EM88F715N

8-Bit

Microprocessor

Product Specification

ELAN MICROELECTRONICS CORP.

May 2017

Trademark Acknowledgments: IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation ELAN and ELAN logo *full* are trademarks of ELAN Microelectronics Corporation

Copyright © 2017 by ELAN Microelectronics Corporation **All Rights Reserved**

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12. Innovation 1st Road Hsinchu Science Park Hsinchu, TAIWAN 30076 Tel: +886 3 563-9977 Fax:+886 3 563-9966 webmaster@emc.com.tw http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd. Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax:+852 2723-7780

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

8A Floor, Microprofit Building Gaoxin South Road 6 Shenzhen Hi-tech Industrial Park Zhangijang Hi-Tech Park South Area. Shenzhen CHINA 518057 Tel: +86 755 2601-0565 Fax:+86 755 2601-0500 elan-sz@elanic.com.cn

USA:

Elan Information **Technology Group** (U.S.A.) PO Box 601 Cupertino, CA 95015 U.S.A. Tel: +1 408 366-8225 Fax:+1 408 366-8225

Shanghai:

ELAN Microelectronics Shanghai, Ltd.

6F, Ke Yuan Building No. 5 Bibo Road Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax:+86 21 5080-0273 elan-sh@elanic.com.cn

Contents

1	Ger	neral De	scription	1
2	Fea	tures		1
3	Pin	Confia	uration (Package)	2
4			otion	
		-		
5	-		erview	
		•	Мар	
	5.2 I	Block Dia	agram	8
6	Fun	ctional	Description	9
	6.1	Operati	ional Registers	9
		6.1.1	R0 IAR (Indirect Addressing Register)	9
		6.1.2	R1 BSR (Bank Selection Control Register)	
		6.1.3	R2 PCL (Program Counter Low)	
		6.1.4	R3 SR (Status Register)	. 15
		6.1.5	R4 RSR (RAM Select Register)	. 15
		6.1.6	Bank 0 R5 ~ RA Port 5 ~ Port A	15
		6.1.7	Bank 0 RB~RD IOCR5 ~ IOCR7	16
		6.1.8	Bank 0 RE OMCR (Operating Mode Control Register)	16
		6.1.9	Bank 0 RF EIESCR (External Interrupt Edge Select Control Register)	
		6.1.10	Bank 0 R10 WUCR1 (Wake-up Control Register 1)	
		6.1.11	Bank 0 R11 WUCR2 (Wake-up Control Register 2)	
		6.1.12	Bank 0 R12 WUCR3 (Wake-up Control Register 3)	
		6.1.13	Bank 0 R14 SFR1 (Status Flag Register 1)	
		6.1.14	Bank 0 R15 SFR2 (Status Flag Register 2)	
		6.1.15	Bank 0 R16 SFR3 (Status Flag Register 3)	
		6.1.16	Bank 0 R17 SFR4 (Status Flag Register 4)	
		6.1.17	Bank 0 R18 SFR5 (Status Flag Register 5)	
		6.1.18	Bank 0 R19 SFR6 (Status Flag Register 6)	
		6.1.19	Bank 0 R1B IMR1 (Interrupt Mask Register 1)	
		6.1.20	Bank 0 R1C IMR2 (Interrupt Mask Register 2)	
		6.1.21	Bank 0 R1D IMR3 (Interrupt Mask Register 3)	
		6.1.22	Bank 0 R1E IMR4 (Interrupt Mask Register 4)	
		6.1.23 <	Bank 0 R1F IMR5 (Interrupt Mask Register 5)	
		6.1.24	Bank 0 R20 IMR6 (Interrupt Mask Register 6	
		6.1.25	Bank 0 R21 WDTCR (Watchdog Timer Control Register)	
		6.1.26	Bank 0 R22 TCCCR (TCC Control Register)	
		6.1.27	Bank 0 R23 TCCD (TCC Data Register)	
		6.1.28	Bank 0 R24 TC1CR1 (Timer/Counter 1 Control Register 1)	
		6.1.29	Bank 0 R25 TC1CR2 (Timer/Counter 1 Control Register 2)	30

6.1.30	Bank 0 R26 TC1DA (Timer/Counter 1 Data Buffer A)	31
6.1.31	Bank 0 R27 TC1DB (Timer/Counter 1 Data Buffer B)	31
6.1.32	Bank 0 R28 TC2CR1 (Timer/Counter 2 Control Register 1)	32
6.1.33	Bank 0 R29 TC2CR2 (Timer/Counter 2 Control Register 2)	33
6.1.34	Bank 0 R2A TC2DA (Timer/Counter 2 Data Buffer A)	34
6.1.35	Bank 0 R2B TC2DB (Timer/Counter 2 Data Buffer B)	34
6.1.36	Bank 0 R2C TC3CR1 (Timer/Counter 3 Control Register 1)	34
6.1.37	Bank 0 R2D TC3CR2 (Timer/Counter 3 Control Register 2)	35
6.1.38	Bank 0 R2E TC3DA (Timer/Counter 3 Data Buffer A)	36
6.1.39	Bank 0 R2F TC3DB (Timer/Counter 3 Data Buffer B)	36
6.1.40		
6.1.41		37
6.1.42		
6.1.43	Bank 0 R33 I2CDB (I2C Data Buffer Register) Bank 0 R34 I2CDAL (I2C Device Address Register)	38
6.1.44		
6.1.45		
6.1.46		39
6.1.47		
6.1.48		
6.1.49	Bank 0 R39 SPIW (SPI Write Buffer Register)	41
6.1.50	$\langle \cdot \cdot \cdot \rangle = \langle \cdot \cdot \rangle$	
6.1.51	Bank 0 R3B CMPCR2 (Comparator Control Register 2)	42
6.1.52	y y y y y y y	
6.1.53		
6.1.54		
6.1.55		- /
0 1 50		
6.1.56		,
6.1.57		,
6.1.58 6.1.59		
6.1.60		
6.1.61	Bank 0 R45 ADCVL (Low Byte of Analog-to-Digital Converter Compare V Bank 0 R46 ADCVH (High Byte of Analog-to-Digital Converter Compare V	,
0.1.01	Bank U R46 ADCVR (Right Byte of Analog-to-Digital Converter Compare	
6.1.62		
6.1.63		
6.1.64		
6.1.65		
6.1.66	Bank 1 RB P5PLCR (Port 5 Pull-low Control Register)	50
6.1.67	Bank 1 RC P6PLCR (Port 6 Pull-low Control Register)	50
6.1.68	Bank 1 RD P78PLCR (Port 7~8 Pull-low Control Register)	50
6.1.69	Bank 1 RE P5HDSCR (Port 5 High Drive/Sink Control Register)	50
6.1.70	Bank 1 RF P6HDSCR (Port 6 High Drive/Sink Control Register)	51
6.1.71	Bank 1 R10 P78HDSCR (Port 7~8 High Drive/Sink Control Register)	51
6.1.72	Bank 1 R11 P5ODCR (Port 5 Open-drain Control Register)	51
6.1.73	Bank 1 R12 P6ODCR (Port 6 Open-drain Control Register)	51

Contents

	6.1.74	Bank 1 R13 P78ODCR (Ports 7~8 Open-drain Control Register)	52
	6.1.75	Bank 1 R14 DeadTCR (Dead Time Control Register)	52
	6.1.76	Bank 1 R15 DeadTR (Dead Time Register)	53
	6.1.77	Bank 1 R16 PWMSCR (PWM Source Clock Control Register)	53
	6.1.78	Bank 1 R17 PWMACR (PWMA Control Register)	53
	6.1.79	Bank 1 R18 PRDAL (Low byte of PWMA period)	55
	6.1.80	Bank 1 R19 PRDAH (High byte of PWMA period)	55
	6.1.81	Bank 1 R1A DTAL (Low byte of PMWA duty)	55
	6.1.82	Bank 1 R1B DTAH (High byte of PMWA duty)	55
	6.1.83	Bank 1 R1C TMRAL (Low byte of TimerA)	56
	6.1.84	Bank 1 R1D TMRAH (High byte of TimerA)	56
	6.1.85	Bank 1 R1E PWMBCR (PWMB Control Register)	56
	6.1.86	Bank 1 R1F PRDBL (Low byte of PWMB period)	57
	6.1.87	Bank 1 R20 PRDBH (High byte of PWMB period)	
	6.1.88	Bank 1 R21 DTBL (Low byte of PMWB duty)	57
	6.1.89	Bank 1 R22 DTBH (High byte of PMWB duty)	
	6.1.90	Bank 1 R23 TMRBL (Low byte of TimerB)	58
	6.1.91	Bank 1 R24 TMRBH (High byte of TimerB)	58
	6.1.92	Bank 1 R25 PWMCCR (PWMC Control Register)	
	6.1.93	Bank 1 R26 PRDCL (Low byte of PWMC period)	59
	6.1.94	Bank 1 R27 PRDCH (High byte of PWMC period)	59
	6.1.95	Bank 1 R28 DTCL (Low byte of PMWC duty)	
	6.1.96	Bank 1 R29 DTCH (High byte of PMWC duty)	59
	6.1.97	Bank 1 R2A I MRCL (Low byte of HmerC)	60
	6.1.98	Bank 1 R2B TMRCH (High byte of TimerC)	60
	6.1.99	Bank 1 R33 URCR (UART Control Register)	60
	6.1.100	Bank 1 R34 URS (UART Status Register)	61
	6.1.101	Bank 1 R35 URTD (UART Transmit Data Buffer Register)	61
	6.1.102	Bank 1 R36 URRDL (UART Receive Data Low Buffer Register)	62
	6.1.103	Bank 1 R37 URRDH (UART Receive Data High Buffer Register)	62
	6.1.104	Bank 1 R45 TBPTL (Table Pointer Low Register)	62
	6.1.105	Bank 1 R46 TBPTH (Table Pointer High Register)	62
	6.1.106	Bank 1 R47 STKMON (Stack Monitor)	62
	6.1.107	Bank 1 R48 PCH (Program Counter High)	63
	6.1.108	Bank 1 R49 HLVDCR (High / Low Voltage Detector Control Register)	63
	6.1.109	Bank 1 R4A~R4C: (Reserve)	64
	6.1.110	Bank 0 R50~R7F, Bank 0~3 R80~RFF	64
6.2	TCC/WI	DT and Prescaler	65
6.3	I/O Port	s	66
6.4		nd Wake-up	
	6.4.1	Reset	
	6.4.2	Status of RST, T, and P of the Status Register	
6.5	-		
	•		
6.6			
	6.6.1	ADC Data Register	94

	6.6.2	A/D Sampling Time	94
	6.6.3	A/D Conversion Time	94
	6.6.4	ADC Operation during Sleep Mode	95
	6.6.5	Programming Process/Considerations	95
	6.6.6	Programming Process for Detecting Internal VDD	96
	6.6.7	Sample Demo Programs	97
6.7	Timer		99
	6.7.1	Timer/Counter Mode	.100
	6.7.2	Window Mode	. 101
	6.7.3	Capture Mode	.102
	6.7.4	Programmable Divider Output Mode and Pulse Width Modulation Mode	.104
	6.7.5	Buzzer Mode	
6.8	PWM (F	Pulse Width Modulation)	
	6.8.1	Overview.	.107
	6.8.2	Increment Timer Counter (TMRX: TMRAH/TMRAL, TMRBH/TMRBL or TMRCH/TMRCL)	.109
	6.8.3	PWM Time Period (PRDX: PRDAL/H, PRDBL/H, PRDCL/H, or PRDDL/H) .	.109
	6.8.4	PWM Duty Cycle (DTX: DTAH/DTAL, DTBH/DTBL or DTCH/DTCL)	. 110
	6.8.5	Dual PWM function	. 110
	6.8.6	Comparator	. 111
	6.8.7	PWM Programming Process/Steps	. 112
6.9	Compar	ator	113
	6.9.1	External Reference Signal	. 114
	6.9.2	Comparator Outputs	. 114
	6.9.3	Comparator Interrupt	. 115
	6.9.4	Wake-up from SLEEP Mode	. 115
6.10	UART (Universal Asynchronous Receiver/Transmitter)	116
	6.10.1 U	IART Mode	. 117
		ransmitting	
	6.10.3 R	leceiving	. 118
		aud Rate Generator	
		IART Timing	
6.11	SPI (Se	rial Peripheral Interface)	120
<	6.11.1 0	verview and Feature	.120
	6.11.2 S	PI Functional Description	.121
	6.11.3 S	PI Signal and Pin Description	.123
	6.11.4 S	PI Mode Timing	.124
6.12	I2C Fun	ction	126
	6.12.1 M	laster Mode	.131
	6.12.2 S	lave Mode	.131
6.13	H LVD (High / Low Voltage Detector)	132
		or	
- · · ·		scillator Modes	
		Crystal Oscillator/Ceramic Resonators (XTAL)	
		nternal RC Oscillator Mode	

