.ACDC CTRL REG0x6A[9:8] and FEPGA2.ACDC CTRL REG0x6A[15:14]. The PGA gain can be set from -1dB to 36dB in 1dB steps and the embedded antialiasing filter also has a single bit adjustment to shift the cut-off frequency. A detailed register description is available in registers FEPGA1 REG0x69 to FEPGA4 REG0x6C. ### GAIN CH1 MODE CH# To ADC1 MIC1P/MIC1N Bit 0 = Anti-Aliasing Filter for Fs<=16KHz Bit 1 = MICP/MICN Disconnect from PGA Bit 3 = Shorts MICP/MICN and terminates with $12k\Omega$ GAIN CH2 differentially MIC2P/MIC2N To ADC2 Register: FEPGA1 and FEPGA2 Register: FEPGA3 and FEPGA4 **Analog MIC Input Path** Figure 1: Analog Input Structure ## 2.1 ADC and Digital Signal Processing The NAU85L20 has two independent high quality ADCs. These are high performance 24-bit sigma-delta converters that are suitable for a very wide range of applications. All digital processing is with 24-bit precision minimizing processing artifacts and maximizing the audio dynamic range supported by the NAU84L04. The ADCs are supported by a wide range mixed-mode Automatic Level Control (ALC), a high pass filter, and a notch filter. All of which are optional and programmable. The high pass filter function is intended for DC-blocking or low frequency noise reduction, such as to reduce unwanted ambient noise or "wind noise" on a microphone input. The notch filter may be programmed to greatly reduce a specific frequency band or frequency, such as a 50Hz, 60Hz, or 217Hz unwanted noise. The 2-channel ADC TDM interface also provides for flexible routing options. ## 2.2 ADC Digital Block Figure 2: ADC Digital Path The ADC digital block performs 24-bit analog-to-digital conversion and signal processing, making available a high quality audio sample stream the audio path digital interface. This block consists of a sigma-delta modulator, digital decimator/ filter, ALC, volume control, high pass filter, and a notch filter. In order to enable the ADCs, <u>POWER_MANAGEMENT.ADC1_EN Reg0x01[0]</u> and <u>POWER_MANAGEMENT.ADC2_EN Reg0x01[3]</u> must be set to 1. The audio sample rate of the ADC is set by <u>CLOCK_SRC.CLK_ADC_SRC_REG0x03[7:6]</u>, which is derived from the MCLK. (See Section <u>CLOCKING AND SAMPLE RATES</u>). The polarity of either ADC output signal can be changed independently on either ADC logic output which can be sometimes useful in management of the audio phase. This feature can help minimize any audio processing that may be otherwise required as the data are passed to other stages in the system. The ADC coding scheme is in twos complement format and the full-scale input level is proportional to VDDA. For example, with a 1.8V supply voltage, the full-scale level is 1.0VRMS. ### 2.2.1 Input Limiter / Automatic Level Control (ALC) The ADC digital path of the NAU85L20 is supported by the digital Automatic Level Control (ALC) function. This can be used to automatically manage the gain to optimize the signal level at the output of the ADC by automatically amplifying input signals that are too small or decreasing the amplitude of the signals that are too loud The ALC monitors the output of the ADC, measured after the digital decimator. The ADC output is fed into a peak detector, which updates the measured peak value whenever the absolute value of the input signal is higher than the current measured peak. The measured peak gradually decays to zero unless a new peak is detected, allowing for an accurate measurement of the signal envelope. The peak value is then used by a logic algorithm to determine whether the gain should be increased, decreased, or remain the same. In normal mode, when sudden peaks occur above the desired gain settings, the ALC reduces volume at a register determined rate and step size. This continues until the output level of the ADC is again at the desired target level. If the input signal suddenly becomes quiet, the ALC increases volume at a register determined rate and step size until the output level from the ADC reaches the target level. If the input gain stays within the target level, the ALC will remain in a steady state. In addition to the normal operation mode, the ALC may be operated in a special limiter mode that functions similarly to the normal mode but with faster attack times. This mode is primarily used to quickly ramp down signals that are too loud. #### 2.2.1.1 ALC Peak Limiter Function Both normal and limiter mode include a peak limiter function. This implements an emergency gain reduction when the ADC output level exceeds a set gain value. When the ADC output exceeds 87.5% of full scale, the ALC block ramps down the gain at the maximum ALC Attack Time rate. This is regardless of the mode and attack rate settings. This continues until the ADC output level has been reduced to below the emergency limit threshold. This action limits ADC clipping if there is a sudden increase in the input signal level. ### 2.2.1.2 ALC Parameter Definitions - ALC Maximum Gain (ALCMAX): This sets the maximum allowed gain during normal mode ALC operation. In the Limiter mode of ALC operation, the ALCMXGAIN value is not used, instead, the maximum gain allowed is set equal to the pre-existing gain value that was in effect at the moment in time that the Limiter mode is enabled. See ALC_CONTROL_2 REG0x21 for details. - ALC Minimum Gain (ALCMIN): This sets the minimum allowed gain during all modes of ALC operation. This is useful to keep the ALC operating range close to the desired range for a given application scenario. See ALC CONTROL 2 Reg0x21 for details. - ALC Target Value (ALCLVL): Determines the value used by the ALC logic decisions comparing this fixed value with the output of the ADC. This value is expressed as a fraction of Full Scale (FS) output from the ADC. Depending on the logic conditions, either the output value used in the comparison may be the instantaneous value of the ADC, or a time weighted average of the ADC peak output level. See ALC_CONTROL_2 Reg0x21 for details. - ALC Attack Time (ALCATK): Attack time refers to how quickly a system responds to an increasing volume level that is greater than some defined threshold. Typically, attack time is much faster than decay time. In the NAU85L20, when the absolute value of the ADC output exceeds the ALC Target Value, the gain will be reduced at a step size and rate determined by this parameter. When the peak ADC output is at least 1.5dB lower than the ALC Target Value, the stepped gain reduction will halt. See ALC_CONTROL_3 REG0x22 for details. ALC Decay Time (ALCDCY): Decay time refers to how quickly a system responds to a decreasing volume level. Typically, decay time is much slower than attack time. When the ADC output level is below the ALC Target value by at least 1.5dB, the gain will increase at a rate determined by this parameter. In Limiter mode, the time constants are faster than in ALC mode. See ALC_CONTROL_3 REG0x22 for details. ALC Hold Time (ALCHLD): Hold time refers to the duration of time when no action is taken. This is typically to avoid undesirable sounds that can happen when an ALC responds too quickly to a changing input signal. In the NAU85L20, the hold time value is the duration of time that the ADC output peak value must be less than the target value before there is an actual gain increase. See ALC CONTROL 2 REG0x21 for details. Figure 3: ALC Operation ### 2.2.1.3 ALC Normal Mode Example Using ALC Hold Time Feature
Input signals with different characteristics (e.g., voice vs. music) may require different settings for this parameter for optimum performance. Increasing the ALC hold time prevents the ALC from reacting too quickly to brief periods of silence such as those that may appear in music recordings. Having a shorter hold time may be useful in voice applications where a faster reaction time helps to adjust the volume setting for speakers with different volumes. The waveform below shows the operation of the ALC_CONTROL_2.ALCHLD REG0x21[7:4] parameter. Figure 4: ALC using Hold time ### 2.2.1.4 Noise Gate (Normal Mode Only) A noise gate threshold prevents ALC amplification of noise when there is no input signal or no signal above an expected background noise level. The noise gate is enabled by setting ALC_CONTROL_1.ALC_NGTH REG0x20[3:0]. When there is no signal or a very quiet signal (pause) composed mostly of noise, the ALC holds the gain constant instead of amplifying the signal towards the target threshold. The NAU85L20 accomplishes this by comparing the input signal level against the noise gate threshold. The noise gate only operates in conjunction with the ALC and only in Normal mode. Figure 5: ALC without Noise gate Figure 6: ALC with noise gate ### 2.2.1.5 ALC Example with ALC Min/Max Limits and Noise Gate Operation The drawing below shows the effects of ALC operation over the full scale signal range. The drawing is color coded as follows: Blue Original Input signal (linear line from zero to maximum) Green PGA gain value over time (inverse to signal in target range) Red Output signal (held to a constant value in target range) | <u>Registe</u> r | Bits | <u>Name</u> | <u>Value</u> | <u>Descriptio</u> n | |------------------|-------|-------------|--------------|--------------------------| | 22 | 12-15 | ALCCH(1-4)E | 1111 | ALC enabled all channels | | 21 | 12-14 | ALCMAXGAIN | 111 | Max ALC gain@ 35.25dB | | 21 | 8-10 | ALCMINGAIN | 000 | Min ALC gain@-12dB | | 21 | 0-3 | ALCLVL | 1011 | Target ALC gain@-6dBFS | | 20 | 4 | NGEN | 1 | Noise gate enabled | 0100 Noise gate@-37dB Figure 7: ALC Response Envelope ### 2.2.2 ADC Digital Volume Control 20 0-3 The effective output audio volume of each ADC can be changed from +36dB through -128dB in 0.125dB steps using the digital volume control feature. Included in the volume control is a "digital mute" value that will completely mute the signal output of the ADC. In addition, the ADC has an analog gain control, which can be set from -1dB to 36dB. **NGTH** Registers <u>DIGITAL_GAIN_CH1 REG0x40</u> and <u>DIGITAL_GAIN_CH REG0x43</u> control the digital gain of each channel. These registers can also select the ADC source of each output channel. #### 2.2.3 ADC Programmable High Pass Filter A high pass filter in the digital output path optionally supports each ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting https://example.com/her-supports-each-ADC. The High Pass filter can be enabled by setting her-file-example rates. The selected by setting her-file-example-example-rates. The selected by setting her-file-example- | | SMPL_RATE REG0x3A[7:5] in kHz (FS) | | | | | | | | | |---------|------------------------------------|------------|-----|-----|------------|-----|------------|------|-----| | HPF_CUT | | 101 or 100 |) | (| 011 or 010 | D | 001 or 000 | | | | | 8 | 11.025 | 12 | 16 | 22.05 | 24 | 32 | 44.1 | 48 | | 000 | 82 | 113 | 122 | 82 | 113 | 122 | 82 | 113 | 122 | | 001 | 102 | 141 | 153 | 102 | 141 | 153 | 102 | 141 | 153 | | 010 | 131 | 180 | 156 | 131 | 180 | 156 | 131 | 180 | 156 | | 011 | 163 | 225 | 245 | 163 | 225 | 245 | 163 | 225 | 245 | | 100 | 204 | 281 | 306 | 204 | 281 | 306 | 204 | 281 | 306 | | 101 | 261 | 360 | 392 | 261 | 360 | 392 | 261 | 360 | 392 | | 110 | 327 | 450 | 490 | 327 | 450 | 490 | 327 | 450 | 490 | | 111 | 408 | 563 | 612 | 408 | 563 | 612 | 408 | 563 | 612 | Table 1: High Pass Filter Cut-off Frequencies in Hz (with HPF AM = 1) ### 2.2.4 Programmable Notch Filter A notch filter in the digital output path optionally supports each ADC. The notch filter is used to stop a very narrow band of frequencies around a center frequency. This function can be enabled by setting NFEN in NOTCH_FIL1_CH1.NFEN Reg0x30[14], and NOTCH_FIL1_CH1.NFA1 Reg0x30[13:0], and NOTCH_FIL1_CH.NFA1 Reg0x30[13:0] with two's compliment coefficient values calculated using Table 2 as shown below. It is important to note that the register update bits are write-only bits. The update bit function is important so that all filter coefficients actively being used are changed simultaneously; even though the register values must be written sequentially. When there is a write operation to any of the filter coefficient settings, but the update bit is not set (value = 0), the value is stored as pending a future update, but does not go into effect. When there is a write operation to any coefficient register, and the update bit is set (value = 1), then the new value in the register being written is immediately put into effect, and any other pending coefficient value is put into effect at the same time. | A ₀ | A ₁ | Notation | Register Value (DEC) | |---|--|---|--| | $\frac{1 - \tan \frac{2\pi f_b}{2f_s}}{1 + \tan \frac{2\pi f_b}{2f_s}}$ | $-(1+A_0)\times\cos\frac{2\pi f_c}{f_s}$ | f_c = center frequency (Hz)