Contents

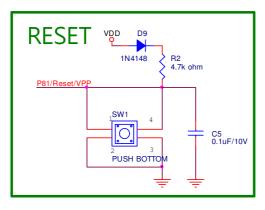
ELA	N	
	6.15	Pow

	6.15 Power-on Considerations	
	6.16 External Power-on Reset Circuit	136
	6.17 Residue-Voltage Protection	137
	6.18 Code Option	138
	6.18.1 Code Option Register (Word 0)	138
	6.18.2 Code Option Register (Word 1)	139
	6.18.3 Code Option Register (Word 2)	140
	6.18.4 Code Option Register (Word 3)	141
	6.18.5 Code Option Register (Word D)	142
	6.19 Instruction Set	143
7	Absolute Maximum Ratings	145
8	DC Electrical Characteristics	146
8	DC Electrical Characteristics	
8	AD Converter Characteristics3.2 OP Characteristics	
8	 AD Converter Characteristics OP Characteristics Comparator Characteristics 	
8	 AD Converter Characteristics	
8	 AD Converter Characteristics. OP Characteristics	
8	 AD Converter Characteristics	
8 9	 AD Converter Characteristics. OP Characteristics	

APPENDIX

Α	Ordering and Manufacturing Information	154
В	Package Type	
С	Package Information	
	C.1 EM88F715NSO28	
	C.2 EM88F715NSS28	
	C.3 EM88F715NSØ24	
	C.4 EM88F715NSS24	
	C.5 EM88F715NSO20	
	C.6 EM88F715NSS20	
D <	Quality Assurance and Reliability	
_ \	D.1 Address Trap Detect	

Specification Revision History


loo Voroion	Revision Description	Data
oc. Version		Date
0.7	Initial released version	2017/05/19
		\land
		\sim
		\land
	~	
		\sim
\sim		
	\searrow	

User Application Note

(Before using this chip, take a look at the following description note, it includes important messages.)

1. We strongly recommend that you place the following circuits on the reset pin, regardless of pin function. Its purpose is to prevent floating and burning when the high voltage backflush.

- 2. The value in the dead-time register must be less than the value in the duty cycle register in order to prevent unexpected behavior on both of the PWM outputs.
- 3. The PWM output will not be set, if the duty cycle is "0".
- 4. The internal TCC will stop running when in sleep mode. However, during AD conversion, when TCC is set to "SLEP" instruction, if the ADWE bit of the RE register is enabled, TCC will keep on running.
- 5. During ADC conversion, do not perform output instruction to maintain precision for all of the pins. In order to obtain accurate values, it is necessary to avoid any data transition on I/O pins during AD conversion

1 General Description

The EM88F715N is an 8-bit microprocessor designed and developed with low-power, high-speed CMOS technology. It is used to simulate the kernel: 4K*16-bits programmable ROM. This specification is used for 16 bits kernel simulation.

2 Features

CPU configuration

- Support 4K×16 bits program ROM
- (48+256) bytes general purpose register
- 16 level stacks for subroutine nesting
- Less than mA at 5V/4MHz
- Typically μA at 3V/16kHz
- Typically μA, at 3V/128kHz
- Typically μA during sleep mode
- 4 programmable Level Volt Reset LVR: 2.5V/ 2.7V, 3.5V/ 3.7V, 4.0V/ 4.2V
- 16 programmable Level Voltage Detector HLVD: 2.2V, 2.3V, 2.4V, 2.5V, 2.6V, 2.8V, 2.9V, 3.1V, 3.3V, 3.5V, 3.7V, 3.9V, 4.1V, 4.3V, 4.5V, 4.7V
- Four CPU operation modes (Normal, Sleep, Green, Idle)
- I/O port configuration
- 4 bidirectional I/O ports: P5, P6, P7, P8
- 4 programmable pin change wake-up ports: P5, P6, P7, P8
- 4 programmable pull-down I/O ports: P5, P6, P7, P8
- 4 programmable pull-high I/O ports: P5, P6, P7, P8
- 4 programmable open-drain I/O ports: P5, P6, P7, P8
- 4 programmable high-sink/drive I/O ports: P5, P6, P7, P8
- 8 external interrupt pins
- Operating voltage range:
- 2.2V~5.5V at -40°C~85°C (industrial)
- Operating frequency range (based on 2 clocks): Main oscillator:
 - Crystal mode:

20MHz

DC ~ 20MHz at 4V; DC ~ 16MHz at 3V; DC ~ 8MHz at 2.2V IRC mode: DC ~ 20MHz at 4V; DC ~ 16MHz at 3V; DC ~ 8MHz at 2.2V

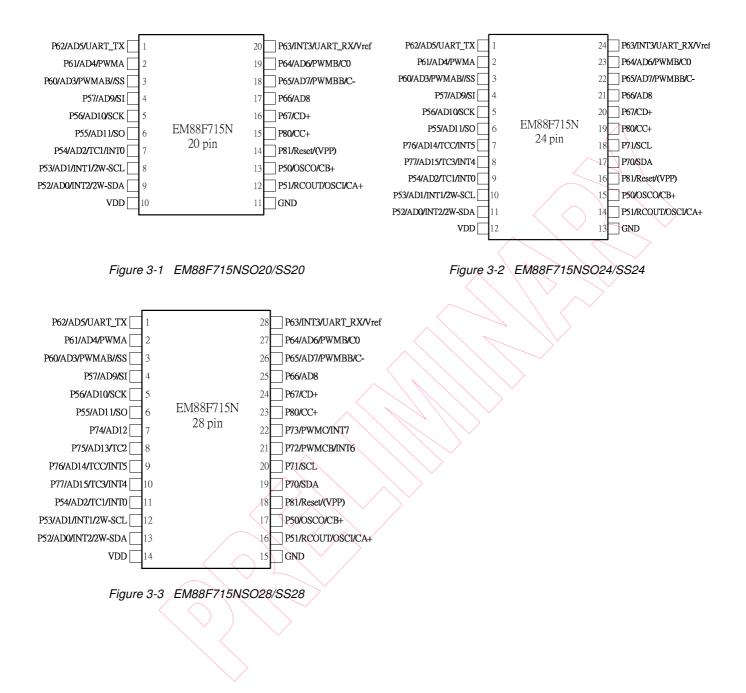
Drift Rate Internal RC Voltage Temperature Frequency Process Total (-40°C ~+85°C) (2.2V~5.5V) 1MHz ±2% ±1% ±1% ±4% ±1% 4MHz +2% ±1% +4% 8MHz ±2% ±1% ±1% ±4% 10MHz ±2% ±1% ±1% ±4% 12MHz ±2% ±1% ±1% +4% ±2% 16MHz ±1% ±1% ±4%

±1%

±1%

±4%

Sub oscillator:


- IRC mode: 16k/128k
- Peripheral configuration
 - 8-bit real time clock/counter (TCC) with selective signal sources and trigger edges
 - 16+2 channels Analog-to-Digital Converter with 12-bit resolution+ 1 internal reference for Vref+
 - Three 8-bit timers (TC1/TC2/TC3) with six modes. They are Timer/Counter/window/buzzer/PWM/PDO
 - (programmable divider output) modes, respectively. Timer 1 and Timer 2 can be cascaded to one 16-bit counter/timer
 - Three sets of complementary PWM, /PWM
 - Comparator/OP+2 internal reference
 - Universal asynchronous receiver/transmitter (UART) available
 - Serial transmitter/receiver interface (SPI): three wire synchronous communication
 - I2C function with 7/10-bit address & 8-bit data transmit/receive mode
 - Power-down (Sleep) mode
 - High EFT immunity
 - 30 available interrupts (10 external, 20 internal)
 - 8 External interrupts
 - Input-port status changed interrupt (wake up from sleep mode)
 - comparator interrupts
 - HLVD interrupt
 - TCC overflow interrupt
 - Three Timer interrupt
 - Three complementary PWM
 - ADC completion interrupt
 - I2C transfer/receive interrupt
 - UART TX, RX , RX error interrupt
 - SPI interrupt
 - Package Type:
 - 20 pin SOP 300mil : EM88F715NSO20
 - 20 pin SSOP 209mil : EM88F715NSS20
 - 24 pin SOP 300mil : EM88F715NSO24
 - 24 pin SSOP 209mil : EM88F715NSS24
 - 28 pin SOP 300mil : EM88F715NSO28
 28 pin SSOP 209mil : EM88F715NSS28
 - Note: These are Green Products which do not contain hazardous substances.
- 99.9% single instruction cycle commands

±2%

3 Pin Configuration (Package)

4 Pin Description

Table 1 EM88F715N Pin Description

Legend:	ST: Schmitt Trigger input	AN: Analog pin
CMOS: CMOS	output XTAL: Oscillation pin for	crystal/resonator

Name	Function	Input Type	Output Type	Description
	P50	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P50/OSCO/CB+	OSCO	Ι	XTAL	Clock output from crystal oscillator
	CB+	AN	-	Non-inverting end of Comparator/OP
	P51	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P51/OSCI/RCOUT/CA+	OSCI	XTAL	-	External clock crystal resonator oscillator input pin
F31/0301/h0001/CA+	RCOUT	-	CMOS	Clock output of internal RC oscillator Clock output of external RC oscillator (open-drain)
	CA+	AN	-	OP/CMP non-inverting input
	P52	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P52/AD0/INT2/2W-SDA	AD0	AN	-	ADC Input 0
	INT2	ST	-	External interrupt pin
	(2W-SDA)	ST	CMOS	DATA pin for Writer programming
	P53	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P53/AD1/INT1/2W-SCL	AD1	AN		ADC Input 1
	INT1	ST		External interrupt pin
	(2W-SCL)	ST		CLOCK pin for Writer programming
	P54	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	AD2	AN		ADC Input 2
P54/AD2/TC1/INT0	TCT	ST	CMOS	Timer 1 input (Counter/Capture/Window) Timer 1 output (PDO/PWM/Buzzer)
	INT0	ST	\rightarrow	External interrupt pin
	P55	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P55/AD11/SO	AD11	AN	-	ADC Input 11
	SO	_	CMOS	SPI serial data output
$ \left(\bigcirc \right) \right) $	P56	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P56/AD10/SCK	AD10	AN	-	ADC Input 10
	SCK	ST	CMOS	SPI serial clock input/output

(Continuation)

Name	Function	Input Type	Output Type	Description
	P57	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P57/AD9/SI	AD9	AN	_	ADC Input 9
	SI	ST	-	SPI serial data input
	P60	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P60/AD3/PWMAB//SS	AD3	AN	-	ADC Input 3
	PWMAB	-	CMOS	PWMAB output
	/SS	ST	Ι	SPI slave select pin
	P61	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P61/AD4/PWMA	AD4	AN	_	ADC Input 4
	PWMA	-	CMOS	PWMA output
	P62	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P62/AD5/UART_RX	AD5	AN	_	ADC Input 5
	ТХ	ST	_	UART TX input
	P63	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P63/INT3/UART_RX/Vref	INT3	ST	$\langle \rangle$	External interrupt pin
	RX	ST	_	UART RX input
	Vref	AN		Voltage reference for ADC
	P64	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P64/AD6/PWMB/CO	AD6	AN		ADC Input 6
	PWMB) - \	CMOS	PWMB output
	со	-	CMOS	Output of Comparator/OP
$\square \qquad \bigcirc \bigcirc$	P65	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P65/AD7/PWMBB/C-	AD7	AN	_	ADC Input 7
	PWMBB	-	CMOS	PWMBB output
	C-	AN		Inverting end of Comparator/OP
P66/AD8	P66	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	AD8	AN	-	ADC Input 8
P67/CD+	P67	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	CD+	AN	_	Non-inverting end of Comparator/OP

(Continuation)

Name	Function	Input Type	Output Type	Description
P70/SDA	P70	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	SDA	ST	CMOS	I2C serial data line. It is open-drain.
P71/SCL	P71	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	SCL	ST	CMOS	I2C serial clock line. It is open-drain.
	P72	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P72/PWMCB/INT6	PWMCB	_	CMOS	PWMCB output
	INT6	ST	—	External interrupt pin
	P73	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P73/PWMC/INT7	PWMC	-	CMOS	PWMCB output
	INT7	ST	—	External interrupt pin
P74/AD12	P74	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	AD12	AN	_	ADC Input 12
	P75	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P75/AD13/TC2	AD13	AN	_	ADC Input 13
	TC2	ST	CMOS	Timer 2 input (Counter/Capture/Window) Timer 2 output (PDO/PWM/Buzzer)
	P76	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P76/AD14/TCC/INT5	AD14	AN		ADC Input 14
	TCC	ST	CMOS	Real Time Clock/Counter clock input
	INT5	ST	$\langle \cdot \rangle$	External interrupt pin
	P77	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	AD15	AN		ADC Input 15
P77/AD15/TC3/INT4	тсз	ST	CMOS	Timer 3 input (Counter/Capture/Window) Timer 3 output (PDO/PWM/Buzzer)
	INT6	ST	_	External interrupt pin
P80/CC+	P80	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	CC+	AN	_	Non-inverting end of Comparator/OP
P91//Papat/	P80	ST	CMOS	Bidirectional I/O pin with programmable It is open-drain
P81//Reset/ (VPP)	/RESET	ST	-	Reset pin. It is open-drain.
	(VPP)	Power	-	VPP pin for Writer programming

(Continuation)

Name	Function	Input Type	Output Type	Description
VDD	VDD	Power	_	Power
(VDD)	VDD	Power	_	VDD for Writer programming
VSS	VSS	Power	_	Ground
(VSS)	VSS	Power	-	VSS for Writer programming

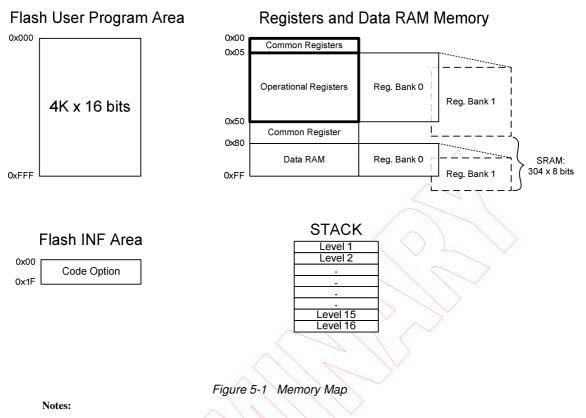
Pin control condition repeat function starting capability

	I	/O Status	Pin Control			
Pin Function	I/O Direction	Pin Change WK/Int.	Pull High	Pull Low	O.D.	
General Input	Input	S/W	S/W	S/W	S/W	
General Output	Output	Disable	S/W	S/W	S/W	
PWM	Output	Disable	S/W	S/W	S/W	
TCC	Input	Disable	S/W	S/W	S/W	
TC-IN	Input	Disable	S/W	S/W	S/W	
TC-OUT	Output	Disable	S/W	S/W	S/W	
RSTB (VPP pin)	Input	Disable		S/W	S/W	
EX_INT	Input	Disable	S/W	S/W	S/W	
I ² C-SDA	Input/Output	Disable	S/W	S/W	Enable	
I ² C-SCL	Input/Output	Disable	S/W	S/W	Enable	
SPI-SDI	Input	Disable	S/W	S/W	S/W	
SPI-SDO	Output	Disable	S/W	S/W	S/W	
SPI-SCK-IN	Input	Disable	S/W	S/W	S/W	
SPI-SCK-OUT	Output	Disable	S/W	S/W	S/W	
UART-TX	Output	Disable	S/W	S/W	S/W	
UART-RX	Input	Disable	S/W	S/W	S/W	
AD	Input	Disable	Disable	Disable	S/W	
OP/VO	Input	Disable	Disable	Disable	S/W	
CMP/IN	Input	Disable	Disable	Disable	S/W	
CMP/CO	Output	Disable	Disable	Disable	S/W	
OSCI	Input	Disable	Disable	Disable	S/W	
OSCO	Input	Disable	Disable	Disable	S/W	

Disable \rightarrow forced to shutoff

 $\mathsf{Enable} \to \mathsf{forced} \mathsf{ to open}$

 $S\!/\!W \to$ The initial value in the control register is set as "Disable".


1. For non-I/O function, the Pin Change Wake-up/Interrupt function should be disabled

2. Priority: INMODE PIN > Analog function > Digital Function > General I/O Function

5 System Overview

5.1 Memory Map

1. Flash User Program Area is protected when power down occurs, and will not be read, written and erased from the OCDS.

5.2 Block Diagram

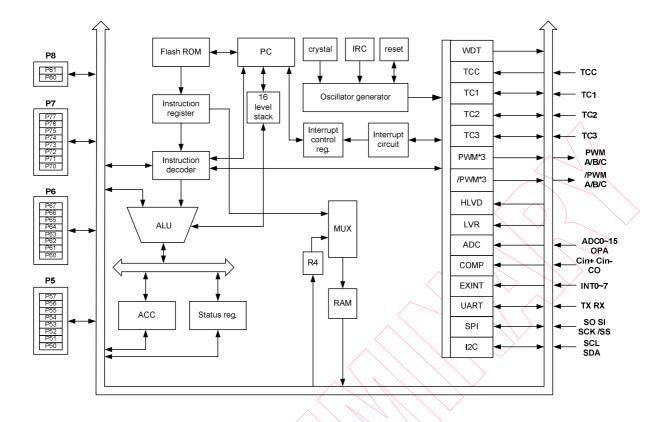


Figure 5-2 Functional Block Diagram

6 Functional Description

6.1 Operational Registers

6.1.1 R0 IAR (Indirect Addressing Register)

R0 is not a physically implemented register. Its major function is to perform as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select Register (R4).

6.1.2 R1 BSR (Bank Selection Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	Ι	-	SBS0	Ι	_		GBS0
_	Ι	Ι	R/W	Ι	-	_	R/W

Bits 7~5: Not used, set to "0" all the time.

Bit 4 (SBS0): Special register bank select bit. It is used to select Bank 0/1 of Special Registers R5~R4F.

0: Bank 0

1: Bank 1

Bits 3~1: Not used, set to "0" all the time.

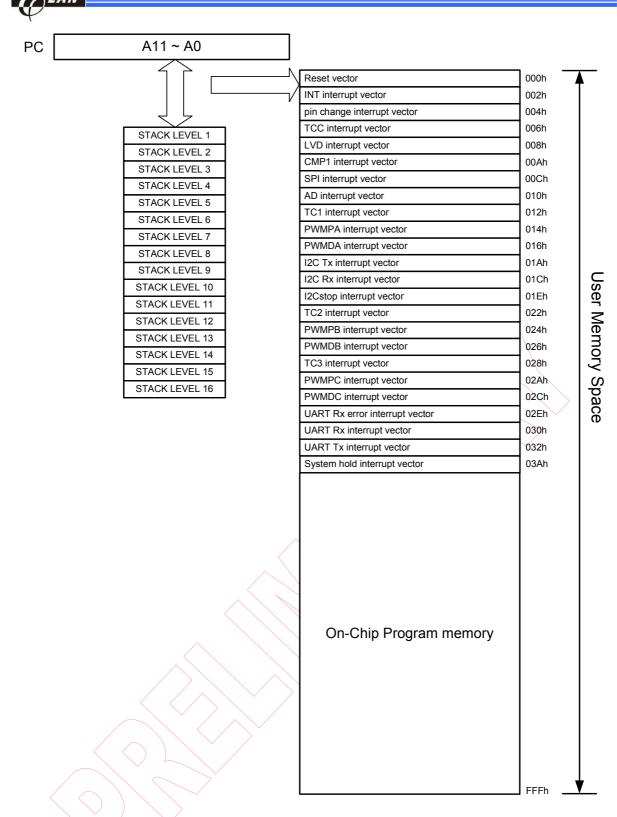
Bit 0 (GBS0): General register bank select bit. It is used to select Bank 0~15 of general registers **R80~RFF**.

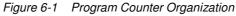
0: Bank 0

1: Bank 1

6.1.3 R2 PCL (Program Counter Low)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W							


Bits 7~0 (PC7~PC0): Low byte of program counter.


- Depending on the device type, R2 and hardware stack are 16-bit wide. The structure is depicted in Figure 3.
- Generating 4K×16 bits on-chip Flash ROM addresses to the relative programming instruction codes. One program page is 4096 words long.
- R2 is set as all "0"s when under RESET condition.
- "JMP" instruction allows direct loading of the lower 12 program counter bits. Thus, "JMP" allows PC to go to any location within a page.

- "CALL" instruction loads the lower 12 bits of the PC, and the present PC value will add 1 and is pushed into the stack. Thus, the subroutine entry address can be located anywhere within a page.
- "LJMP" instruction allows direct loading of the lower 15 program counter bits. Therefore, "LJMP" allows PC to jump to any location within 4K (2¹²).
- "LCALL" instruction loads the lower 16 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within 4K (2¹²).
- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top-level stack.
- "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.
- "MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of the PC, and the ninth and above bits of the PC won't be changed.
- Any instruction except "ADD R2,A" that is written to R2 (e.g. "MOV R2, A", "BC R2, 6",....) will cause the ninth bit and the above bits (A8~A12) of the PC not change.
- All instructions are single instruction cycle (Fsys/2) except "LCALL" and "LJMP" instructions. The "LCALL" and "LJMP" instructions need two instructions cycle.

EM88F715N 8-BIT Micro-controller

Data Memory Configuration

Address	Bank 0	Bank 1
0X00	IAR (Indirect Addressing Register)	
0X01	BSR (Bank Select Control Register)	
0X02	PC (Program Counter)	-
0X03	SR (Status Register)	
0X04	RSR (RAM Select Register)	
0X05	Port 5	IOCR8
0X06	Port 6	Unused
0X07	Port 7	Unused
0X08	Port 8	P5PHCR
0X09	Unused	P6PHCR
0X0A	Unused	P78PHCR
0x0B	IOCR5	P5PLCR
0X0C	IOCR6	P6PLCR
0X0D	IOCR7	P78PLCR
0X0E	OMCR (Operating Mode Control Reg.)	P5HDSCR
0X0F	EIESCR (External Interrupt Edge Selection Control Reg.)	P6HDSCR
0X10	WUÇR1	P78HDSCR
0X11	WUCR2	P5ODCR
0X12	WUCR3	P6ODCR
0X13	Unused	P78ODCR
0X14	SFR1 (Status Flag Reg. 1)	DeadTCR
0X15	SFR2 (Status Flag Reg. 2)	DeadTR
0X16	SFR3 (Status Flag Reg. 3)	PWMSCR
0X17	SFR4 (Status Flag Reg. 4)	PWMACR
0X18	SFR5 (Status Flag Reg. 5)	PRDAL
0X19	Unused	PRDAH
0X1A	Unused	DTAL
0X1B	IMR1 (Interrupt Mask Reg. 1)	DTAH
0X1C	IMR2 (Interrupt Mask Reg. 2)	TMRAL
0X1D	IMR3 (Interrupt Mask Reg. 3)	TMRAH
0X1E	IMR4 (Interrupt Mask Reg. 4)	PWMBCR
0X1F	IMR5 (Interrupt Mask Reg. 5)	PRDBL
0X20	Unused	PRDBH
0X21	WDTCR	DTBL

Address	Bank 0	Bank 1
0X22	TCCCR	DTBH
0X23	TCCD	TMRBL
0X24	TC1CR1	TMRBH
0X25	TC1CR2	PWMCCR
0X26	TC1DA	PRDCL
0X27	TC1DB	PRDCH
0X28	TC2CR1	DTCL
0X29	TC2CR2	DTCH
0X2A	TC2DA	TMRCL
0x2B	TC2DB	TMRCH
0X2C	TC3CR1	Unused
0X2D	TC3CR2	Unused
0X2E	TC3DA	Unused
0X2F	TC3DB	Unused
0X30	I2CCR1	Unused
0X31	I2CCR2	Unused
0X32	I2CSA	Unused
0X33	I2CDB	URCR
0X34	I2CDAL	URS
0X35	I2CDAH	URTD
0X36	SPICR	URRDL
0X37	SPIS	URRDH
0X38	SPIR	Unused
0X39	SPIW	Unused
0X3A	CMP1CR	Unused
0x3B	Unused	Unused
0X3C	Unused	Unused
0X3D	Unused	Unused
0X3E	ADCR1	Unused
0X3F	ADCR2	Unused
0X40	ADISR	Unused
0X41	ADER1	Unused
0X42	ADER2	Unused
0X43	ADDL	Unused

Address	Bank 0	Bank 1
0X44	ADDH	Unused
0X45	ADCVL	Unused
0X46	ADCVH	Unused
0X47	Unused	STKMON
0X48	Unused	PCH
0X49	Unused	HLVDCR
0X4A	Unused	COBS1
0x4B	Unused	COBS2
0X4C	Unused	COBS3
0X4D	Unused	COBS4
0X4E	Unused	COBS5
0X4F	Unused	COBS6
0X50	/	
0X51		
:	General Purp	pose Register
:		
0X7F		$\langle \rangle \rangle$
0X80		
0X81		\rangle
:		_
:	Bank 0	Bank 1
:		ŭ
0XFE		
	$ \land \land \land \lor \checkmark$	

6.1.4 R3 SR (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT	N	OV	Т	Р	Z	DC	С
F	R/W						

Bit 7 (INT): Interrupt Enable flag

0: Interrupt masked by DISI or hardware interrupt

1: Interrupt enabled by ENI/DISI instructions

Bit 6 (N): Negative flag

The negative flag stores the state of the most significant bit of the output result.