f_b = -3dB bandwidth (Hz)
f_s = sample frequency (Hz) | NFCA0 = $-A_0 \times 2^{13}$
NFCA1 = $-A_1 \times 2^{12}$
Note: Values are rounded to the nearest
whole number and converted to 2's
complement | Table 2: Equations to calculate notch filter coefficients ## 2.3 Audio Data Companding Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit rates, using non-linear algorithms. The NAU85L20 supports the two main telecommunications companding Nuvoton Technology Corporation America Tel: 1-408-544-1718 Fax:
1-408-544-1787 Rev. 0.1.9: May 10, 2016 standards: A-law and μ-law. The A-law algorithm is primarily used in European communication systems and the μ-law algorithm is primarily used by North America, Japan, and Australia. Companding converts 13 bits (μ -law) or 12 bits (A-law) to 8 bits using non-linear quantization. The companded signal is an 8bit word containing sign (1-bit), exponent (3-bits) and mantissa (4-bits) Following are the data compression equations set in the ITU-T G.711 standard and implemented in the NAU85L20. ### 2.3.1 μ-law $$F(x) = \frac{\ln(1 + \mu \times |x|)}{\ln(1 + \mu)},$$ $$\mu = 255$$ ### 2.3.2 A-law $$F(x) = \frac{A \times |x|}{(1 + \ln(A))}, \qquad x \le \frac{1}{A}$$ $$F(x) = \frac{(1 + \ln(A \times |x|))}{(1 + \ln(A))}, \qquad \frac{1}{A} \le x \le 1$$ $$A = 87.6$$ When companding is enabled, the PCM interface must be set to an 8-bit word length by setting PCM_CTRL0.CMB8 Reg0x10[10]. When in 8-bit mode, the Register word length controls in PCM_CTRL0.WLEN Reg0x10[3:2] are ignored. # 2.4 Digital Interfaces Command and control of the device is accomplished using a 2-wire/3-wire serial control interface. This simple, but highly flexible, interface is compatible with many commonly used command and control serial data protocols and host drivers. See **CONTROL INTERFACES** for more detail. Digital audio input/output data streams are transferred to and from the device separately for command and control. The digital audio data interface supports either I2S or PCM audio data protocols, and is compatible with commonly used industry standard devices that follow either of these two serial data formats. See DIGITAL AUDIO INTERFACE for more detail. # 3 Power Supply The NAU85L20 has been designed to operate reliably using a wide range of power supply conditions and power-on/power-off sequences. However, because of existence of ESD protection diodes between the supplies, that will have impact on the application of the supplies. Because of these diodes, the following conditions need to be met: VDDMIC > VDDA-1.2V and VDDB > VDDC - 0.6V. #### 3.1 Power on and off reset The NAU85L20 includes a power on and off reset circuit on chip. The circuit resets the internal logic control at VDDC and VDDA supply power up and this reset function is automatically generated internally when power supplies are too low for reliable operation. The reset threshold is approximately 0.55Vdc and 1.0Vdc for VDDA. It should be noted that these values are much lower than the required voltage for normal operation of the chip. The reset is held on while the power levels for both VDDC and VDDA are below their respective thresholds. Once the power levels rise above their thresholds, the reset is released. Once the reset is released, the registers are ready to be written to. It is also important to note that all the registers should be kept in their reset state for at least 6µs. An additional internal RC filter based circuit is added which helps the circuit respond for fast ramp rates (~10µs) and generate the desired reset period width (~10µs at typical corner). This filter is also used to eliminate supply glitches which can generate a false reset condition, typically 50ns. For reliable operation, it is recommended to write to register SW_RESET Reg0x00 upon power up. This will reset all registers to the known default state. Note that when VDDA and/or VDDC are below the power on reset threshold, then the digital IO pins will go into a tri-state condition. #### **Application Notes:** VDDA ramp up time for a guaranteed power on reset needs to be less than 50msec. The VDDA ramp down time for a guaranteed power off reset needs to be less than 125msec. If the ramp down rate is too slow (no pull down), then we can enable the minimum VREF impedance by VMID_CTRL.VMIDSEL REG0X66[5:4]=11 with VMID_CTRL.VMIDEN REG0X66[6]=1, before shutdown in order to discharge VDDA quickly. ### 3.2 Reference Voltage Generation The NAU85L20 includes a mid-supply reference circuit that is decoupled to VSS through the VREF pin by means of a bypass capacitor. The VREF voltage is used as the reference for the majority of the circuits inside NAU85L20. Therefore, the bypass capacitor needs to be large in order to achieve good power supply rejection at low frequencies. Typically, a 4.7uF capacitor can be used. However, a larger value can be chosen but it will increase the rise time of VREF and therefore it will delay the valid line output signal. However, a pre-charge circuit can pre-charge the capacitor close to VDDA/2 at power up in order to reduce the rise time for fast line out availability. This bypass capacitor should also be low leakage due to the high impedance nature of the VREF pin The VREF voltage can be enabled by setting VMID_CTRL.VMIDEN Reg0x60[6]. Once VREF has been enabled, the voltage will quickly ramp up due to the pre-charge circuit. The pre-charge circuit can then be disabled in order to save power or to prevent it from adjusting the VREF voltage when the supply varies. This can be done by setting REFERENCE.PDVMDFST Reg0x68[13] to 1. Once the VREF voltage has settled to VDDA/2, the output impedance on the VREF pin is determined by setting the bits VMID_CTRL.VMIDSEL REg0x60[5:4]. The output impedance is set as per the following table. | VMIDSEL
REG0x60[5:4] | VREF Resistor Selection | VREF Impedance | |-------------------------|----------------------------|------------------------------| | 00 | Open, no resistor selected | Open, no impedance installed | | 01 | 50kOhm | 25kOhm | | 10 | 250kOhm | 125kOhm | | 11 | 5kOhm | 2.5kOhm | Table 3: V_{REF} Impedance Figure 8: V_{REF} Circuitry ## 3.3 Microphone Bias Generation The NAU85L20 provides two microphone bias pins which can be used in various stereo applications. The microphone bias can be used to power electret microphones. In order to ensure safe operation of the device, it is recommended that the microphones do not draw more than 4mA of current from each MICBIAS pin. Register MIC_BIAS REG0x67 provides the control for powering up the MICBIAS circuitry. It should be noted that the two MICBIAS outputs both have the same voltage level. # 4 Clocking and Sample Rates The internal clocks for the NAU85L20 are derived from a common internal clock source, MCLK. This clock is the reference for the ADCs and DSP core functions, digital audio interface and other internal functions. MCLK can be derived directly from MCLKI pin or may be generated from a Frequency Locked Loop (FLL) using MCLKI, BCLK or FS as a reference. The FLL provides additional flexibility for a wide range of MCLK frequencies and can be used to generate a free-running clock in the absence of an external reference source. See FREQUENCY LOCKED LOOP (FLL) for further details. It should be noted that the internal clock frequency MCLK must be running at 256*Fs (Fs = sample rate in Hz) in order to achieve the best performance. For example, when targeting 48 kHz sample rate audio, the MCLK must be set to 256*48k = 12.288MHz. When the input clock MCLKI is higher than this speed, CLOCK_SRC.MCLK_SRC Reg0x03[4:0] provides flexible division selection to meet the requirement. Figure 9: Clock Generation | Bits | MCLK_SRC
REG0x03[4:0] | |------|--------------------------| | 0000 | Divide by 1 | | 0001 | Invert | | 0010 | Divide by 2 | | 0011 | Divide by 4 | | 0100 | Divide by 8 | | 0101 | Divide by 16 | | 0110 | Divide by 32 | | 0111 | Divide by 3 | | 1001 | Invert | | 1010 | Divide by 6 | | 1011 | Divide by 12 | | 1100 | Divide by 24 | Table 4: CLOCK SRC.MCLK SRC REG0x03[4:0] Register Settings | Bits | CLK_ADC_SRC
REG0x03[7:6] | |------|-----------------------------| | 00 | Divide by 1 | | 01 | Divide by 2 | | 10 | Divide by 4 | | 11 | Divide by 8 | Table 5: CLOCK SRC.CLK ADC SRC REG0x03[7:6] Register Settings The OSR (over sampling rate) is defined as CLK_ADC frequency divided by the audio sample rate. $$OSR = \frac{CLK_ADC}{Fs}$$ Available over-sampling rates are 32, 64, 128 or 256 as set in the <u>ADC_SAMPLE_RATE.OSR</u> <u>REG0x3A[1:0]</u> register. CLK_ADC frequency is set by <u>CLOCK_SRC.CLK_CODEC_SRC REG0x03[13]</u> and <u>CLOCK_SRC.CLK_ADC_SRC REG0x03[7:6]</u> registers. It should be noted that the OSR and Fs must be selected so that the max frequency of CLK_ADC is less than 6.144MHz. When CLK_ADC is determined, <u>ADC SAMPLE RATE.OSR REG0x3A[1:0]</u> should be set to provide appropriate down sampling through digital filters. #### Example 1: To configure Fs = 48 kHz, MCLK = (256*Fs) = 12.288MHz, and CLK_ADC = 6.144MHZ Set: CLOCK_SRC.CLK_CODEC_SRC REG0x03[13] = 1'b0, CLOCK_SRC.CKL_ADC_SRC REG0x03[7:6] = 2'b01, and OSR = 2'b10 (128) #### Example 2: To configure Fs = 16 kHz, MCLKI = 12.288MHz, and CLK_ADC = 4.096MHz Set: - CLOCK SRC.MCLK SRC REG0x03[4:0] = 3'b111 (Divide MCLKI by 3) to get MCLK = (256*Fs) = 4.096MHz - CLOCK SRC.CLK CODEC SRC REG0x03[13] = 1'b0, CLOCK SRC.CLK ADC SRC REG0x03[7:6] = 2'b00, and OSR = 2'b11 (256) ### 4.1 PCM Clock Generation In master mode, BCLK is derived from MCLK via a programmable divider set by PCM_CTRL1.BCLK_DIV REG0x11">REG0x11"[13:12]. To select specific Fs values, <u>PCM_CTRL1.BCLK_DIV_REG0x11[2:0]</u> and <u>PCM_CTRL1.LRC_DIV_REG0x11[13:12]</u> must be set according to the block diagram seen in Figure 10 and the equation below. $BCLK = Fs \times data\ length \times channels$ #### Example 1: If we want an Fs of 48 kHz and 16 bit data is to be sent to the I2S bus (2 channel) - BCLK = 48000*16*2 = 1.536MHz and MCLK = 48000*256 = 12.288MHz - Set PCM_CTRL1.BCLK_DIV