0: The result of the operation is not negative

1: The result of the operation is negative

Bit 5 (OV): Overflow flag.

OV is set when a two-complement overflow occurs as a result of an operation,

- 0: No overflow occurred
- 1: Overflow occurred

Bit 4 (T): Time-out bit.

Set to 1 with the "SLEP" and "WDTC" commands, or during power up and reset to "0" by WDT time-out.

Bit 3 (P): Power down bit.

Set to "1" during power on or by a "WDTC" command and reset to "0" by a "SLEP" command.

Bit 2 (Z): Zero flag.

Set to "1" if the result of an arithmetic or logic operation is zero.

- Bit 1 (DC): Auxiliary carry flag
- Bit 0 (C): Carry flag

6.1.5 R4 RSR (RAM Select Register)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\backslash	RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
	R/W							

Bits 7~0 (RSR7~RSR0): These bits are used to select registers (Address: 00~FF) in indirect addressing mode. For more details refer to Figure 6-2 *Data Memory Configuration*.

6.1.6 Bank 0 R5 ~ RA Port 5 ~ Port A

R5, R6, R7, R8, R9 and RA are I/O data registers.

6.1.7 Bank 0 RB~RD IOCR5 ~ IOCR7

These registers are used to control the I/O port direction. They are both readable and writable.

- 0: Put the relative I/O pin as output
- 1: Put the relative I/O pin into high impedance (input)

6.1.8 Bank 0 RE OMCR (Operating Mode Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPUS	IDLE	PERCS	IIPS	FMSF	RCM2	RCM1	RCM0
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

Bit 7 (CPUS): CPU Oscillator Source Select.

0: Fs: sub-oscillator

1: Fm: main-oscillator

When CPUS=0, the CPU oscillator selects the sub-oscillator and the main oscillator is stopped.

- Bit 6 (IDLE): Idle Mode Enable Bit. This bit will determine as to which mode to go to or be activated after SLEP instruction.
 - **0:** "IDLE=0"+SLEP instruction \rightarrow sleep mode
 - 1: "IDLE=1"+SLEP instruction \rightarrow idle mode

Bit 5 (PERCS): Periphery Clock Source for Green and Idle mode.

0: Periphery Clock Source is Fs. Fm will be Stop at Green and Idle mode (default).

1: Periphery Clock Source is Fm. Fm will be oscillation at Green and Idle mode.

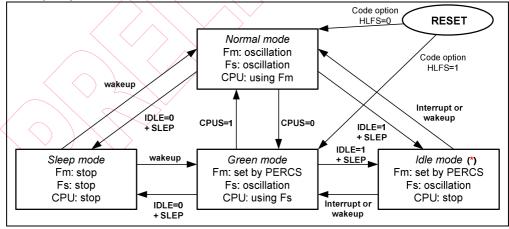


Figure 1. CPU operation mode

Note

(*) Switching Operation Mode from Idle \rightarrow Normal, Idle \rightarrow Green

If the clock source of the timer is Fs, the timer/counter will continue to count in Idle mode. When the matching condition of the timer/counter occurs during Idle mode, the interrupt flag of the timer/counter will be active. The MCU will jump to the interrupt vector when the

corresponding interrupt is enabled.

HLFS=0 (Normal)

Emoin	Four	Power-on	Pin-Reset / WDT		
Fmain	Fsub	LVR	N / G / I	S	
RC 1M, 4M , 8M, 10M	RC	16ms + WSTO + 8*1/Fmain	WSTO + 8*1/Fmain	WSTO + 8*1/Fmain	
RC 12M,16M, 20M	RC	16ms + WSTO +16*1/Fmain	WSTO + 16*1/Fmain	WSTO + 16*1/Fmain	
ХТ	RC	16ms + WSTO +510*1/Fmain	WSTO + 510*1/Fmain	WSTO + 510*1/Fmain	

HLFS=1 (Green)

Emoin	Four	Power-on	Pin-Reset / WDT		
Fmain	Fsub	LVR	N / G / I	S	
RC 1M,4M, ,8M 10M,12M, 16M,20M	RC	16ms + WSTO + 1 *1/Fsub	WSTO + 1*1/Fsub	WSTO + 1*1/Fsub	
ХТ	RC	16ms + WSTO + 1*1/Fsub	WSTO + 1*1/Fsub	WSTO + 1*1/Fsub	

Fmain	Fsub	$G \rightarrow N$	I → N	S → N
RC		$\langle / / / / / \rangle$		
1M, 4M	RC	WSTO + 8*1/Fmain	WSTO + 8*1/Fmain	WSTO + 8*1/Fmain
, 8M, 10M				
RC	RC	WSTO + 16*1/Fmain	WSTO +	WSTO +
12M,16M,20M		W310 + 16 1/Fillalli	16*1/Fmain	16*1/Fmain
хт	RC	WSTO + 510*1/Fmain	WSTO + 510*1/Fmain	WSTO + 510*1/Fmain
				o o i,i indii

Fmain	Fsub	I → G	S → G		
RC XT	RC	WSTO + 1*1/Fsub	WSTO + 1*1/Fsub		

N: Normal mode WSTO: Waiting Time from Start-to-Oscillation G: Green mode I: Idle mode S: Sleep mode

Bit 4 (IIPS): IRC Internal power switch bit. Used in mode change (when IRC PSS is set to "0").

0: Internal power supply on, high power consumption but short start-up time.

1: Internal power off, low power consumption but long start-up time.

- Bit 3 (FMSF): Fm Stable Flag bit.
 - 0: Indicates that the frequency is unstable.
 - 1: Indicates that the frequency is stabilized.

Bits 2~0 (RCM2~RCM0): Internal RC mode selection bits

RCM2	RCM1	RCM0	Frequency (MHz)
0	0	0	4 (Default)
0	0	1	1
0	1	0	8
0	1	1	10
1	0	0	12
1	0	1	16
1	1	0	20
1	1	1	

6.1.9 Bank 0 RF EIESCR (External Interrupt Edge Select Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EI76ES	EI54ES	EI32ES1	EI32ES0	EI1ES1	EI1ES0	EI0ES1	EI0ES0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7(EI76ES): External interrupt edge select bit

0: Falling edge interrupt

1: Rising edge interrupt

Bit 6(EI54ES): External interrupt edge select bit

0: Falling edge interrupt

1: Rising edge interrupt

Bit 5~0(ElxES1~0): External interrupt edge select bit

EIxE	S1	ElxES0	Interrupt Edge Select
0		0	Falling edge interrupt

0	1	Rising edge interrupt
1	×	Falling and Rising edge interrupt

6.1.10 Bank 0 R10 WUCR1 (Wake-up Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	CMPWK	HLVDWK	ADWK	INTWK1	INTWK0	-	-
-	R/W	R/W	R/W	R/W	R/W	-	_

Bit 7: Not used, set to "0" all the time

Bit 6 (CMPWK): Comparator Wake-up Enable Bit

0: Disable comparator wake-up.

1: Enable comparator wake-up.

Bit 5 (HLVDWK): High/Low Voltage Detect Wake-up Enable Bit

0: Disable High/Low Voltage Detect wake-up.

1: Enable High/Low Voltage Detect wake-up.

Bit 4 (ADWK): A/D Converter Wake-up Function Enable Bit

0: Disable AD converter wake-up

1: Enable AD converter wake-up

When the AD Complete status is used to enter an interrupt vector or to wake up the IC from sleep/idle mode with AD conversion running, the ADWK bit must be set to "Enable".

Bits 3~2 (INTWK1~0): External Interrupt (INT pin) Wake-up Function Enable Bit

- **0:** Disable external interrupt wake-up
- 1: Enable external interrupt wake-up

When the External Interrupt status changed is used to enter an interrupt vector or to wake up the IC from sleep/idle mode, the INTWK bits must be set to "Enable".

Bits 1~0: Not used, set to "0" all the time

6.1.11 Bank 0 R11 WUCR2 (Wake-up Control Register 2)

\sim				•	-			
$\overline{}$	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	$\int \mathcal{F} / \mathcal{I}$		-	-	SPIWK	I ² CWK	-	-
\checkmark	/ - \	/ -	_	Ι	R/W	R/W	Ι	_

Bits 7~4: Not used, set to "0" all the time.

Bit 3 (SPIWK): SPI wake-up enable bit. Functions when SPI works in Slave mode.

0: Disable SPI wake-up

1: Enable SPI wake-up

Bit 2 (I²CWK): I²C wake-up enable bit. It is available when I²C works in Slave mode.

0: Disable

1: Enable

Bits 1~0: Not used, set to "0" all the time

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ICWKP8	ICWKP7	ICWKP6	ICWKP5		INTWK76	INTWK54	INTWK32
R/W	R/W	R/W	R/W		R/W	R/W	R/W

Bits 7~4 (ICWKP8~5): (Port 8~5) Pin-change Wake-up Function Enable Bit

0: Disable pin change wake-up function

1: Enable pin change wake-up function

Bit 3: Not used, set to "0" all the time

Bits 2~0 (INTWK7~2): External Interrupt (INT pin) Wake-up Function Enable Bit

0: Disable external interrupt wake-up

1: Enable external interrupt wake-up

When the External Interrupt status change is used to enter an interrupt vector or to wake up the IC from sleep/idle mode, the INTWK bits must be set to "Enable".

6.1.13 Bank 0 R14 SFR1 (Status Flag Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- <	CMPSF	HLVDSF	ADSF	EXSF1	EXSF0	-	TCSF
-	F	F	F	F	F	-	F

Each corresponding status flag is set to "1" when interrupt condition is triggered.

Bit 7: Not used, set to "0" all the time.

Bit 6 (CMPSF): Comparator status flag. Set when a change occurs in the output of Comparator, reset by software.

HLVDEN	HLVDS3~0	HLVD Voltage Interrupt Level	HLVDSF
1	1111	4.7V	1*
1			1*
1			1*
1	0000	2.2V	1*

Bit 4 (ADSF): Status flag for Analog-to-Digital conversion. Set when AD conversion is completed, reset by software.

Bits 3~2 (EXSF1~0): External interrupt status flag.

Bit 1: Not used, set to "0" all the time

Bit 0 (TCSF): TCC overflow status flag. Set when TCC overflows, reset by software.

NOTE If a function is enabled, the corresponding status flag would be active whether the interrupt mask is enabled or not.

6.1.14 Bank 0 R15 SFR2 (Status Flag Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	-	UERRSF	URSF	UTSF	TC3DASF	TC2DASF	TC1DASF
-	-	F	F	F	F	F	F

Each corresponding status flag is set to "1" when interrupt condition is triggered.

Bits 7~6: Not used, set to "0" all the time

Bit 5 (UERRSF): UART receiving error Status flag. This flag is cleared by software or when UART is disabled.

Bit 4 (URSF): UART receive mode data buffer full Status flag. This flag is cleared by software.

Bit 3 (UTSF): UART transmit mode data buffer empty flag. This flag is cleared by software.

Bit 2 (TC3DASF): TC3DA matches Status flag. This flag is cleared by software.

- Bit 1 (TC2DASF): TC2DA matches Status flag. This flag is cleared by software.
- Bit 0 (TC1DASF): TC1DA matches Status flag. This flag is cleared by software.

6.1.15 Bank 0 R16 SFR3 (Status Flag Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\bigcirc		PWMCPSF	PWMCDSF	PWMBPSF	PWMBDSF	PWMAPSF	PWMADSF
$\langle \rangle$		F	F	F	F	F	F

Bits 7~6: Not used, set to "0" all the time

Bit 5 (PWMCPSF): Status flag of period-matching for PWMC (Pulse Width Modulation). Set when a selected period is reached, reset by software.

Bit 4 (PWMCDSF): Status flag of duty-matching for PWMC (Pulse Width Modulation). Set when a selected duty is reached, reset by software.

Bit 3 (PWMBPSF): Status flag of period-matching for PWMB (Pulse Width Modulation). Set when a selected period is reached, reset by software.

Bit 2 (PWMBDSF): Status flag of duty-matching for PWMB (Pulse Width Modulation). Set when a selected duty is reached, reset by software.

Bit 1 (PWMAPSF): Status flag of period-matching for PWMA (Pulse Width Modulation). Set when a selected period is reached, reset by software.

Bit 0 (PWMADSF): Status flag of duty-matching for PWMA (Pulse Width Modulation). Set when a selected duty is reached, reset by software.

NOTE If a function is enabled, the corresponding status flag would be active

whether the interrupt mask is enabled or not.

6.1.16 Bank 0 R17 SFR4 (Status Flag Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P8ICSF	P7ICSF	P6ICSF	P5ICSF	SPISF	I ² CSTPSF	I ² CRSF	I ² CTSF
F	F	F	F	F	7	F	F

Bit 7 (P8ICSF): Port 8 Status flag. This flag is cleared by software.

Bit 6 (P7ICSF): Port 7 Status flag. This flag is cleared by software.

Bit 5 (P6ICSF): Port 6 Status flag. This flag is cleared by software.

Bit 4 (P5ICSF): Port 5 Status flag. This Flag is cleared by software.

Bit 3 (SPISF): SPI mode Status flag. This flag is cleared by software.

Bit 2 (I²CSTPSF): I²C Stop Status flag. Set when I²C occurs at a stop signal.

Bit 1 (I²CRSF): I²C Receive Status flag. Set when I²C receives 1 byte data and responds with an ACK signal. Reset by firmware or when I²2C is disabled.

Bit 0 (l²CTSF): l²C Transmit Status flag. Set when l²C transmits 1 byte data and receives handshake signal (ACK or NACK). Reset by firmware or when l²C is disabled

NOTE If a function is enabled, the corresponding Status flag would be active whether the interrupt mask is enabled or not.

6.1.17 Bank 0 R18 SFR5 (Status Flag Register 5)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		EXSF7	EXSF6	EXSF5	EXSF4	EXSF3	EXSF2

	F	F	F	F	F	F
						1

Each corresponding Status flag is set to "1" when interrupt condition is triggered.

Bits 7~6: Not used, set to "0" all the time

Bits 5~0 (EXSF7~2): External interrupt status flag.

NOTE If a function is enabled, the corresponding status flag would be active regardless whether the interrupt mask is enabled or not.

6.1.18 Bank 0 R19 SFR6 (Status Flag Register 6)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SHSF					TC3DBSF	TC2DBSF	TC1DBSF
F					F	Ă	F

Each corresponding status flag is set to "1" when interrupt condition is triggered.

Bit 7 (SHSF): System hold status flag. Set when system hold occur, reset by software.

Bits 6~3: Not used, set to "0" all the time

Bit 2 (TC3DBSF): TC3DB matches status flag, cleared by software

Bit 1 (TC2DBSF): TC2DB matches status flag, cleared by software.

Bit 0 (TC1DBSF): TC1DB matches status flag, cleared by software.

NOTE	
If a function is enabled, the corresponding status flag would be active regardless	
whether the interrupt mask is enabled or not.	

6.1.19 Bank 0 R1B IMR1 (Interrupt Mask Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	CMPIE	HLVDIE	ADIE	EXIE1	EXIE0		TCIE
-	R/W	R/W	R/W	R/W	R/W		R/W

Bits 7~6: Not used, set to "0" all the time.

Bit 6 (CMPIE): CMPSF interrupt enable bit.

0: Disable CMPSF interrupt

1: Enable CMPSF interrupt

When Comparator output status changes is used to enter interrupt vector, the CMPIE bit must be set to "Enable".

Bit 5 (HLVDIE): HLVDSF interrupt enable bit.

- 0: Disable HLVDSF interrupt
- 1: Enable HLVDSF interrupt
- Bit 4 (ADIE): ADSF interrupt enable bit.
 - 0: Disable ADSF interrupt
 - 1: Enable ADSF interrupt
- Bit 3 (EXIE1): EXSF1 interrupt enable bit and /INT1 function enable bit.
 - 0: Disable EXSF1 interrupt
 - 1: Enable EXSF1 interrupt
- Bit 2 (EXIE0): EXSF0 interrupt enable bit and /INT1 function enable bit.
 - 0: Disable EXSF0 interrupt
 - 1: Enable EXSF0 interrupt
- Bit 1: Not used, set to "0" all the time
- Bit 0 (TCIE): TCSF interrupt enable bit.
 - 0: Disable TCSF interrupt
 - 1: Enable TCSF interrupt

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter would jump into the corresponding interrupt vector when the corresponding status flag is set.

6.1.20 Bank 0 R1C IMR2 (Interrupt Mask Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
$\langle \langle \rangle$	/ /- /	UÉRRIE	URIE	UTIE	TC3IE	TC2IE	TC1IE
	/ - //	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~6: Not used, set to "0" all the time.

Bit 5 (UERRIE): UART receive error interrupt enable bit.

- 0: Disable UERRSF interrupt
- 1: Enable UERRSF interrupt
- Bit 4 (URIE): UART receive mode Interrupt enable bit.
 - 0: Disable URSF interrupt
 - 1: Enable URSF interrupt

Bit 3 (UTIE): UART transmit mode interrupt enable bit.

0: Disable UTSF interrupt

1: Enable UTSF interrupt

Bit 2 (TC3IE): Interrupt enable bit.

0: Disable TC3DASF and TC3DBSF interrupt

- 1: Enable TC3DASF and TC3DBSF interrupt
- Bit 1 (TC2IE): Interrupt enable bit.

0: Disable TC2DASF and TC2DBSF interrupt

1: Enable TC2DASF and TC2DBSF interrupt

Bit 0 (TC1IE): Interrupt enable bit.

0: Disable TC1DASF and TC1DBSF interrupt

1: Enable TC1DASF and TC1DBSF interrupt

NOTE	
If the interrupt mask and instruction "ENI" are enabled, the program counter would jump to the corresponding interrupt vector when the corresponding status flag is set	
jump to the corresponding interrupt vector when the corresponding status flag is set.	

6.1.21 Bank 0 R1D IMR3 (Interrupt Mask Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		PWMCPIE	PWMCDIE	PWMBPIE	RWMBDIE	PWMAPIE	PWMADIE
		R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~6: Not used, set to "0" all the time

Bit 5 (PWMCPIE): PWMCPSF interrupt enable bit.

0: Disable period-matching of PWMC interrupt

1: Enable period-matching of PWMC interrupt

Bit 4 (PWMCDIE): PWMCDSF interrupt enable bit.

- 0: Disable duty-matching of PWMC interrupt
- 1: Enable duty-matching of PWMC interrupt

Bit 3 (PWMBPIE): PWMBPSF interrupt enable bit.

0: Disable period-matching of PWMB interrupt

1. Enable period-matching of PWMB interrupt

Bit 2 (PWMBDIE): PWMBDSF interrupt enable bit.

0: Disable duty-matching of PWMB interrupt

1: Enable duty-matching of PWMB interrupt

Bit 1 (PWMAPIE): PWMAPSF interrupt enable bit.

0: Disable period-matching of PWMA interrupt

1: Enable period-matching of PWMA interrupt

Bit 0 (PWMADIE): PWMADSF interrupt enable bit.

- 0: Disable duty-matching of PWMA interrupt
- 1: Enable duty-matching of PWMA interrupt

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter would jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.22 Bank 0 R1E IMR4 (Interrupt Mask Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P8ICIE	P7ICIE	P6ICIE	P5ICIE	SPIIE	I²CSTPIE	I ² CRIE	I ² CTIE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~4 (P8ICIE ~P5ICIE): Ports 8~5 pin-change interrupt enable bit.

0: Disable P8ICSF ~ P5ICSF interrupt

1: Enable P8ICSF ~ P5ICSF interrupt

Bit 3 (SPIIE): Interrupt enable bit.

0: Disable SPISF interrupt

1: Enable SPISF interrupt

Bit 2 (I²CSTPIE): I²C stop interrupt enable bit.

0: Disable interrupt

1: Enable interrupt

Bit 1 (I²CRIE): I²C Interface Rx interrupt enable bit.

0: Disable interrupt

1: Enable interrupt

Bit 0 (I²CTIE): I²C Interface Tx interrupt enable bit.

0: Disable interrupt

1: Enable interrupt

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter would jump to the corresponding interrupt vector when the corresponding status flag is set.

6.1.23 Bank 0 R1F IMR5 (Interrupt Mask Register 5)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		EXIE7	EXIE6	EXIE5	EXIE4	EXIE3	EXIE2
		R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~6: Not used, set to "0" all the time.

Bits 5~0 (EXIE7~2): EXSF7~2 interrupt enable bit.

0: Disable EXSF7~2 interrupt

1: Enable EXSF7~	2 interrupt
------------------	-------------

INT Pin	Enable Condition	Edge	Digital Noise Reject
INTX	EXIEX	Rising or Falling	8/Fc or 32/Fc

Ν	2	_	-
N	U		-
	-		_

- 1. The compound pin used as INT pin determines whether the interrupt mask is enabled or not.
- 2. If the interrupt mask and instruction "ENI" are enabled, the program counter would jump to the corresponding interrupt vector when the corresponding Status flag is set.

6.1.24 Bank 0 R20 IMR6 (Interrupt Mask Register 6

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SHIE				$\langle \ \rangle$	$\langle \rangle$ \langle	\searrow	
R/W							

Bit 7 (SHIE): SHSF Interrupt Enable Bit.

0: Disable SHSF interrupt

1: Enable SHSF interrupt

Bits 6~0: Not used, set to "0" all the time.

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter would jump to the corresponding interrupt vector when the corresponding status flag is set.

6.1.25 Bank 0 R21 WDTCR (Watchdog Timer Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	FSSF	-	_	PSWE	WPSR2	WPSR1	WPSR0
R/W	R		-	R/W	R/W	R/W	R/W

Bit 7 (WDTE): Watchdog Timer Enable Bit. WDTE is both readable and writable.

0: Disable WDT

1: Enable WDT

Bit 6 (FSSF): Fs Stable Flag bit.

0: Indicates that the frequency is unstable.

1: Indicates that the frequency has stabilized.

Bits 5~4: Not used, set to "0" all the time.

Bit 3 (PSWE): Prescaler enable bit for WDT.

0: Prescaler disable bit. WDT rate is 1:1

1: Prescaler enable bit. WDT rate is set at Bits 2~0.

Bits 2~0 (WPSR2~ WPSR 0): WDT Prescaler Bits

WPSR1	WPSR0	WDT Rate
0	0	1:2
0	1	1:4
1	0	1:8
1	1	1:16
0	0	1:32
0	1	1:64
1	0 <	1:128
1	1	1:256
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1

6.1.26 Bank 0 R22 TCCCR (TCC Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	TCCS	TS	TĘ	PSTE	TPSR2	TPSR1	TPSR0
_	R/W						

Bit 7: Not used, set to "0" all the time.

Bit 6 (TCCS): TCC Clock Source Select Bit

0: Fs (sub clock) (default)

1: Fm (main clock)

Bit 5 (TS): TCC Signal Source

0: Internal oscillator cycle clock. If P77 is used as I/O pin, TS must be 0.

1: Transition on the TCC pin, TCC period must be larger than internal instruction clock period.

Bit 4 (TE): TCC Signal Edge

0: Increment if the transition from low to high takes place on the TCC pin

1: Increment if the transition from high to low takes place on the TCC pin

Bit 3 (PSTE): Prescaler enable bit for TCC

0: Prescaler disable bit. The TCC rate is 1:1.

1: Prescaler enable bit. The TCC rate is set at Bit 2 ~ Bit 0.

Bits 2~0 (TPSR2~TPSR0): TCC Prescaler Bits

TPSR2	TPSR1	TPSR0	TCC Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.27 Bank 0 R23 TCCD (TCC Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
R/W	R/W	R/W	R/W	R/W	R/W	RAW	R/W

Bits 7~0 (TCC7~TCC0): TCC data

It is incremented by an external signal edge through the TCC pin or by the instruction cycle clock. The external signal of the TCC trigger pulse width must be greater than one instruction. The signals to increment the counter are determined by Bit 4 and Bit 5 of the TCCCR register. Writable and readable as any other registers. Whenever overflow is happened, the TCC circuit will continue to count signal edge from 0 repeatedly.