REG0x11[2:0] = 3'b011 (8) and PCM_CTRL1.LRC_DIV REG0x11[13:12] = 2'b11 (32) Or 32 bit data is to be sent - BCLK = 48000*32*2 = 3.073MHz and MCLK = 48000*256 = 12.288MHz - Set <u>PCM_CTRL1.BCLK_DIV REG0x11[2:0]</u> = 3'b010 (4) and <u>PCM_CTRL1.LRC_DIV REG0x11[13:12]</u> = 2'b10 (64) #### Example 2: If we want an Fs of 16 kHz and 16 bit data is to be sent to the I2S bus (2 channel) - BCLK = 16000*16*2 = 512kHz and MCLK = 16000*256 = 4.096MHz - Set <u>PCM_CTRL1.BCLK_DIV Reg0x11[2:0]</u> = 3'b011 (8) and <u>PCM_CTRL1.LRC_DIV Reg0x11[13:12]</u> = 2'b11 (32) 32 bit data is to be sent, - BCLK = 16000*32*2 = 1.024MHz and MCLK = 16000*256 = 4.096MHz - Set <u>PCM_CTRL1.BCLK_DIV Reg0x11[2:0]</u> = 3'b100 (4) and <u>PCM_CTRL1.LRC_DIV Reg0x11[13:12]</u> = 2'b10 (64) #### Example 3: If we want an Fs of 16 kHz and 32 bit data is to be sent to the I2S TDM bus (4 channels) - BCLK = 16000*32*4 = 2.048MHz and MCLK = 16000*256 = 4.096MHz - Set <u>PCM_CTRL1.BCLK_DIV Reg0x11[2:0]</u> = 3'b001 (2) and <u>PCM_CTRL1.LRC_DIV</u> #### REG0x11[13:12] = 2'b01 (128) Figure 10: Master Mode PCM Clock Generation | Bits | BCLK_DIV
REG0x11[2:0] | |------|--------------------------| | 000 | Divide by 1 | | 001 | Divide by 2 | | 010 | Divide by 4 | | 011 | Divide by 8 | | 100 | Divide by 16 | | 101 | Divide by 32 | Table 6: PCM_CTRL1.BCLK_DIV REG0x11[2:0] Register Settings | Bits | LRC_DIV
REG0x11[13:12] | |------|---------------------------| | 00 | Divide by 256 | | 01 | Divide by 128 | | 10 | Divide by 64 | | 11 | Divide by 32 | Table 7: PCM_CTRL1.LRC_DIV REG0x11[13:12] Register Settings ## 4.2 Frequency Locked Loop (FLL) The integrated FLL can be used to generate a master system clock, MCLK, from MCLKI, BCLK or FS as a reference. Because of the FLL's tolerance of jitter, it may be used to generate a stable MCLK from less stable input clock sources or it can be used to generate a free-running clock in the absence of an external reference clock source. To run as a free running clock, enable FLL6.DCO EN REG0x09[15] and set FLL6.DCO REG0x0A[15:0] to 16'hF13C. The FLL is enabled using CLOCK_SRC.SYSCLK_SRC Reg0x03[15] and it is recommended that the FLL be disabled before any setting changes via CLOCK_SRC.SYSCLK_SRC Reg0x03[15] and then re-enabled after the register settings have been updated. To select between sources, use FLL3.FLL_CLK_REF_SRC[Reg0x06[11:10] and use FLL4.FLL_CLK_REF_DIV Reg0x07[11:10] to divide the reference source by 1, 2, 4 or 8 to bring the frequency down to 13.5MHz or below. To control the internal gain loop of the FLL, <u>FLL3.GAIN_ERR REG0x06[15:13]</u> and <u>FLL4.FLL_REF_DIV_4CHK REG0x07[14:12]</u> can be used. However, it is recommended that only the default settings be used in these registers. Figure 11: FLL Block diagram The FLL output frequency is determined by the following parameters: - FLL1.FLL_RATIO REG0x04[6:0] - CLOCK SRC.MCLK SRC REG0x03[4:0] - FLL3.FLL_INTEGER REG0x06[9:0] - FLL2.FLL_FRAC REG0x05[15:0] - FREF is the output of <u>FLL4.FLL_CLK_REF_DIV REG0x07[]</u> To determine these settings, the following output frequency equations are used: - 1. FDCO = FREF x FLL_INTEGER REG0x06[9:0] . FLL_FRAC REG0x05[15:0] x FLL_RATIO REG0x04[6:0] - 2. $MCLK = (FDCO \times MCLK_SRC Reg0x03[4:0])/2$ Where FREF is the reference clock frequency, MCLK is the desired system clock frequency, and FDCO is the frequency of DCO in decimal. It should also be noted that the values in the above equations are the decimal values of the registers. ### Example: If the reference frequency (FREF) is 12MHz, the desired sampling rate (Fs) is 48 kHz, and MCLK = 256*Fs, what are the output frequency parameters? Using these requirements, the following can be determined. - MCLK = 256 x 48kHz = 12.288MHz - Using Equation 2: - FDCO = (2 x 12.288MHz) / MCLK SRC - For FDCO to remain between 90MHz 100MHz, MCLK_SRC must be chosen to be 1/4. This and other values for MCLK_SRC REG0x03[4:0] can be seen on the register tables. - \circ FDCO = $(2 \times 12.288MHz) / (1/4) = 98.304MHz$ - Using Equation 1: - FLL_INTEGER REG0x06[9:0] . FLL_FRAC REG0x05[15:0] = FDCO / (FREF x FLL_RATIO REG0x04[6:0]) - FLL_RATIO REG0x04[6:0] = 1 because FREF ≥ 512 kHz. This and other values for FLL_RATIO REG0x04[6:0] can be seen on the register tables. - $\frac{\text{FLL_INTEGER Reg0x06[9:0]}}{8.192} \cdot \frac{\text{FLL_FRAC Reg0x05[15:0]}}{8.192} = 98.304 \text{MHz} / (12 \text{MHz} \times 1) = 8.192$ - FLL_INTEGER Reg0x06[9:0] . FLL_FRAC Reg0x05[15:0] represents an integer and fractional number in decimal - o FLL_INTEGER REG0x06[9:0] = 8 - FLL FRAC REG0x05[15:0] = 0.192 - Now retrieve or convert the parameter values into their corresponding HEX values - FLL_RATIO REG0x04[6:0] = 7'h1 (this value is taken from the register chart for FREF ≥ 512kHz) - MCLK SRC REG0x03[4:0] = 4'h3 (this value is taken from the register chart for MCLK_SRC REG0x03[4:0] = 1/4) - FLL_INTEGER REG0x06[9:0] = 8 = 10'h8 - o <u>FLL_FRAC Reg0x05[15:0]</u> = 0.192 × 2¹⁶ = 12583=16'h3126 If low power consumption is required, then FLL settings must be chosen where <u>FLL_INTEGER</u> <u>REG0x06[9:0]</u>. <u>FLL_FRAC REG0x05[15:0]</u> is an integer (i.e. <u>FLL_FRAC REG0x05[15:0]</u> = 0). In this case, the fractional mode can be turned off by disabling register setting <u>FLL6.SDM EN REG0x09[14]</u>. ### **5** Control Interfaces ### **5.1** Selection of Control Mode The NAU85L20 features include a serial control bus that provides access to all of the device control registers. This bus may be configured either as a 2-wire interface that is interoperable with industry standard implementations of the I2C serial bus, or as a 3-wire bus compatible with commonly used industry implementations of the SPI (Serial Peripheral Interface) bus. Mode selection is accomplished by means of combination of the MODE control logic pin and MISC_CTRL.SPI3_EN Reg0x51[15]. The following table shows the three functionally different modes that are supported. | MODE Pin | SPI3 EN
Reg0x51[15] | Description | |----------|------------------------|---| | 1 | Х | 2-Wire Interface, Read/Write operation | | 0 | 0 | SPI Interface 3-Wire Write-only operation | Table 8: Control Interface Selection The timing in all three bus configurations is fully static resulting in good compatibility with standard bus interfaces and software simulated buses. A software simulated bus can be very simple and low cost, such as by utilizing general purpose I/O pins on the host controller and software "bit banging" techniques to create the required timing. ## 5.2 2-Wire-Serial Control Mode (I²C Style Interface) The 2-wire bus is a bidirectional serial bus protocol. This protocol defines any device that sends data onto the bus as a transmitter (or master), and the receiving device as the receiver (or slave). The NAU85L20 can function only as a slave device when in the 2-wire interface configuration. ### 5.3 2-Wire Protocol Convention All 2-Wire interface operations must begin with a START condition, which is a HIGH-to-LOW transition of SDIO while SCLK is HIGH. All 2-Wire interface operations are terminated by a STOP condition, which is a LOW to HIGH transition of SDIO while SCLK is HIGH. A STOP condition at the end of a read or write operation places the device in a standby mode. An acknowledge (ACK), is a software convention used to indicate a successful data transfer. To allow for the ACK response, the transmitting device releases the SDIO bus after transmitting eight bits. During the ninth clock cycle, the receiver pulls the SDIO line LOW to acknowledge the reception of the eight bits of data. Following a START condition, the master must output a device address byte. This consists of a 7-bit device address, and the LSB of the device address byte is the R/W (Read/Write) control bit. When R/W=1, this indicates the master is initiating a read operation from the slave device, and when R/W=0, the master is initiating a write operation to the slave device. If the device address matches the address of the slave device, the slave will output an ACK during the period when the master allows for the ACK signal. Figure 12: Valid START Condition Figure 13: Valid Acknowledge Figure 14: Valid STOP Condition Figure 15: Slave Address Byte, Control Address Bytes, and Data Byte Order ## 5.4 2-Wire Write Operation A Write operation consists of a three-byte instruction followed by one or more Data Bytes. A Write operation requires a START condition, followed by a valid device address byte with R/W=0, a valid control address byte, data byte(s), and a STOP condition. The Device Address of the NAU85L20 is either 0x1C (CSB=0) or 0x1D (CSB=1). In I2C mode the CSB pin will set the LSB of the Slave Address. If the Device Address matches this value, the NAU85L20 will respond with the expected ACK signaling as it accepts the data being transmitted to it. Figure 16: Byte Write Sequence ## 5.5 2-Wire Read Operation A Read operation consists of a three-byte Write instruction followed by a Read instruction of one or more data bytes. The bus master initiates the operation issuing the following sequence: a START condition, device address byte with the R/W bit set to "0", and a Control Register Address byte. This indicates to the slave device which of its control registers is to be accessed. If the device address matches this value, the NAU85L20 will respond with the expected ACK signaling as it accepts the Control Register Address being transmitted into it. After this, the master transmits a second START condition, and a second instantiation of the same device address, but now with R/W=1. After again recognizing its device address, the NAU85L20 transmits an ACK,