6.1.28 Bank 0 R24 TC1CR1 (Timer/Counter 1 Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1S	TC1RC	TC1SS1	TC1MOD	TC1FF	TC10MS	TC1IS1	TC1IS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (TC1S): Timer/Counter 1 start control (main switch for all modes)

0: Stop and clear the counter (default)

1: Start Timer/Counter 1

Bit 6 (TC1RC): Timer 1 Read Control Bit

- **0:** When this bit is set to "0", data from TC1DB cannot be read (default).
- 1: When this bit is set to "1", data is read from TC1DB. The read data is the enumerated counting number.

- Bit 5 (TC1SS1): Timer/Counter 1 clock source select Bit 1
 - 0: Select internal clock as counting source (Fc) Fs/Fm (default)
 - 1: Select external TC1 pin as counting source (Fc). It is used only for timer/counter mode.
- Bit 4 (TC1MOD): Timer Operation Mode Select Bit
 - 0: Two 8-bit timers
 - 1: Timers 1 and 2 are cascaded as one 16-bit timer. The corresponding control register of the 16-bit timer is from Timer 1. TC1DA and TC1DB are low byte. TC2DA and TC2DB are high byte.
- Bit 3 (TC1FF): Inversion for Timer/Counter 1 as PWM or PDO mode
 - 0: Duty is Logic 1 (default)
 - 1: Duty is Logic 0
- Bit 2 (TC1OMS): Timer Output Mode Select Bit
 - 0: Repeating mode (default)
 - 1: One-shot mode

NOTE

One-shot mode means the timer only counts a cycle.

Bits 1~0 (TC1IS1~ TC1IS0): Timer 1 Interrupt Type Select Bits. These two bits are used when the Timer operates in Capture and PWM mode.

TC1IS1	TC1IS0	Timer 1 Interrupt Type Select
0	0	TC1DA (period) matching
0	1	TC1DB (duty) matching
1	×	TC1DA and TC1DB matching

6.1.29 Bank 0 R25 TC1CR2 (Timer/Counter 1 Control Register 2)

	-						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1M2	TC1M1	TC1M0	TC1SS0	TC1CK3	TC1CK2	TC1CK1	TC1CK0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~5 (TC1M2~TC1M0): Timer/Counter 1 operation mode select bit.

TC1M2	TC1M1	TC1M0	Operating Mode Select
0	0	0	Timer/Counter Rising Edge
0	0	1	Timer/Counter Falling Edge
0	1	0	Capture Mode Rising Edge
0	1	1	Capture Mode Falling Edge
1	0	0	Window mode

1	0	1 Programmable Divider output	
1	1	0	Pulse Width Modulation output
1	1	1	Buzzer (output timer/counter clock source. The duty cycle of the clock source must be 50/50)

Bit 4 (TC1SS0): Timer/Counter 1 clock source select bit.

0: Fs is used as counting source (Fc) (default)

1: Fm is used as counting source (Fc)

Bits 3~0 (TC1CK3~TC1CK0): Timer/Counter 1 clock source prescaler select.

		-		-				
тсзскз	TC3CK2	TC3CK1	тсзско	Clock Source	Resolution 8 MHz	Max. Time 8 MHz	Resolution 16kHz	Max. Time 16kHz
				Normal	F _c =8M	F _c =8M	F _c =16K	F _c =16K
0	0	0	0	Fc	125ns	32 µs	62.5 µs	16ms
0	0	0	1	F _C /2	250ns	64 µs	125 µs	32ms
0	0	1	0	$F_{C}/2^{2}$	500ns	128 µs	250 µs	64ms
0	0	1	1	$F_{C}/2^{3}$	1 µs	256 µs	500 µs	128ms
0	1	0	0	$F_{C}/2^{4}$	2 µs	512 µs	1ms	256ms
0	1	0	1	$F_{C}/2^{5}$	4 µs	1024 µs	2ms	512ms
0	1	1	0	$F_C/2^6$	8 µs	2048 µs	4ms	1024ms
0	1	1	1	$F_{C}/2^{7}$	16 µs	4096 µs	8ms	2048ms
1	0	0	0	$F_{C}/2^{8}$	32 µs	8192 µs	16ms	4096ms
1	0	0	1	F _C /2 ⁹	64 µs	16384 µs	32ms	8192ms
1	0	1	0	F _c /2 ¹⁰	128 µs	32768 µs	64ms	16384ms
1	0	1	1	F _C /2 ¹¹	256 µs	65536 µs	128ms	32768ms
1	1	0	0	Fc/2 ¹²	512 µs	131072 µs	256ms	65536ms
1	1	0	1	F _C /2 ¹³	1.024ms	262144 µs	512ms	131072ms
1	1	1	0	Fc/2 ¹⁴	2.048ms	524.288ms	1.024s	262144ms
1	1	1	1	F _C /2 ¹⁵	4.096ms	1.048s	2.048s	524288ms

6.1.30 Bank 0 R26 TC1DA (Timer/Counter 1 Data Buffer A)

_	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
$\overline{\ }$	TC1DA7	TC1DA6	TC1DA5	TC1DA4	TC1DA3	TC1DA2	TC1DA1	TC1DA0
	R/W							

Bits 7~0 (TC1DA7~0): Data Buffer A of 8-bit Timer/Counter 1

6.1.31 Bank 0 R27 TC1DB (Timer/Counter 1 Data Buffer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1DB7	TC1DB6	TC1DB5	TC1DB4	TC1DB3	TC1DB2	TC1DB1	TC1DB0

25301							CALA	
							ψ	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bits 7~0 (TC1DB7~0): Data Buffer B of 8-bit Timer/Counter 1

	NOTE
1.	When Timer / Counter x is used in PWM mode, the duty value stored at register TCxDB must be smaller than or equal to the period value stored at register TCxDA, i.e., duty \leq period. Then the PWM waveform is generated. If the duty is larger than the period, the PWM output waveform is kept at a high voltage level.
2.	The period value set by users is extra plus 1 in inner circuit. For example:
	nen the period value is set as 0x4F, the PWM waveform will actually generate 0x50 riod length.
	nen the period value is set as 0xFF, the PWM waveform will actually generate 100 period length.

6.1.32 Bank 0 R28 TC2CR1 (Timer/Counter 2 Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2S	TC2RC	TC2SS1	-	TC2FF	TC2OMS	TC2IS1	TC2IS0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W

Bit 7 (TC2S): Timer/Counter 2 start control (main switch for all modes)

0: Stop and clear the counter (default)

1: Start Timer/Counter 2

- Bit 6 (TC2RC): Timer 2 Read Control Bit
 - 0: When this bit is set to "0", data from TC2DB cannot be read (default).
 - 1: When this bit is set to "1", data is read from TC2DB. The read data is the enumerated counting number.
- Bit 5 (TC2SS1): Timer/Counter 2 clock source select Bit 1
 - **0**: Internal clock as counting source (Fc) Fs/Fm (default)
 - **1:** External TC2 pin as counting source (Fc). It is used only for timer/counter mode.

Bit 4: Not used, set to "0" all the time.

Bit 3 (TC2FF): Inversion for Timer/Counter 2 as PWM or PDO mode

0: Duty is Logic 1 (default).

- 1: Duty is Logic 0.
- Bit 2 (TC2OMS): Timer Output Mode Select Bit

0: Repeating mode (default)

1: One-shot mode

NOTE

One-shot mode means the timer only counts a cycle.

Bits 1~0 (TC2IS1~ TC2IS0): Timer 2 Interrupt Type Select Bits. These two bits are used when the Timer operates in Capture and PWM mode.

TC2IS1	TC2IS0	Timer 2 Interrupt Type Select
0	0	TC2DA (period) matching
0	1	TC2DB (duty) matching
1	×	TC2DA and TC2DB matching

6.1.33 Bank 0 R29 TC2CR2 (Timer/Counter 2 Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2M2	TC2M1	TC2M0	TC2SS0	TC2CK3	TC2CK2	TC2CK1	TC2CK0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~5 (TC2M2~TC2M0): Timer/Counter 2 operation mode select

TC2M2	TC2M1	TC2M0	Operating Mode Select
0	0	0	Timer/Counter Rising Edge
0	0	1	Timer/Counter Falling Edge
0	1	0	Capture Mode Rising Edge
0	1	1	Capture Mode Falling Edge
1	0	0	Window mode
1	0	1	Programmable Divider output
1	1	0	Pulse Width Modulation output
1	1	1	Buzzer(output timer/counter clock source. The duty cycle of the clock source must be 50/50)

Bit 4 (TC2SS0): Timer/Counter 2 Clock Source Select Bit 0

- 0: Fs is used as counting source (Fc) (default)
- 1: Fm is used as counting source (Fc)

Bits 3~0 (TC2CK3~TC2CK0): Timer/Counter 2 Clock Source Prescaler Select.

TC2CK3	TC2CK2	TC2CK1	TC2CK0	Clock Source	Resolution 8 MHz	Max. Time 8 MHz	Resolution 16kHz	Max. Time 16kHz
				Normal	F _c =8M	F _c =8M	F _c =16K	F _c =16K
0	◯ 0)	0	0	Fc	125ns	32 µs	62.5 µs	16ms
0	0	0	1	F _C /2	250ns	64 µs	125 µs	32ms
0	0	1	0	$F_{\rm C}/2^2$	500ns	128 µs	250 µs	64ms
0	0	1	1	$F_{C}/2^{3}$	1 µs	256 µs	500 µs	128ms
0	1	0	0	$F_{C}/2^{4}$	2 µs	512 µs	1ms	256ms
0	1	0	1	$F_{C}/2^{5}$	4 µs	1024 µs	2ms	512ms

0	1	1	0	$F_{C}/2^{6}$	8 µs	2048 µs	4ms	1024ms
0	1	1	1	$F_{C}/2^{7}$	16 µs	4096 µs	8ms	2048ms
1	0	0	0	$F_{C}/2^{8}$	32 µs	8192 µs	16ms	4096ms
1	0	0	1	$F_C/2^9$	64 µs	16384 µs	32ms	8192ms
1	0	1	0	$F_{C}/2^{10}$	128 µs	32768 µs	64ms	16384ms
1	0	1	1	$F_{C}/2^{11}$	256 µs	65536 µs	128ms	32768ms
1	1	0	0	$F_{C}/2^{12}$	512 µs	131072 µs	256ms	65536ms
1	1	0	1	$F_{C}/2^{13}$	1.024ms	262144 µs	512ms	131072ms
1	1	1	0	$F_{C}/2^{14}$	2.048ms	524.288ms	1.024s	262144ms
1	1	1	1	$F_{C}/2^{15}$	4.096ms	1.048s	2.048s	524288ms

6.1.34 Bank 0 R2A TC2DA (Timer/Counter 2 Data Buffer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2DA7	TC2DA6	TC2DA5	TC2DA4	TC2DA3	TC2DA2	TC2DA1	TC2DA0
R/W							

Bits 7~0 (TC2DA7~ TC2DA0): Data Buffer A of 8-bit Timer/Counter 2

6.1.35 Bank 0 R2B TC2DB (Timer/Counter 2 Data Buffer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2DB7	TC2DB6	TC2DB5	TC2DB4	TC2DB3	TC2DB2	TC2DB1	TC2DB0
R/W							

Bits 7~0 (TC2DB7~ TC2DB0): Data Buffer B of 8-bit Timer/Counter 2

6.1.36 Bank 0 R2C TC3CR1 (Timer/Counter 3 Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3S	TC3RC	TC3SS1		TC3FF	TC3OMS	TC3IS1	TC3IS0
R/W	R/W	R/W	<u> </u>	R/W	R/W	R/W	R/W

Bit 7 (TC3S): Timer/Counter 3 start control (main switch for all modes)

0: Stop and clear the counter (default)

1: Start Timer/Counter 3

Bit 6 (TC3RC): Timer 3 Read Control Bit

- 0: When this bit is set to "0", data from TC3DB cannot be read (default).
- 1: When this bit is set to "1", data is read from TC3DB. The read data is the enumerated counting number.
- Bit 5 (TC3SS1): Timer/Counter 3 Clock Source Select Bit 1
 - 0: Internal clock as counting source (Fc) Fs/Fm (default)
 - **1:** External TC3 pin as counting source (Fc). It is used only for timer/counter mode.

Bit 4: Not used, set to "0" all the time.

Bit 3 (TC3FF): Inversion for Timer/Counter 3 as PWM or PDO mode.

0: Duty is Logic 1 (default).

1: Duty is Logic 0.