followed by a two byte value containing the 16 bits of data from the selected control register inside the NAU85L20. During this phase, the master generates the ACK signaling with each byte transferred from the NAU85L20. If there is no STOP signal from the master, the NAU85L20 will internally auto-increment the target Control Register Address and then output the two data bytes for this next register in the sequence. This process will continue as long as the master continues to issue ACK signaling. If the Control Register Address being indexed inside the NAU85L20 reaches the value 0xFFFF (hexadecimal) and the value for this register is output, the index will roll over to 0x0000. The data bytes will continue to be output until the master terminates the read operation by issuing a STOP condition. Figure 17: Read Sequence # 5.6 Digital Serial Interface Timing Figure 18: Two-Wire Control Mode Timing | Symbol | Description | min | typ | max | unit | |--------------------|--|-------|-----|-----|------| | T _{STAH} | SDIO falling edge to SCLK falling edge hold timing in START / Repeat START condition | 600 | - | - | ns | | T _{STAS} | SCLK rising edge to SDIO falling edge setup timing in Repeat START condition | 600 | - | - | ns | | T _{STOS} | SCLK rising edge to SDIO rising edge setup timing in STOP condition | 600 | - | - | ns | | T _{SCKH} | SCLK High Pulse Width | 600 | - | - | ns | | T _{SCKL} | SCLK Low Pulse Width | 1,300 | - | - | ns | | T _{RISE} | Rise Time for all 2-wire Mode Signals | - | - | 300 | ns | | T _{FALL} | Fall Time for all 2-wire Mode Signals | - | - | 300 | ns | | T _{SDIOS} | SDIO to SCLK Rising Edge DATA Setup Time | 100 | - | - | ns | | T _{SDIOH} | SCLK falling Edge to SDIO DATA Hold Time | 0 | - | 600 | ns | #### 5.7 Software Reset The entire NAU85L20 and all of its control registers can be reset to default initial conditions by writing any value to SW_RESET Reg0x00, using any of the control interface modes. Writing to any other valid register address terminates the reset condition, but all registers will now be set to their power-on default values. # 6 Digital Audio Interface The NAU85L20 can be configured as either the master or the slave, by setting PCM_CTRL1.MS REG0x11[3], 1 for master mode and 0 for slave mode. By default, the NAU85L20 is in Slave mode. In master mode, NAU85L20 outputs both Frame Sync (FS) and the audio data bit clock (BCLK) which has full control of the data transfer. In the slave mode, an external controller supplies BCLK and FS. Data is latched on the rising edge of BCLK. In master mode, the BCLK and FS are generated from MCLK according to the clock division specified in PCMCLOCK GENERATION. The DO12 data port only supports normal mode. The DO12 default setting is normal mode with PCM A format. When DO12 are not driving PCM data, they can be configured to drive a low output, be tri-state, or have a weak pull-up or pull-down. If PCM_CTRL1.DO12_DRV REG0x11[14] is set then DO12 will drive an output low when not transmitting data. When DO12_TRI is set DO12 will be tri-state when not transmitting. Pull-up or pull-down devices can be added to the DO12 pin by setting pull enable (DO12_PE) bit and selecting up or down with DO12_PS where 1 = pull-up and 0 = pull-down. This enables user to configure for wired-OR type bus sharing. All of these controls can be found in register PCM_CTRL1 REG0x11. Nuvoton Technology Corporation America Tel: 1-408-544-1718 Rev. 0.1.9: May 10, 2016 If PE and PS are both logic=0, DO12 is high impedance, except when actively transmitting left and right channel audio data. After outputting audio channel data, DO12 will return to high impedance on the BCLK negative edge during the LSB data period if PCM_CTRL1.TRI REG0x11[9], is HIGH, or on the BCLK positive edge of LSB if PCM_CTRL1.TRI REG0x11[9] is LOW. Tri-stating on the negative edge allows the transmission of data by multiple sources in adjacent timeslots with reduced risk of bus driver contention. ADC Output through Channel1 and Channel2 can be selected by setting <u>DIGITAL MUX.CH1 SEL REG0x44[1:0]=00</u> and <u>DIGITAL_MUX.CH2_SEL REG0x44[3:2]=11</u> respectively. There are six types of data formats in normal mode, which is entered with PCM_CTRL4.TDM_MODE REG0x14[15] = 0. | PCM Mode | PCM_CTRL0. AIFMT REG0x10[1:0] | PCM_CTRL0.
LRP
REG0x10[6] | PCM_CTRL1. PCM TS EN REG0x11[10] | PCM_CTRL4.TDM
OFFSET_EN
REG0x14[14] | |------------------|-------------------------------|---------------------------------|----------------------------------|---| | Right Justified | 00 | 0 | 0 | 0 | | Left Justified | 01 | 0 | 0 | 0 | | I2S | 10 | 0 | 0 | 0 | | PCM A | 11 | 0 | 0 | 0 | | РСМ В | 11 | 1 | 0 | 0 | | PCM Time
Slot | 11 | Don't care | 1 | 0 | Table 9: Digital Audio Interface Normal Modes ## 6.1 Right-Justified Audio Data In right-justified mode, the LSB is clocked on the last BCLK rising edge before FS transitions. When FS is HIGH, left channel data is transmitted and when FS is LOW, right channel data is transmitted. This is shown in the figure below where N is the word length. Figure 19: Right Justified Audio Format ### 6.2 Left-Justified Audio Data In left-justified mode, the MSB is clocked on the first BCLK rising edge after FS transitions. When FS is HIGH, left channel data is transmitted and when FS is LOW, right channel data is transmitted. This is shown in the figure below. Figure 20: Left Justified Audio Format ### 6.3 I2S Audio Data Mode In I2S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, left channel data is transmitted and when FS is HIGH, right channel data is transmitted. This is shown in the figure below. Figure 21: I2S Audio Format #### 6.4 PCM A Audio Data In the PCM A mode, left channel data is transmitted first followed immediately by right channel data. The left channel MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and the right channel MSB is clocked on the next SCLK after the left channel LSB. This is shown in the figure below. Figure 22: PCM A Audio Format ### 6.5 PCM B Audio Data In the PCM B mode, left channel data is transmitted first followed immediately by right channel data. The left channel MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and the right channel MSB is clocked on the next SCLK after the left channel LSB. This is shown in the figure below. Figure 23: PCM B Audio Format ### 6.6 PCM Time Slot Audio Data The PCM time slot mode is used to delay the time at ADC data are clocked. This increases the flexibility of the NAU85L20 to be used in a wide range of system designs. One key application of this feature is to enable multiple NAU85L20 or other devices to share the audio data bus, thus enabling more than two channels of audio. This feature may also be used to swap left and right channel data, or to cause both the left and right channels to use the same data. Normally, the ADC data are clocked immediately after the Frame Sync (FS). In the PCM time slot mode, the audio data are delayed by a delay count specified in the device control registers. The left channel MSB is clocked on the BCLK rising edge defined by the delay count set in PCM_CTRL2.TSLOT_L Reg0x12[9:0]. The right channel MSB is clocked on the BCLK rising edge defined by the delay count set in PCM_CTRL3.TSLOT_R Reg0x13[9:0]. Figure 24: PCM Time Slot Audio Format # 7 Register Map | REG | Function | |--------|------------------| | 0 | SW_RESET | | 1 | POWER MANAGEMENT | | 2 | CLOCK_CTRL | | 3 | CLOCK_SRC | | 4 | FLL1 | | 5
6 | FLL2 | | 6 | FLL3 | | 7 | FLL4 | | 9 | FLL5 | | 9 | FLL6 | | Α | FLL_VCO_RSV | | 10 | PCM CTRL0 | | 11 | PCM_CTRL1 | | 12 | PCM_CTRL2 | | 13 | PCM CTRL3 | | 14 | PCM CTRL4 | | 20 | ALC CONTROL 1 | | 21 | ALC_CONTROL_2 | | 22 | ALC CONTROL 3 | | 23 | ALC CONTROL 4 | | 24 | ALC_CONTROL_5 | | 2D | ALC GAIN CH12 | | 2E | ALC_GAIN_CH34 | | 2F | ALC STATUS | | 30 | NOTCH FIL1 CH1 | | 31 | NOTCH_FIL2_CH1 | | 36 | NOTCH_FIL1_CH2 | | 37 | NOTCH_FIL2_CH2 | | 38 | HPF_FILTER_CH12 | | REG | Function | |-----|------------------| | 39 | HPF_FILTER_CH34 | | 3A | ADC SAMPLE RATE | | 40 | DIGITAL_GAIN_CH1 | | 43 | DIGITAL_GAIN_CH | | 44 | DIGITAL_MUX | | 48 | P2P_CH1 | | 4B | P2P CH4 | | 4C | PEAK_CH1 | | 4F | PEAK_CH4 | | 50 | GPIO CTRL | | 51 | MISC_CTRL | | 52 | I2C CTRL | | 58 | I2C_DEVICE_ID | | 5A | RST | | 60 | VMID CTRL | | 61 | MUTE | | 64 | ANALOG ADC1 | | 65 | ANALOG_ADC2 | | 66 | ANALOG PWR | | 67 | MIC_BIAS | | 68 | REFERENCE | | 69 | FEPGA1 | | 6C | FEPGA4 | | 6D | PWR | | | | | | | | | | | | | | | | | Common | R | | | | | | | | | | В | it | | | | | | | | |
---|--------|----------|--|---|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---| | ET Default 0 0 0 0 0 0 0 0 0 | E
G | Function | Name | | | 1 | | | | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Description | | ET Default 0 0 0 0 0 0 0 0 0 | 0 | SW RES | SW RESET | | | | | | | | | | | | | | | | | Software reset register. Resets chip to POR state. | | POWER MANAGE MENT MANAGE MENT MANAGE MENT | | ĒT | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | Default 0 0 0 0 0 0 0 0 0 | 1 | MANAGE | | | | | | | | | | | | | | | | | | 0 = ADC2 stage OFF 1 = Enabled Channel 1 analog-to-digital converter power control 0 = ADC1 stage OFF | | CLK_AGC_EN | | • | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | SYSCLK_S RC | 2 | | SLOW_EN CLK_AGC_EN CLK_I2S_GEN_EN CLK_ADC_POL MCLKO_PS MCLKO_PE | | | | | | | | | | | | | | | | | 0 = Disable 1 = Enable Enable AGC clock 0 = Disable 1 = Enable Enable 12S/PCM clock 0 = Disable 1 = Enable Enable 12S/PCM clock 0 = Disable 1 = Enable ADC Clock Polarity 0 = Pass through 1 = Invert MCLKO_PS: =1 Selects the MCLKO pin pull-up. '0' selects the MCLKO pin pull-down MCLKO_PE: = 1 Turns on the MCLKO pin pull-up/down MCLKO_TRI =1 Turns of clock output driver on MCLKO pin and sets MCLKO pin in tri-state condition. | | 1 | 3 | _ | RC CLK_CODE C_SRC CLK_GPIO_ SRC CLK_ADC_S RC | | | | | | | | | | | | | | | | | 0 = MCLKI pin 1 = FLL VCO/2 as source CODEC Clock Source 0 = Internal MCLK (MCLK_SRC output) 1 = SYSCLK (SYSCLK_SRC output) MCLK Scaling for GPIO clock divider 00 = Divide by 8 01 = MCLK 10 = Divide by 2 11 = Divide by 2 ADC Clock Source 00 = Pass through 01 = Divide by 2 01 = Divide by 4 11 = Divide by 4 11 = Divide by 4 11 = Divide by 8 Master Clock (MCLK) Source 0000 = Pass through 0010 = Divide by 8 0001 = Invert 0010 = Divide by 2 0110 = Divide by 4 0100 = Divide by 8 0101 = Divide by 4 0110 = Divide by 8 | | Е | [| FLLISELDA | | | | | | | | | | | | | ī | l | | | Recommended default 000 | |---|------|------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|---|---|---| | | | C | | | | | | | | | | | | | | | | | Necommended deladit 000 | | | | ICTRL_LAT
CH | | | | | | | | | | | | | | | | | Increase FLL Latch drive strength. Default setting is 000. 001 = Increase drive strength by 1x 011 = Increase by 2x, 111 = Increase by 3x. | | | | ICTRL_V2I | | | | | | | | | | | | | | | | | Half biased by 3x. Half biased-current. Reduce current to 50% nominal value 00 = No power reduction 01 = Half biased current on FLL_BIAS_AMP2x 10 = Half biased current on FLL_BIAS_AMP 11 = Half biased on both amp | | 4 | FLL1 | FLL_LOCK_
BP | | | | | | | | | | | | | | | | | Manually force FLL to lock. 0 = Default setting 1 = Force lock enabled | | | | FLL_RATIO
[6:0] | | | | | | | | | | | | | | | | | 0000001 = for input clock frequency >= 512Khz,
0000010 = for input clock frequency >= 256Khz
0000100 = for input clock frequency >= 128Khz
001000 = for input clock frequency >= 64Khz
0010000 = for input clock frequency >= 32Khz
0100000 = for input clock frequency >= 8Khz
1000000 = for input clock frequency >= 4Khz | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0x0001 | | 5 | FLL2 | FLL_FRAC Default | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | FLL 16-bit fractional input 0x3126 | | H | | Delault | U | U | 1 | 1 | U | U | U | | U | U | | U | U | <u> </u> | | U | | | 6 | FLL3 | GAIN_ERR | | | | | | | | | | | | | | | | | FLL gain error.
000 = recommended
001 = x2
010 = x4
011 = x8
100 = x16
101 = x32
110 = x64 | | | | FLL_CLK_R
EF_SRC | | | | | | | | | | | | | | | | | FLL Reference CLK Source Select 00 & 01 = MCLK Pin 10 = BCLK Pin 11 = FS Pin | | | | FLL_INTEG | | | | | | | | | | | | | | | | | FLL 10-bit integer input | | | | ER
Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0x0008 | Reserved | | | | FLL_CLK_R
EF_DIV_4C
HK | | | | | | | | | | | | | | | | | FLL Clock Reference divider for accurate lock detection 000 = recommended 001 = div by 2 010 = div by 4 011 = div by 8 100 = div by 16 101 = div by 32 | | 7 | FLL4 | FLL_CLK_R
EF_DIV | | | | | | | | | | | | | | | | | FLL pre-scalar 00 = Divide by 1 01 = Divide by 2 10 = Divide by 4 11 = Divide by 8 | | | | FLL_N2 | | | | | | | | , | , | • | • | , | | | | | FLL 10-bit integer VCO divider for FLL Filter Clock | | 느 | | Default | 0 | U | 0 | U | U | U | U | U | U | U | U | 1 | 0 | U | 0 | 0 | | | | | PD_DACICT
RL | | | | | | | | | | | | | | | | | 0 = Disable the drive strength control block of FLL DAC
1 = Enable the drive strength control block of FLL DAC | | | | CHB_FILTE
R_EN | | | | | | | | | | | | | | | | | FLL Loop Filter 0 = Disable 1 = Enable | | 8 | FLL5 | CLK_FILTE
R_SW | | | | | | | | | | | | | | | | | Select source of loop filter clock 0 = VCO/FLL_INTEGER 1 = VCO/FLL_N2 | | | | FILTER_SW | | | | | | | | | | | | | | | | | 0 = Select filter output
1 = Select accumulator output | | | | Default | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Reserved 0xC000 | P.C. C. |
--|---|------|-----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | P.C.M. C.T. | | | DCO EN | | | | | | | | | | | | | | | | | | | SDM_EN | 1 = Enable | | Part | | | SDM_EN | | | | | | | | | | | | | | | | | 0 = Disable | | CUTOFFE00 | 9 | FLL6 | CUTOFF500 | | | | | | | | | | | | | | | | | FLL 500Khz cutoff frequency
0 = Disable | | DLR | FLL 600Khz cutoff frequency | | PCM_CT P | | | CUTOFF600 | | | | | | | | | | | | | | | | | 1 = Enable | | PCM_CT RLO PCM_CT RLO | | | DLR | | | | | | | | | | | | | | | | | recommended | | A | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ADCCM ADCCM ADCC companding mode control 0 | Α | | _RSV | | | | 1 | | | | | | | | | | | | | , , | | ADCCM | | | Detault | 1 | 1 | 1 | 1 | U | U | U | 1 | U | U | 1 | Ţ | 1 | 1 | U | U | | | CMB8 | | | ADCCM | | | | | | | | | | | | | | | | | 00 = Off (normal linear operation)
01 = Reserved
10 = u-law companding | | UA_OFF | | | CMB8 | | | | | | | | | | | | | | | | | 8-bit word enable for companding mode of operation 0 = Normal operation (no companding) | | PCM_CT RLO | | | UA_OFF | | | | | | | | | | | | | | | | | | | PCM_CT RL0 | | | ВСР | | | | | | | | | | | | | | | | | 0 = Normal phase | | WLEN | 0 = Normal phase operation | | WLEN | | | LRP | | | | | | | | | | | | | | | | | 0 = MSB is valid on 2nd rising edge of BCLK after rising edge of FS 1 = MSB is valid on 1st rising edge of BCLK after rising edge | | AIFMT AIFMT | | | WLEN | | | | | | | | | | | | | | | | | Word length (24-bits default) of audio data stream
00 = 16-bit word length 01 = 20-bit word length | | Default O O O O O O O O O | | | AIFMT | | | | | | | | | | | | | | | | | Audio interface data format (default setting is I2S) 00 = Right justified 01 = Left justified 10 = Standard I2S format | | DO12_TRI | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | | | DO12_DRV | | | DO12_TRI | | | | | | | | | | | | | | | | | 0 = Normal mode (Check DO12_OE) | | PCM_CT RL1 PCM_CT RL1 PCM_TS_E N Normal mode (not TDM mode) 1 = Time slot function enable for PCM mode 0 = Only PCM_A_MODE or PCM_B_MODE(STEREO Only) can be used when PCM Mode is selected normal mode for ADCDAT12 and ADCDAT34 1 = Tri-State the 2nd half of LSB 0 = Drive the full Clock of LSB 1 = Select 8-bit word length 0 = Use WLEN to select Word Length ADCDO12 lo Pull Enable (When DO12_TRI=0, set ADCDO12 output pull condition.) 1 = Enable 0 = Disable 0 = Disable | | | DO12_DRV | | | | | | | | | | | | | | | | | ADCDO12 drive state 0 = Normal mode (check DO12_TRI) | | 1 = Time slot function enable for PCM mode 0 = Only PCM_A_MODE or PCM_B_MODE(STEREO Only) can be used when PCM Mode is selected TRI TRI PCM8_BIT DO12_PE 1 = Time slot function enable for PCM mode 0 = Only PCM_A_MODE or PCM_B_MODE(STEREO Only) can be used when PCM Mode is selected normal mode for ADCDAT12 and ADCDAT34 1 = Tri-State the 2nd half of LSB 0 = Drive the full Clock of LSB 1 = Select 8-bit word length 0 = Use WLEN to select Word Length ADCDO12 IO Pull Enable (When DO12_TRI=0, set ADCDO12 output pull condition.) 1 = Enable 0 = Disable | | | LRC_DIV | | | | | | | | | | | | | | | | | 00 = BCLK/2^8(256)
01 = BCLK/2^7 (128)
10 = BCLK/2^6 (64)
11 = BCLK/2^5 (32) | | TRI 1 = Tri-State the 2nd half of LSB 0 = Drive the full Clock of LSB PCM8_BIT 1 = Select 8-bit word length 0 = Use WLEN to select Word Length ADCDO12 IO Pull Enable (When DO12_TRI=0, set ADCDO12 output pull condition.) 1 = Enable 0 = Disable | 1 = Time slot function enable for PCM mode
0 = Only PCM_A_MODE or PCM_B_MODE(STEREO Only)
can be used when PCM Mode is selected | | DO12_PE DO12_ | | | TRI | | | | | | | | | | | | | | | | | 1 = Tri-State the 2nd half of LSB | | DO12_PE ADCDO12 IO Pull Enable (When DO12_TRI=0, set ADCDO12 output pull condition.) 1 = Enable 0 = Disable | | | PCM8_BIT | DO12_PE | | | | | | | | | | | | | | | | | ADCDO12 IO Pull Enable (When DO12_TRI=0, set ADCDO12 output pull condition.) 1 = Enable | | | | | DO12_PS | 1 = Pull Up
0 = Pull Down | |--------|-------------------|---------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | | | DO12_OE | | | | | | | | | | | | | | | | | 0 = ADCDAT is not always out (when no data out, ADCDO12 pin becomes high Z) 1 = ADCDAT always out | | | | MS | | | | | | | | | | | | | | | | | Master Mode Enable
0 = Slave Mode | | | | BCLKDIV | | | | | | | | | | | | | | | | | 1 = Master Mode BCLK DIVIDE Coefficient Setting BCLK=MCLK/BCLKDIV 000 = No Divide 001 = Divided 2 010 = Divided 4 011 = Divided 8 100 = Divided 16 101 = Divided 32 | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0x0002 | | 1 2 | PCM_CT
RL2 | TSLOT_L | | | | | | | | | | | | | | | | | ADC1 channel PCM time slot start count | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 1 3 | PCM_CT
RL3 | FS_ERR_C
MP_SE | | | | | | | | | | | | | | | | | Triggers short Frame Sync signal if Frame Sync is less than 00 = 255*MCLK 01 = 253*MCLK 10 = 254*MCLK 11 = 255*MCLK | | | T L L | DIS_FS | | | | | | | | | | | | | | | | | 0 = Enable short frame sync detection logic
1 = Disable short frame sync detection logic | | | | TSLOT_R Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | ADC2 channel PCM time slot start count 0x0000 | | | | TDM_MODE | | | 0 | U | U | - | - | - | U | | - | - | _ | U | - | U | | | 1
4 | PCM_CT
RL4 | ADC_TXEN | | | | | | | | | | | | | | | | | Default=0 ADC TX out enable for channel 1,2 1 = Enable | | | | Default 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable
0x0000 | | | | ALC_TABLE | | | | | | | | | | | | | | | | | 0 = ALC target range -28.5~ -6dB | | | | _SEL | | | | | | | | | | | | | | | | | 1 = ALC target range -22.5 ~-1.5dB | | | | ALC_GRP[2: 0] | | | | | | | | | | | | | | | | | 001 = channel 1 group
010 = channel 2 group
100 = channel 12 group | | | | ALC_NG_A
DJ | ALC_PK_DE
T_HOLD | | | | | | | | | | | | | | | | | peak detect hold 1 = Keep peak 0 = Peak decay | | | | ALC_PKDET
_CLR | | | | | | | | | | | | | | | | | 1 = If peak hold is "1" clear peak value
0 = Don't clear | | | | ALC_MODE | | | | | | | | | | | | | | | | | 1 = Limiter mode
0 = Normal mode | | 2