Bit 2 (TC3OMS): Timer Output Mode Select Bit

0: Repeating mode (default)

1: One-shot mode

NOTE	
One-shot mode means the timer only counts a cycle.	

Bits 1~0 (TC3IS1~ TC3IS0): Timer 3 Interrupt Type Select Bits. These two bits are used when the Timer operates in Capture and PWM mode.

TC3IS1	TC3IS0	Timer 3 Interrupt Type Select					
0	0	TC3DA (period) matching					
0	1	TC3DB (duty) matching					
1	×	TC3DA and TC3DB matching					

6.1.37 Bank 0 R2D TC3CR2 (Timer/Counter 3 Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3M2	TC3M1	TC3M0	TC3SS0	TC3CK3	TC3CK2	TC3CK1	TC3CK0
R/W	R/W	R/W	R/W <	R/W	R/W	R/W	R/W

Bits 7~5 (TC3M2~TC3M0): Timer/Counter 3 operation mode select.

TC3M2	TC3M1	TC3M0	Operating Mode Select
0	0	0	Timer/Counter Rising Edge
0	0	1	Timer/Counter Falling Edge
0	1	0	Capture Mode Rising Edge
0	1		Capture Mode Falling Edge
1	0	0	Window mode
1	0	1	Programmable Divider output
1		0	Pulse Width Modulation output
			Buzzer (output timer/counter clock source. The duty cycle of the clock source must be 50/50)

Bit 4 (TC3SS0): Timer/Counter 3 Clock Source Select Bit 0

0: Fs is used as counting source (Fc) (default)

1: Fm is used as counting source (Fc)

Bits 3~0 (TC3CK3~TC3CK0): Timer/Counter 3 clock source prescaler select.

тсзскз тсзск2	TC3CK2	TC3CK1	тсзско		Resolution 8 MHz	Max. Time 8 MHz	Resolution 16kHz	Max. Time 16kHz
				Normal	Fc=8M	Fc=8M	Fc=16K	F _c =16K
0	0	0	0	Fc	125ns	32 µs	62.5 µs	16ms
0	0	0	1	F _C /2	250ns	64 µs	125 µs	32ms

0	0	1	0	$F_{\rm C}/2^2$	500ns	128 µs	250 µs	64ms
0	0	1	1	$F_{\rm C}/2^3$	1 µs	256 µs	500 µs	128ms
0	1	0	0	$F_{\rm C}/2^4$	2 µs	512 µs	1ms	256ms
0	1	0	1	$F_{\rm C}/2^5$	4 µs	1024 µs	2ms	512ms
0	1	1	0	F _C /2 ⁶	8 µs	2048 µs	4ms	1024ms
0	1	1	1	$F_{\rm C}/2^7$	16 µs	4096 µs	8ms	2048ms
1	0	0	0	F _C /2 ⁸	32 µs	8192 µs	16ms	4096ms
1	0	0	1	$F_{\rm C}/2^9$	64 µs	16384 µs	32ms	8192ms
1	0	1	0	F _C /2 ¹⁰	128 µs	32768 µs	64ms	16384ms
1	0	1	1	$F_{C}/2^{11}$	256 µs	65536 µs	128ms	32768ms
1	1	0	0	$F_{C}/2^{12}$	512 µs	131072 µs	256ms	65536ms
1	1	0	1	F _C /2 ¹³	1.024ms	262144 µs	512mş	131072ms
1	1	1	0	$F_{C}/2^{14}$	2.048ms	524.288ms	1.024s	262144ms
1	1	1	1	$F_{C}/2^{15}$	4.096ms	1.048s	2.048s	524288ms

6.1.38 Bank 0 R2E TC3DA (Timer/Counter 3 Data Buffer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3DA7	TC3DA6	TC3DA5	TC3DA4	TC3DA3	TC3DA2	TC3DA1	TC3DA0
R/W							

Bits 7~0 (TC3DA7~ TC3DA0): Data Buffer A of 8-bit Timer/Counter 3

6.1.39 Bank 0 R2F TC3DB (Timer/Counter 3 Data Buffer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3DB7	TC3DB6	TC3DB5	TC3DB4	TC3DB3	TC3DB2	TC3DB1	TC3DB0
R/W							

Bits 7~0 (TC3DB7~ TC3DB0): Data Buffer B of 8-bit Timer/Counter 3

6.1.40 Bank 0 R30 PCCR1 (PC Status and Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Strobe/Pend	IMS	ISS	STOP	SAR_EMPTY	ACK	FULL	EMPTY
R/W	R/W	R/W	R/W	R	R	R	R

Bit 7 (Strobe/Pend): In Master mode, it is used as strobe signal to control the I²C circuit from sending SCL clock. Automatically resets after receiving or transmitting a handshake signal (ACK or NACK).

In Slave mode, it is used as pending signal. User should clear it after writing data into the Tx buffer or retrieving data from the Rx buffer to inform the Slave I^2C circuit to release a SCL signal.

- Bit 6 (IMS): I²C Master/Slave mode select bit.
 - 0: Slave
 - 1: Master

Bit 5 (ISS): I²C Fast/Standard mode select bit. (If Fm is 4 MHz and I²CTS1~0<0,0>)

- 0: Standard mode (100kbit/s)
- 1: Fast mode (400kbit/s)
- **Bit 4 (STOP):** In Master mode, if STOP=1 and R/nW=1 then the MCU must return a nACK signal to the Slave device before sending a STOP signal. If STOP=1 and R/nW=0 then the MCU sends a STOP signal after receiving an ACK signal. Reset when the MCU sends a STOP signal to the Slave device.

In Slave mode, if STOP=1 and R/nW=0 then the MCU must return a nACK signal to the Master device.

- **Bit 3 (SAR_EMPTY):** Set when the MCU transmits a "1" byte data from the I²C Slave Address Register and receives an ACK (or nACK) signal. Reset when the MCU writes a "1" byte data to the I²C Slave Address Register.
- **Bit 2 (ACK):** The ACK condition bit is set to "1" by hardware when the device responds with an "acknowledge" (ACK) signal. Reset when the device responds with a "not-acknowledge" (nACK) signal.
- Bit 1 (FULL): Set by hardware when the I²C Receive Buffer Register is full. Reset by hardware when the MCU reads data from the I²C Receive Buffer Register.
- **Bit 0 (EMPTY):** Set by hardware when I²C Transmit Buffer Register is empty and receives ACK (or nACK) signal. Reset by hardware when the MCU writes new data to I²C Transmit Buffer Register.

6.1.41 Bank 0 R31 LCCR2 (LC Status and Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I ² CBF	GCEN		BBF	I ² CTS2	I ² CTS1	I ² CTS0	I ² CEN
R	R/W	$\overline{ - }$	R	R/W	R/W	R/W	R/W

Bit 7 (I²CBF): I²C Busy Flag Bit

- **0:** Clear to "0" in Slave mode, if the received STOP signal or the I²C Slave address does not match.
- 1: Set when I²C communicates with Master in Slave mode.

Bit 6 (GCEN): I²C General Call Function Enable Bit

- 0: Disable General Call Function
- 1: Enable General Call Function

Bit 5: Not used, set to "0" all the time.

Bit 4 (BBF): Busy Flag Bit. I²C detection is busy in the Master mode. Read only.

Bits 3~1 (I2CTS2~I2CTS0): I²C Transmit Clock Select Bits. When using different operating frequency (Fm), these bits must be set correctly in order for the SCL clock to fill in with Standard/Fast mode.

I2CCR1 Bit 5 = 1, Fast Mode

I2CTS2	I2CTS1	I2CTS0	SCL CLK	Operating Fm (MHz)
0	0	0	NA	NA
0	0	1	Fm/10	4
0	1	0	Fm/15	6
0	1	1	Fm/20	8
1	0	0	Fm/30	12
1	0	1	Fm/40	16
1	1	0	Fm/50	20
1	1	1	NA	NA

I2CCR1 Bit 5 = 0, Standard Mode

I2CTS2	I2CTS1	I2CTS0	SCL CLK	Operating Fm (MHz)
0	0	0	Fm/10	
0	0	1	Fm/40	4
0	1	0	Fm/60	6
0	1	1	Fm/80	8
1	0	0	Fm/120	12
1	0	1	Fm/160	16
1	1	0	Fm/200	20
1	1	1	NA	NA

Bit 0 (I²CEN): I²C Enable Bit

0: Disable I²C mode

1: Enable I²C mode

6.1.42 Bank 0 R32 ²CSA (²C Slave Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
R/W							

Bits 7~1 (SA6~SA0): When the MCU is used as Master device for I²C application, these bits are the Slave device address register.

Bit 0 (IRW): When the MCU is used as Master device for I²C application, this bit is a Read/Write transaction control bit.

0: Write

1: Read

6.1.43 Bank 0 R33 l²CDB (l²C Data Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R/W							

Product Specification (V0.7) 05.19.2017

Bits 7~0 (DB7~DB0): I²C Receive/Transmit Data Buffer.

6.1.44 Bank 0 R34 f²CDAL (f²C Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
R/W							

Bits 7~0 (DA7~DA0): When the MCU is used as Slave device for I²C application, this register stores the address of the MCU. It is used to identify the data on the I²C bus to extract the message delivered to the MCU.

6.1.45 Bank 0 R35 LCDAH (LC Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	DA9	DA8
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used, set to "0" all the time.

Bits 1~0 (DA9~DA8): Device Address bits.

6.1.46 Bank 0 R36 SPICR (SPI Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
R/W							

Bit 7 (CES): Clock Edge Select Bit

- **0:** Data shifts out on a rising edge, and shifts in on a falling edge. Data is on hold during a low-level.
- **1:** Data shifts out on a falling edge, and shift in on a rising edge. Data is on hold during a high-level.

Bit 6 (SPIE): SPI Enable Bit

- 0: Disable SPI mode
- 1: Enable SPI mode

Bit 5 (SRO): SPI Read Overflow Bit

- 0: No overflow
- 1: A new data is received while the previous data is still being held in the SPIR register. In this situation, the data in the SPIS register will be destroyed. To avoid setting this bit, user is required to read the SPIR register although only transmission is implemented. This can only occur in Slave mode.

Bit 4 (SSE): SPI Shift Enable Bit

0: Reset as soon as shifting is completed, and the next byte is ready to be shifted.

1: Start to shift, and remain on "1" while the current byte is still being transmitted.

Bit 3 (SDOC): SDO Output Status Control Bit

0: After the serial data output, the SDO remains high.

1: After the serial data output, the SDO remains low.

Bits 2~0 (SBRS2~SBRS0): SPI Baud Rate Select Bits

SBRS2	SBRS1	SBRS0	Mode	SPI Baud Rate
0	0	0	Master	Fosc/2
0	0	1	Master	Fosc/4
0	1	0	Master	Fosc/8
0	1	1	Master	Fosc/16
1	0	0	Master	Fosc/32
1	0	1	Master	Fosc/64
1	1	0	Slave	/SS enable
1	1	1	Slave	/SS disable

6.1.47 Bank 0 R37 SPIS (SPI Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DORD	TD1	TD0	-	OD3	OD4	<u> </u>	RBF
R/W	R/W	R/W	- <	R/W	R/W	-	R

Bit 7 (DORD): Data Shift of Type Control Bit

0: Shift left (MSB first)

1: Shift right (LSB first)

Bits 6~5 (TD1~TD0): SDO Status Output Delay Times Options. When CPU oscillator source use Fs from 1 CLK delay time.

	\sim	\sim \sim $/$	
	TD1	TD0	Delay Time
	0	0	8 CLK
(\bigcirc)	0	1	16 CLK
\setminus \checkmark	/ 1	0	24 CLK
	1	1	32 CLK

Bit 4: Not used, set to "0" all the time.

Bit 3 (OD3): Open drain control bit

0: Open drain disable for SDO

1: Open drain enable for SDO

- Bit 2 (OD4): Open drain control bit
 - 0: Open drain disable for SCK
 - 1: Open drain enable for SCK

Bit 1: Not used, set to "0" all the time.

Bit 0 (RBF): Read Buffer Full Flag

0: Receiving not completed, and SPIR has not fully exchanged.

1: Receiving completed, and SPIR is fully exchanged.

6.1.48 Bank 0 R38 SPIR (SPI Read Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
R	R	R	R	R	R	R	R

Bits 7~0 (SRB7~SRB0): SPI Read Data Buffer

6.1.49 Bank 0 R39 SPIW (SPI Write Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
R/W							

Bits 7~0 (SWB7~SWB0): SPI Write Data Buffer

6.1.50 Bank 0 R3A CMPCR1 (Comparator Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRS	CPOUT	CS1	CS0	$\land \land$	CC+S1	CC+S0	SDPWMA
R/W	R	R/W	R/W	/ /	R/W	R/W	R/W

Bit 7 (CRS): Select reference source for inverting terminal of Comparator/OP

0: CIN- is connected to pad (default)

1: CIN- is connected to internal reference

Bit 6 (CPOUT): The result of the comparator output.