0 | ALC_CON
TROL_1 | ALC_PK_LI
M_EN | INOL_I | ALC_NGSE
L | | | | | | | | | | | | | | | | | 0 = Use peak_peak calculation output for noise gate threshold
1 = Use rectified peak detector output for noise gate threshold | | | | ALC_PKSEL | | | | | | | | | | | | | | | | | 0 = Use peak_peak calculation
1 = Use rectified peak detector | | | | ALC_NGEN | | | | | | | | | | | | | | | | | · | | | | ALC_NGTH | | | | | | | | | | | | | | | | | ALC noise gate threshold level 0000 = -19dB 0001 = -23.5dB 0010 = -28dB ▼ steps = -4.5dB ▼ 1110 = -82dB | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1111 = -86.5dB
0x0070 | | 2 | ALC_CON
TROL_2 | ALCMAX | | | | | | | | | | - | | | | | | | Maximum ALC gain setting
000 = -6.75 dB
001 = -0.75 dB
010 = +5.25 dB
011 = +11.25 dB
100 = +17.25 dB
101 = +23.25 dB
110 = +29.25 dB
111 = +35.25 dB | | II | | | | | | | | | | | | | | | | | | | Minimum ALC gain setting | |----
---------|---------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 000 = -12 dB
001 = -6 dB | | | | ALCMIN | | | | | | | | | | | | | | | | | 010 = 0 dB | 011 = +6 dB | 100 = +12 dB | Hold time before ALC automated gain increase
0000 = 0.00ms (default) | 0000 = 0.00ms (default)
0001 = 2.00ms | 0010 = 4.00ms | | | | ALCHLD | | | | | | | | | | | | | | | | | ▼ - time value doubles with each bit value increment | - time value doubles with each bit value increment ▼ | 1001 = 512ms | 1010 through 1111 = 1000ms | ALC target level ALCTABELSEL = 0 1 | 0000 -28.5 dBFS -22.5 dBFS | 0001 -27 dBFS -21 dBFS | 0010 -25.5 dBFS -19.5 dBFS
0011 -24 dBFS -18 dBFS | 0100 -22.5 dBFS -16.5 dBFS | 0101 -21 dBFS -15 dBFS | | II | | ALCLVL | | | | | | | | | | | | | | | | | 0110 -19.5 dBFS -13.5 dBFS
0111 -18 dBFS -12 dBFS | 1000 -16.5 dBFS -10.5 dBFS | 1001 -15 dBFS -9 dBFS | 1010 -13.5 dBFS -7.5 dBFS
1011 -12 dBFS -6 dBFS | 1100 -10.5 dBFS -4.5 dBFS | 1101 -9 dBFS -3 dBFS | 1110 -7.5 dBFS -1.5 dBFS
1111 -6 dBFS -1.5 dBFS | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | | | ALC_CH2E | | | | | | | | | | | | | | | | | 1 = Channel 2 ALC enable | | | | N
ALC_CH1E | | | | | | | | | | | | | | | | | 0 = Disable
1 = Channel 1 ALC enable | | | | N N | | | | | | | | | | | | | | | | | 0 = Disable | ALC Decay Timer (0.75dB / adjustment step) Normal Mode: | 0000 = 500 us / step | 0001 = 1 ms / step | 0010 = 2 ms / step
▼ | - each subsequent setting doubles the decay timer | ▼ | 1001 = 256 ms / step | | | | ALCDCY | | | | | | | | | | | | | | | | | 1010 = 512 ms / step | Limiter Mode: | 0000 = 125 us / step
0001 = 250 us / step | 0001 = 250 ds / step
0010 = 500 us / step | | II | | | | | | | | | | | | | | | | | | | ▼ | | 2 | ALC_CON | | | | | | | | | | | | | | | | | | - each subsequent setting doubles the decay timer ▼ | | 2 | TROL_3 | | | | | | | | | | | | | | | | | | 1001 = 64 ms / step | | I | | | | | | | | | | | | | | | L | | | | 1010 = 128 ms / step | | II | | | | | | | | | | | | | | | | | | | ALC Attack Timer (0.75dB / adjustment step) Normal Mode: | | II | | | | | | | | | | | | | | | | | | | 0000 = 125 us / step | 0001 = 250 us / step | | II | | | | | | | | | | | | | | | | | | | 0010 = 500 us / step ▼ | - each subsequent setting doubles the decay timer | 1001 64 mg / oten | | | | AL OTIC | | | | | | | | | | | | | | | | | 1001 = 64 ms / step
1010 = 128 ms / step | | | | ALCTK | | | | | | | | | | | | | | | | | · | Limiter Mode:
0000 = 31 us / step | | II | | | | | | | | | | | | | | | | | | | 0000 = 31 ds / step
0001 = 63 us / step | | II | | | 1 | | | | | | | | | | | | | | | | 0010 = 125 us / step | - each subsequent setting doubles the decay timer | - each subsequent setting doubles the decay timer | each subsequent setting doubles the decay timer 001 = 16 ms / step 1010 = 32 ms / step | | Ш | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | |--------|--------------------|-----------------------|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|---|---|--| | | | ALC_UPEN_
CH1 | | | | | | | | | | | | | | | | | 1 = Channel 1 Gain Update Enable
0 = Disable | | | | ALC_ZCD_
CH1 | | | | | | | | | | | | | | | | | 1 = Channel 1 ALC Gain updates on zero crossing. 0 = Channel 1 ALC Gain updates whenever | | 2 | | СПІ | | | | | | | | | | | | | | | | | Channel 1 Initial Gain. Increments in .75dB steps | | 3 | ALC_CON
TROL_4 | ALC INIT C | | | | | | | | | | | | | | | | | 000000 = -12dB
000001 = -11.25dB | | | | ALC_INIT_G
AIN_CH1 | | | | | | | | | | | | | | | | | ▼
010000 = 0dB | ▼
111111 = 35.25dB | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0x0010 | | | | ALC_UPEN_ | | | | | | | | | | | | | | | | | 1 = Channel 2 Gain Update Enable | | | | CH2
ALC_ZCD_ | | | | | | | | | | | | | | | | | 0 = Disable 1 = Channel 2 ALC Gain updates on zero crossing. | | | | CH2 | | | | | | | | | | | | | | | | | 0 = Channel 2 ALC Gain updates whenever Channel 2 Initial Gain. Increments in .75dB steps | | 2 | ALC_CON | | | | | | | | | | | | | | | | | | 000000 = -12dB | | 4 | TROL_5 | ALC_INIT_G
AIN CH2 | | | | | | | | | | | | | | | | | 000001 = -11.25dB
▼ | | | | 7(114_0112 | | | | | | | | | | | | | | | | | 010000 = 0dB
▼ | | | | Default | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | • | 111111 = 35.25dB
0x1000 | | | | ALC_GAIN_ | U | U | U | 1 | U | U | U | U | U | U | | U | U | U | U | 0 | Readout channel 1 ALC gain setting | | 2
D | ALC_GAI
N_CH12 | CH1 | | | | | | | | | | | | | | | | | | | Ě | N_OITIE | Default | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | | 2 | ALC_GAI | ALC_GAIN_
CH2 | | | | | | | | | | | | | | | | | Readout channel 2 ALC gain setting | | Е | N_CH34 | Default | X | X | X | X | X | X | Χ | Χ | X | Χ | Χ | Χ | X | X | X | Χ | Read Only | | 2 | ALC_STA | FAST_DEC
NOISE | | | | | | | | | | | | | | | | | | | F | TUS | CLIP | Default | Х | Х | X | X | Х | X | Х | Х | Х | X | Х | X | Х | Х | Х | Х | · | | | | CHA NEOH | | | | | | | | | | | | | | | | | Update bit feature for simultaneous change of all notch filter parameters. Write-only bit. | | | | CH1_NF0U | | | | | | | | | | | | | | | | | 1 = Update
0 = Do nothing | | 3 | NOTCH_F
IL1_CH1 | | | | | | | | | | | | | | | | | | Notch filter control bit | | | 121_0111 | CH1_NFEN | | | | | | | | | | | | | | | | | 0 = Disabled
1 = Enabled | | | | CH1_NFA0 | _ | _ | • | - | • | | > | > | • | > | | > | • | • | • | • | Notch filter A0 coefficient least significant bits. | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 Update bit feature for simultaneous change of all notch filter | | | | CH1_NF1U | | | | | | | | | | | | | | | | | parameters. Write-only bit. | | 3 | NOTCH_F | | | | | | | | | | | | | | | | | | 1 = Update
0 = Do nothing | | 1 | IL2_CH1 | 0111 11511 | | | | | | | | | | | | | | | | | Reserved Notch filter A1 coefficient least significant bits. | | | | CH1_NFA1 Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | Ħ | | _ orault | J | Ť | | | Ĭ | - | <u> </u> | - | | - | | | Ť | | _ | - | CH2, Update bit feature for simultaneous change of all notch | | | | CH2_NF0U | | | | | | | | | | | | | | | | | filter parameters. Write-only bit. 1 = Update | | 3 | NOTCH_F | | | L | | | | | | | | | | | | | | | 0 = Do nothing | | 6 | IL1_CH2 | CH2_NFEN | | | | | | | | | | | | | | | | | CH2, Notch filter control bit
0 = Disabled | | | | CH2 NFA0 | | | | | | | | | | | | | | | | | 1 = Enabled Notch filter A0 coefficient least significant bits. | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Notch filter AU coefficient least significant bits. 0x0000 | CH2, Update bit feature for simultaneous change of all notch | | | NOTOU | CH2_NF1U | | | | | | | | | | | | | | | | | filter parameters. Write-only bit.
1 = Update | | 3
7 | NOTCH_F
IL2_CH2 | | | | | | | _ | | | | | | | _ | | | | 0 = Do nothing Reserved | | | | CH2_NFA1 | | | | | | | | | | | | | | | | | Notch filter A1 coefficient least significant bits. | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | 3 | HPF_FILT | FLUSH_ME
M | | | | | | | | | | | | | | | | | 1 = flush filter memory | | | ER_CH12 | HPF_EN_C | | 1 | - | | | | | | | | | | | T | | | Channel 1 HPF filter control bit | | | | H1 | | | | | | | | | | | | | | | | | 0 = Disabled | |----------------------------|--|--|-------------|-------------|--------|-------------|-------------|-------------|-------------|-------------|--------|-------------|-------------|-------------|--------|-----------|-------------|--------
---| 1 = Enabled Select audio mode or application mode. | | | | HPF_AM_C
H1 | | | | | | | | | | | | | | | | | 0 = Audio mode (1st order, fc = ~3.7Hz).
1 = Application mode (2nd order, fc = HPFCUT, reference | | | | HPF_CUT_ | | | | | | | | | | | | | | | | | TABLE 1) Channel 1 HPF Cut-off Frequency, reference TABLE 1 | | | | CH1 | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | | | HPF_EN_C
H2 | | | | | | | | | | | | | | | | | Channel 2 HPF filter control bit
0 = Disabled
1 = Enabled | | 3 9 | HPF_FILT
ER_CH34 | HPF_AM_C
H2 | | | | | | | | | | | | | | | | | Select audio mode or application mode. 0 = Audio mode (1st order, fc = ~3.7Hz). 1 = Application mode (2nd order, fc = HPFCUT, reference TABLE 1) | | | | HPF_CUT_
CH2 | | | | | | | | | | | | | | | | | Channel 2 HPF Cut-off Frequency. Reference TABLE 1. | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | | | SMPL_RAT
E | | | | | | | | | | | | | | | | | ADC Sample Rate selection for HPF coefficients: 000 = 48kHz 001 = 32kHz 010 = 24kHz 011 = 16kHz 100 = 12kHz 101 = 8kHz | | | ADC_SA | SINC4 | | | | | | | | | | | | | | | | | Reserved keep 0 | | 3
A | MPLE_RA | GAIN_CMP | | | | | | | | | | | | | | | | | Reserved keep 0 | | | TE | OSR384 | | | | | | | | | | | | | | | | | Reserved keep 0 ADC OSR selection. Controls SINC filter down sample ratio. | | | | OSR | | | | | | | | | | | | | | | | | Must be set such that ADC_CLK = Fs * OSR. 00 = 32 01 = 64 10 = 128 | 11 = 256. | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0x0002 | | 4 0 | DIGITAL_
GAIN_CH
1 | CH1_DGAIN | | | | | | | | | | | | | | | | | ADC channel 1 digital gain. Increments in -0.125dB steps 0x520 = + 36dB 0x400 = 0dB ▼ | | | 1 | Default | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x000 = -128dB
0x0400 | | | | Delault | _ | _ | _ | | H | • | Ť | Ť | Ŭ | Ü | Ť | Ū | Ť | Ū | Ť | | | | 4 3 | DIGITAL_
GAIN CH | | | | | | | | | | | | | | | | | | ADC channel 2 digital gain. Increments in -0.125dB steps 0x520 = + 36dB | | | | CH2_DGAIN | | | | | | | | | | | | | | | | | 0x400 = 0dB
▼ | | | 2 | | • | | 4 | 4 | • | 4 | 0 | 0 | 0 | 0 | 0 | 0 | • | 0 | 0 | 0 | 0x400 = 0dB
▼
0x000 = -128dB | | L | | CH2_DGAIN Default | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x400 = 0dB
▼
0x000 = -128dB
0x0400 | | | | | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x400 = 0dB ▼ 0x0000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable | | 4 4 | | Default | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x400 = 0dB ▼ 0x000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN | | | 2 DIGITAL_ | Default DG_ZCEN CH2_SEL | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x400 = 0dB ▼ 0x000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection | | | 2 DIGITAL_ | Default DG_ZCEN CH2_SEL CH1_SEL | 0 | | | | | | 0 | | 0 | 0 | 0 | | | | | | 0x400 = 0dB ▼ 0x000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN | | 4 | DIGITAL_
MUX | Default DG_ZCEN CH2_SEL CH1_SEL Default | | | | | | | | 0 | | | | | | 1 | 0 | 0 | 0x400 = 0dB ▼ 0x000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC | | | 2 DIGITAL_ | Default DG_ZCEN CH2_SEL CH1_SEL | | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | | 1 | | 1 | 1 | 0 | 0 | 0x400 = 0dB ▼ 0x000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN | | 4 | DIGITAL_
MUX | Default DG_ZCEN CH2_SEL CH1_SEL Default P2P CH1 | 0 | 0
X | 0 | 0
X | 0
X | 0
X | 0
X | 0 | 1
X | 1
X | 1
X | 0 | 1
X | 1
X | 0
X | 0
X | 0x400 = 0dB ▼ 0x0000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC Channel 1 P2P value. | | 4 8 4 | DIGITAL_MUX P2P_CH1 P2P_CH4 | Default DG_ZCEN CH2_SEL CH1_SEL Default P2P CH1 Default P2P CH2 | 0
X 1
X | 1
X | 1
X | 0
X | 1
X | 1
X | 0
X | 0
X | 0x400 = 0dB ▼ 0x000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC Channel 1 P2P value. Read Only Channel 2 P2P value. | | 4
4
8
4
B | DIGITAL_
MUX | Default DG_ZCEN CH2_SEL CH1_SEL Default P2P CH1 Default P2P CH2 Default | 0
X 1 X X | 1 X X | 1
X | 0
X | 1
X | 1
X | 0
X | 0
X | 0x400 = 0dB ▼ 0x0000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC Channel 1 P2P value. Read Only Channel 2 P2P value. Read Only | | 4
8
4
B
4
C | DIGITAL_MUX P2P_CH1 P2P_CH4 PEAK_CH | Default DG_ZCEN CH2_SEL CH1_SEL Default P2P CH1 Default P2P CH2 Default PEAK CH1 Default PEAK CH1 PEAK CH2 | 0
X
X | 0
X
X | 0
X | 0
X
X | 0
X
X | 0
X | 0
X
X | 0
X
X | 1
X | 1 X X X | 1
X
X | 0
X
X | 1
X | 1 x x x | o
X
X | 0
X | 0x400 = 0dB ▼ 0x0000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC Channel 1 P2P value. Read Only Channel 1 Peak value. Read Only Channel 2 Peak value. | | 4
8
4
8
4
C | DIGITAL_MUX P2P_CH1 P2P_CH4 PEAK_CH 1 | Default DG_ZCEN CH2_SEL CH1_SEL Default P2P CH1 Default P2P CH2 Default PEAK CH1 Default | 0
X | 0
X
X | 0
X | 0
X
X | 0
X | 0
X | 0
X | 0
X
X | 1 X X | 1 X X | 1
X | 0
X
X | 1
X | 1 x x x | o
x
x | 0
X | 0x400 = 0dB ▼ 0x0000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC Channel 1 P2P value. Read Only Channel 2 P2P value. Read Only Channel 1 Peak value. Read Only | | 4
8
4
B
4
C | DIGITAL_MUX P2P_CH1 P2P_CH4 PEAK_CH 1 PEAK_CH 4 | Default DG_ZCEN CH2_SEL CH1_SEL Default P2P CH1 Default P2P CH2 Default PEAK CH1 Default PEAK CH2 Default PEAK CH2 Default POL | 0
X
X | 0
X
X | 0
X | 0
X | 0
X
X | 0
X | 0
X
X | 0
X
X | 1
X | 1 X X X | 1
X
X | 0
X
X | 1
X | 1 x x x | o
X
X | 0
X | 0x400 = 0dB ▼ 0x0000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC Channel 1 P2P value. Read Only Channel 1 Peak value. Read Only Channel 2 Peak value. | | 4
8
4
B
4
C | DIGITAL_MUX P2P_CH1 P2P_CH4 PEAK_CH 1 PEAK_CH 4 GPIO_CT | Default DG_ZCEN CH2_SEL CH1_SEL Default P2P CH1 Default P2P CH2 Default PEAK CH1 Default PEAK CH2 Default PEAK CH2 Default POL SEL | 0
X
X | 0
X
X | 0
X | 0
X | 0
X
X | 0
X | 0
X
X | 0
X
X | 1
X | 1 X X X | 1
X
X | 0
X
X | 1
X | 1 x x x | o
X
X | 0
X | 0x400 = 0dB ▼ 0x0000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC Channel 1 P2P value. Read Only Channel 1 Peak value. Read Only Channel 2 Peak value. | | 4
8
4
B
4
C | DIGITAL_MUX P2P_CH1 P2P_CH4 PEAK_CH 1 PEAK_CH 4 | Default DG_ZCEN CH2_SEL CH1_SEL Default P2P CH1 Default P2P CH2 Default PEAK CH1 Default PEAK CH2 Default PEAK CH2 Default POL | 0
X
X | 0
X
X | 0
X | 0
X
X | 0
X
X | 0
X
X | 0
X
X | 0
X
X | 1
X | 1 x x x x x | 1
X
X | 0
X
X | 1
X | 1 x x x x | o
X
X | 0
X | 0x400 = 0dB ▼ 0x0000 = -128dB 0x0400 Digital Gain change zero cross enable 1 = Enable 0 = Disable Channel MUX ADC output selection 00 = ADC channel 1 IN 11 = ADC channel 2 IN 0x00EC Channel 1 P2P value. Read Only Channel 1 Peak value. Read Only Channel 2 Peak value. | | 5 | MISC_CT
RL | SPI3_EN | | | | | | | | | | | | | | | | | Mode pin = 0 1 = SPI4 – four wire SPI 0 = SPI3 – three wire SPI Mode pin = 1 I2C mode regardless | |--------|-------------------|--------------------|----------|---|---|-----------|---|---|---|---|---|---|---|---|---|---|---|---|--| | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | 5 2 | I2C_CTRL | TO_DIS | | | | | | | | | | | | | | | | | I2C time out function 1 = Disable 0 = Enable | | | | Default | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0xEFFF | | 5 | I2C_DEVI | I2C_DEVID | | | | | | | | | | | | | | | | | I2C device ID address | | 8 | CE_ID | SI_REV | | | | | | | | | | | | | | | | | Silicon Revision | | | _ | Default | Х | Х | X | Х | Х | Х | X | Х | X | Χ | Х | Х | X | Х | Х | Х | Read Only | | 5
A | RST | SW_RST
Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | Software reset without reset of register contents. 0x0000 | | | | TEST | VMIDEN | | | | | | | | | | | | | | | | | VMID
0 = Disable
1 = Enable | | 6 | VMID_CT
RL | VMIDSEL | | | | | | | | | | | | | | | | | Vmid tie-off selection options
00 = open (default)
$01 = 50\text{k}\Omega$ resistors
$10 = 250\text{k}\Omega$ resistors
$11 = 5\text{k}\Omega$ resistors | | | | BIAS_ADJ | | | | | | | | | | | | | | | | | Master bias current power reduction options 00 = normal operation (default) 01 = 10% reduced bias current from default 10 = 17% reduced bias current from default 11 = 10% increased bias current from default | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 6 | Default MUTE CH2 | MUTE CH2 | | | | | | | | | | | | | | | | | MIC2 PGA mute enable
0 = Mute Disable
1 = Mute Enable | | 1 | MUTE | MUTE CH1 | | | | | | | | | | | | | | | | | MIC1 PGA mute enable 0 = Mute Disable 1 = Mute Enable | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | 6 | ANALOG_
ADC1 | resetR | | | | | | | | | | | | | | | | | Reset integrators in ADC CH21 1 = Reset 0 = Normal operation | | | 71501 | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | adc_up | | | | | | | | | | | | | | | | | Channel 2 to 1 PGA bias current increase for driving the ADC at high sample rates | | | | bias1 | | | | | | | | | | | | | | | | | Change bias currents in ADC | | | | bias0 | | | | | | | | | | | | | | | | | 00 = Nominal
01 = Double
10 = Half
11 = Quarter of nominal value | | | | Vrefsel1 | | | | | | | | | | | | | | | | | Change Vref in ADC:
00 = Use analog supply | | 6 | ANALOG_ | Vrefsel0 | | | | | | | | | | | | | | | | | 01, 10, 11 use internal value derived from Vmid, value changes in 0.5dB steps | | 5 | ADC2 | | | | | | | | | | | | | | | | | | Reserved | Reserved | | | | Ifsrresetn | | | | | | | | | | | | | | | | | 0 = Reset the LFSR for the DEM algorithm
1 = Default | | | | monadd | | | | H | | | | | | | | | | | | | Should remain zero. | | | | mon1st | mon2nd | mon3rd | <u> </u> | | | \square | | | | | | | | | | | | | | | | | mon4th
Default | 0 | 0 | 0 | 0 | n | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0x0020 | | | | PON_CH2 | Ť | J | Ť | | _ | J | Ť | | | _ | | _ | Ť | Ŭ | J | | 1 = Power on signal ADC CH1 to CH2 | | 6 | ANALOG_ | PON_CH2
PON_CH1 | | | | H | | | | | | | | | | | | | 1 - 1 Owel Oil Signal ADO Oil 1 (0 OFIZ | | 6 | PWR | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | | 6 7 | MIC_BIAS | PU_BUF | | | | | | | | | | | | | | | | | MICBIAS output buffers Bit 1 = MICBIAS2 Bit 0 = MICBIAS1 | | 1 | | | | | | لــــا | | | | | | | | | | | | | 1 = Power on | _ | 0 = Power off | |-----|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| MICBIAS power on pre-amp | | | | PU_PRE | | | | | | | | | | | | | | | | | 1 = Enable | 0 = Disable MICBIAS fast charge filter | | | | FAST | | | | | | | | | | | | | | | | | 1 = Enable | | | | 17.01 | | | | | | | | | | | | | | | | | 0 = Disable | MICBIAS discharge filter | | | | DISCH | | | | | | | | | | | | | | | | | 1 = Enable | 0 = Disable | MICBIAS Set output level 1.8V | | | | LVL LOW | | | | | | | | | | | | | | | | | 1 = Enable | 0 = Disable | MICBIAS Set output level | 000 = 2.1V | 001 = 2.2V
010 = 2.3V | | | | LVL | | | | | | | | | | | | | | | | | 011 = 2.4V | 100 = 2.5V | 101 = 2.6V | 110 = 2.7V
111 = 2.8V | | | | Default | 0 | 0 | 0 | n | 0 | n | n | n | n | n | 0 | n | 0 | 1 | 0 | 0 | 0x0004 | | H | | Doladit | | | | | ť | | | | ť | ť | | | Ť | ÷ | | _ | | | | | STG2_SEL | | | | | | | | | | | | | | | | | Enable PGA class A mode of operation (instead of class AB) 1 = Enable | | | | JIGZ_SEL | | | | | | | | | | | | | | | | | 0 = Class AB | Power Down Fast VREF Ramp up | | | | PDVMDFST | | | | | | | | | | | | | | | | | 1 = Disable | 0 = Enable | | | | DIACENI | | | | | | | | | | | | | | | | | Enable Global Analog Bias enable /Bias/power management | | 6 | REFEREN | BIASEN | | | | | | | | | | | | | | | | | 1 = Enable
0 = Disable | | 8 | CE | | | | | | | | | | | | | | | | | | Charge inputs selected by FEPGA2: ACDC_CTRL[7:0] to | | | | DISCHRG | | | | | | | | | | | | | | | | | VREF | | | | DISCHKG | | | | | | | | | | | | | | | | | 1 = Enable | 0 = Disable | | | | BYPASS_IB | | | | | | | | | | | | | | | | | Bypass PGA current control | | | | CTR | | | ı | 1 = Enable
0 = Disable | | Ш | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable | | H | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable
0x0000 | | | | Default CM_LCK IB LOOP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust | | | | CM_LCK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable
0x0000 | | | | CM_LCK
IB_LOOP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim | | | | CM_LCK IB_LOOP IBCTR_COD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; | | 6 | FFPGA1 | CM_LCK IB_LOOP IBCTR_COD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz | | 6 9 | FEPGA1 | CM_LCK
IB_LOOP
IBCTR_COD
E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function | | 6 9 | FEPGA1 | CM_LCK
IB_LOOP
IBCTR_COD
E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated | | 6 9 | FEPGA1 | CM_LCK
IB_LOOP
IBCTR_COD
E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable | | 6 9 | FEPGA1 | CM_LCK
IB_LOOP
IBCTR_COD
E | 0 | | | 0 | | | | | 0 | | | | | | 0 | 0 | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E | | |
 | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF | | 6 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF | | 6 9 | | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF | | 9 | FEPGA1 | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[7] charges MIC2N to VREF ACDC_CTRL[7] charges MIC2N to VREF | | 9 | | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1P to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[7] charges MIC2N to VREF 1 = Enable 0 = Disable | | 9 | | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[7] charges MIC2N to VREF 1 = Enable 0 = Disable Channel 2 PGA mode selection; | | 9 | | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | 0 = Disable 0x0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable 0x0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[7] charges MIC2N to VREF 1 = Enable 0 = Disable Channel 2 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz | | 9 | | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default ACDC_CTR L | | | | | | | | | | | | | | | | | O = Disable Ox0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable Ox0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[7] charges MIC2N to VREF 1 = Enable 0 = Disable Channel 2 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[0] = No function | | 9 | | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default | | | | | | | | | | | | | | | | | O = Disable Ox0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable Ox0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[6] charges MIC2N to VREF ACDC_CTRL[7] charges MIC2N to VREF 1 = Enable 0 = Disable Channel 2 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm | | 9 | | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default ACDC_CTR L | | | | | | | | | | | | | | | | | O = Disable Ox0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable Ox0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[6] charges MIC2N to VREF
ACDC_CTRL[7] charges MIC2N to VREF 1 = Enable 0 = Disable Channel 2 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated | | 9 | | CM_LCK IB_LOOP IBCTR_COD E MODE_CH1 Default ACDC_CTR L | | | | | | | | | | | | | | | | | O = Disable Ox0000 Common mode Threshold lock adjust PGA Current Trim PGA Current Trim Channel 1 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm differentially terminated 1 = Enable 0 = Disable Ox0000 DC state control for Input pins. Action takes effect when DISCHRG=1 ACDC_CTRL[0] charges MIC1P to VREF ACDC_CTRL[1] charges MIC1N to VREF ACDC_CTRL[6] charges MIC2P to VREF ACDC_CTRL[6] charges MIC2N to VREF ACDC_CTRL[7] charges MIC2N to VREF 1 = Enable 0 = Disable Channel 2 PGA mode selection; MODE_CH1[0] = Anti-aliasing filter adjust when Fs<=16KHz MODE_CH1[1] = Disconnects MICP & MICN from FEPGA MODE_CH1[2] = No function MODE_CH1[3] = Shorts the inputs to ground with 12kOhm | | Ш | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0x0000 | |--------|--------|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 6
B | FEPGA3 | GAIN_CH1 | | | | | | | | | | | | | | | | | Channel 1 PGA Gain. Increments in 1dB steps
000000 = -1dB
000001 = 0dB
▼
100100 = +35dB
100101 = +36dB | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0x0101 | | 6
C | FEPGA4 | GAIN_CH2 | | | | | | | | | | | | | | | | | Channel 2 PGA Gain. Increments in 1dB steps
000000 = -1dB
000001 = 0dB
▼
100100 = +35dB
100101 = +36dB | | | | Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0x0101 | | 6
D | PWR | PUP
Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Power Up Channel 2 to 1 PGA 0x0000 | # 8 Typical Application Diagram Figure 25: Typical Single-ended use Application Diagram Figure 26: Typical Application Schematic for Differential Microphone Connection # **Package Information** QFN 28L 4X4 mm², Thickness 0.8 mm (Max), Pitch 0.4 mm (Saw Type) | PKG CODE | Q | FN 28 | L | |----------|------|--------|------| | SYMBOLS | MIN. | NOM. | MAX. | | А | 0.70 | 0.75 | 0.80 | | Α1 | 0.00 | 0.02 | 0.05 | | А3 | 0. | 203 R | EF. | | b | 0.15 | 0.20 | 0.25 | | D | 4 | .00 BS | SC | | Е | 4 | .00 BS | SC . | | е | 0 | .40 BS | SC | | K | 0.20 | _ | _ | | D2 | 2.55 | 2.60 | 2.65 | | E2 | 2.55 | 2.60 | 2.65 | | L | 0.30 | 0.40 | 0.50 | # 9.1 Version History | VERSION | DATE | PAGE/
CHAP. | DESCRIPTION | |---------|------------------|-------------------|---| | 0.1 | February 15 2015 | - | Initial Draft Release | | 0.1.1 | August 6, 2015 | | Reg0x11 description | | 0.1.2 | October 1, 2015 | 16 | Added PRO Reset application note | | 0.1.3 | October 9, 2015 | 7,16 | Added VDDB restriction | | 0.1.4 | October 14, 2015 | 44 | Updated package informaiton | | 0.1.5 | October 21, 2015 | 14 | Figure 7 noise gate changed from -19dB to -39dB | | 0.1.6 | November 1, 2015 | 38 | Register 23, 24 change default setting to 1000, 0010 | | 0.1.7 | January 22, 2016 | 23
6
7 | Figure 11, SYSCLK_SRC Updated shutdown current VDDMIC min value | | 0.1.8 | April 26, 2016 | 43,44
36
14 | Resistor values added
R0x20 descripton
Fig.7 ALC updated | | 0.1.9 | May 9, 2016 | 22
34,35
19 | Table 7, Fig 10 Reg0x6, Reg0x11[23:12] Fig. 9 changed | # 10 ORDERING INFORMATION **Nuvoton Part Number Description** ### **Important Notice** Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur. Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.