Bits 5~4 (CS1 ~ CS0): Comparator Select bits

CS1	CS0	Function Description					
0	0	Comparator and CO are not used					
0	1	Comparator is uesd and comparator output is not connected to particular					
	0	Comparator is uesd and comparator output is connected to pad					
		OP					

Bit 3: Not used, set to "0" all the time.

Bits 2~1 (CC+S1~CC+S0): Comparator CIN+ channel Select bits.

CC+S1	CC+S0	Channel
0	0	CA+
0	1	CB+
1	0	CC+

Bit 0 (SDPWMA): Shut-down PMWA

0: Disable (default value)

1: Enable. The TAEN is disabled at the falling edge of comparator1.

NOTE

When using internal reference, users need to wait at least 6us after control bits "CIRLx1~CIRLx0" are set, so as to obtain accurate output results. If not, the output results would be inaccurate. Meanwhile, we also suggest not to set control bits "CxS1~CxS0" as (1:0) or (1:1) to prevent unexpected status.

6.1.51 Bank 0 R3B CMPCR2 (Comparator Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						CIRL2	SDPWMB
					/ /	R/W	R/W

Bits 7~2: Not used, set to "0" all the time.

Bit 1 (CIRL2): The high bit of interna	l voltage	reference.
--	-----------	------------

CIRL2	CIRL1	CIRL0	Voltage reference
0	0	0	AVDD (default)
0	0	1	4.096V
0	1	0	3.072V
0	1 <	1	2.048V
1	1		2.56V
1	1	0	2.56V
1	0		2.56V
1	○ 0 \	0	2.56V

Bit 0 (SDPWMB): Shut-down PMWB

0: Disable (default value)

1: Enable. The TBEN is disabled at the falling edge of comparator2.

NOTE

When using internal reference, users need to wait at least 6us after control bits "CIRLx1~CIRLx0" are set, so as to obtain accurate output results. If not, the output results would be inaccurate. Meanwhile, we also suggest not to set control bits "CxS1~CxS0" as (1:0) or (1:1) to prevent unexpected status.

6.1.52 Bank 0 R3C CMPCR3 (Comparator Control Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					CIRL1	CIRL0	SDPWMC
					R/W	R/W	R/W

Bits 7~3: Not used, set to "0" all the time.

CIRL12	CIRL11	CIRL10	Voltage reference		
0	0	0	AVDD (default)		
0	0	1	4.096V		
0	1	0	3.072V		
0	1	1	2.048V		
1	1	1	2.56V		
1	1	0	2.56V		
1	0	1	2.56V		
1	0	0	2.56V		

Bit 0 (SDPWMC): Shut-down PMWC

0: Disable (default value)

1: Enable. The TCEN is disabled at the falling edge of comparator3.

NOTE

- 1. When using internal voltage reference and the code option word2<7:6> is set to "11", users need to wait for at least 50us the first time to enable and stabilize the internal voltage reference circuit. After that, users only need to wait 6us (the least) whenever switching voltage references.
- 2. When using internal voltage reference and the code option word2<7:6> is set to "10", users only need to wait 6us (the least) to stabilize the internal voltage reference circuit whenever switching voltage references.

6.1.53 Bank 0 R3E ADCR1 (Analog-to-Digital Converter Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CKR2	CKR1	CKR0	ADRUN	ADP	ADOM	SHS1	SHS0
R/W							

Bits 7~5 (CKR2~0): Clock Rate Selection of ADC

System Mode	CKR2~0	Operating Clock of ADC ($F_{AD} = 1 / T_{AD}$)	$\begin{array}{l} Max. \ F_{Main} \\ (V_{DD} = 2.5 V \sim 3 V) \end{array}$	$\begin{array}{l} \text{Max. } F_{\text{Main}} \\ (V_{\text{DD}} = 3V \sim 5.5V) \end{array}$	
\sim	000	F _{Main} /16	8 MHz	16 MHz	
Normal Mode	001	F _{Main} /8	4 MHz	16 MHz	
Mode	010	F _{Main} /4	2 MHz	8 MHz	

	011	F _{Main} /2	1 MHz	4 MHz
	100	F _{Main} /64	16 MHz	16 MHz
	101	F _{Main} /32	16 MHz	16 MHz
	110	F _{Main} /1	500kHz	2 MHz
	111	F _{Sub}	Fs	Fs
Green Mode	ххх	F _{Sub}	Fs	Fs

Bit 4 (ADRUN): ADC Starts to Run

In Single mode:

- **0:** Reset by hardware upon completing the conversion, this bit cannot be reset by software.
- 1: A/D conversion starts. This bit can be set by software.

In Continuous mode:

- 0: ADC is stopped
- 1: ADC is running unless this bit is reset by software

Bit 3 (ADP): ADC Power

- 0: ADC is in power-down mode.
- 1: ADC is operating normally.
- Bit 2 (ADOM): ADC Operation Mode Select

0: ADC operates in single mode.

- 1: ADC operates in continuous mode.
- Bits 1~0 (SHS1~0): Sample and Hold Timing Select (Recommend at least 4 $\mu s,$

	SHS1~0	Sample and Hold Timing
	00	2 x T _{AD}
	01	4 x T _{AD}
		8 x T _{AD}
$\overline{\ }$		12 x T _{AD}

6.1.54 Bank 0 R3F ADCR2 (Analog-to-Digital Converter Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	VPIS2	ADIM	ADCMS	VPIS1	VPIS0	VREFP	VREFN
-	R/W						

Bit 7: Not used, set to "0" all the time.

Bit 5 (ADIM): ADC Interrupt Mode

- **0:** Normal mode. Interrupt occurred after AD conversion is completed.
- **1:** Compare mode. Interrupt occurred when comparison result conforms to the setting of ADCMS bits. Continuous mode is recommended.

Bit 4 (ADCMS): ADC Compare Mode Select.

Compare mode:

- **0:** Interrupt occurs when AD conversion data is equal to or greater than the data in ADCD register (which means when ADD \geq ADCD, interrupt occurs).
- 1: Interrupt occurs when AD conversion data is equal to or less than the data in ADCD register (which means when $AD \leq ADCD$, interrupt occurs).

Normal mode: No effect

Bits 6, 3 ~ 2 (VPIS2~0): Internal Positive Reference Voltage Selection.							
VPIS2	VPIS1	VPIS0	Reference Voltage				
0	0	0	AVDD				
0	0	1	4.096 V				
0	1	0	3.072 V				
0	1	1	2.048 V				
1	0	0	2.56 V				
1	0	1	2.56 V				
1	1	0	2.56 V				
1	1	1	2.56 V				

Bit 1 (VREFP): Positive Reference Voltage Select

- 0: Internal positive reference voltage. The actual voltage is set by VPIS1~0 bits.
- 1: From VREF pin.

Bit 0 (VREFN): Negative Reference Voltage Select

- 0: Common ground with internal reference voltage.
- 1: Common ground with VREF pin.

NOTE

- 1. When using the internal voltage reference and the Code Option Word 2<6> (IRCIRS) sets to "1", users need to wait for at least 50 µs when the first time to enable and stabilize the voltage reference. Un-stabilized reference makes conversion result inaccurate. After that, users only need to wait for at least 6 µs whenever switching voltage references.
- 2. When using the internal voltage reference and the Code Option Word 2<6> (IRCIRS) sets to "0", users only need to wait for at least 6 µs for the internal voltage reference circuit stabilized whenever switching voltage references.

6.1.55 Bank 0 R40 ADISR (Analog-to-Digital Converter Input Channel Select Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_		_	ADIS4	ADIS3	ADIS2	ADIS1	ADIS0

_

						GLAI	V
_	_	R/W	R/W	R/W	R/W	R/W	

 (\mathcal{D})

Bits 7~5: Not used, set to "0" all the time.

Bits 4~0 (ADIS4~0): ADC input channel select bits

ADIS4~0	Selected Channel	ADIS4~0	Selected Channel
00000	AD0	*10000	1/2 VDD Power Detect
00001	AD1	10001	OP
00010	AD2	10010	N/A
00011	AD3	10011	N/A
00100	AD4	10100	N/A
00101	AD5	10101	N/A
00110	AD6	10110	N/A
00111	AD7	10111	N/A
01000	AD8	11000	N/A
01001	AD9	11001	N/A
01010	AD10	11010	N/A
01011	AD11	11011	N/A < < >
01100	AD12	11100	N/A
01101	AD13	11101	Ņ/A
01110	AD14	11110	N/A
01111	AD15	11111	N/À

Used for internal signal source. Users only need to set ADIS4~0=10000. These AD input channels are instantly active.

6.1.56 Bank 0 R41 ADER1 (Analog-to-Digital Converter Input Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
R/W							

Bit 7 (ADE7): AD converter enable bit of P65 pin.

0: Disable ADC7, P65 acts as I/O pin.

1: Enable ADC7 to act as analog input pin.

Bit 6 (ADE6): AD converter enable bit of P64 pin.

0: Disable ADC6, P64 acts as I/O pin

1: Enable ADC6 to act as analog input pin

Bit 5 (ADE5): AD converter enable bit of P62 pin.

0: Disable ADC5, P62 acts as I/O pin

1: Enable ADC5 to act as analog input pin

Bit 4 (ADE4): AD converter enable bit of P61 pin.

0: Disable ADC4, P61 acts as I/O pin

1: Enable ADC4 to act as analog input pin

Bit 3 (ADE3): AD converter enable bit of P60 pin.

0: Disable ADC3, P60 acts as I/O pin

- 1: Enable ADC3 to act as analog input pin
- Bit 2 (ADE2): AD converter enable bit of P54 pin.
 - 0: Disable ADC2, P54 acts as I/O pin
 - 1: Enable ADC2 to act as analog input pin
- Bit 1 (ADE1): AD converter enable bit of P53 pin.
 - 0: Disable ADC1, P53 acts as I/O pin
 - 1: Enable ADC1 to act as analog input pin
- Bit 0 (ADE0): AD converter enable bit of P52 pin.
 - 0: Disable ADC0, P52 acts as I/O pin
 - 1: Enable ADC0 to act as analog input pin

6.1.57 Bank 0 R42 ADER2 (Analog-to-Digital Converter Input Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADE15	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8
R/W							

Bit 7 (ADE15): AD converter enable bit of P77 pin.

0: Disable ADC15, P77 acts as I/O pin

1: Enable ADC15 to act as analog input pin

Bit 6 (ADE14): AD converter enable bit of P76 pin.

0: Disable ADC14, P76 acts as I/O pin

1: Enable ADC14 to act as analog input pin

Bit 5 (ADE13): AD converter enable bit of P75 pin.

0: Disable ADC13, P75 acts as I/O pin

1: Enable ADC13 to act as analog input pin

Bit 4 (ADE12): AD converter enable bit of P74 pin.

0: Disable ADC12, P74 acts as I/O pin

1: Enable ADC12 to act as analog input pin

Bit 3 (ADE11): AD converter enable bit of P55 pin.

0: Disable ADC11, P55 acts as I/O pin

1: Enable ADC11 to act as analog input pin

Bit 2 (ADE10): AD converter enable bit of P56 pin.

0: Disable ADC10, P56 acts as I/O pin

1: Enable ADC10 to act as analog input pin

Bit 1 (ADE9): AD converter enable bit of P57 pin.

0:] Disable ADC9, P57 acts as I/O pin

1: Enable ADC9 to act as analog input pin

Bit 0 (ADE8): AD converter enable bit of P66 pin.

0: Disable ADC8, P66 acts as I/O pin

1: Enable ADC8 to act as analog input pin

6.1.58 Bank 0 R43 ADDL (Low Byte of Analog-to-Digital Converter Data)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
R	R	R	R	R	R	B	R

Bits 7~0 (ADD7~ ADD0): Low Byte of AD Data Buffer

6.1.59 Bank 0 R44 ADDH (High Byte of Analog-to-Digital Converter Data)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADD15	ADD14	ADD13	ADD12	ADD11	ADD10	ADD9	ADD8
R	R	R	R	R	R	R	R

Bits 7~0 (ADD15~ ADD8): High Byte of AD Data Buffer.

The format of AD data is dependent on Code Option ADFM. The following table shows how the data justify the different ADFM settings.

	ADFM	1~0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		ADDH		-	-	I	ADD11	ADD10	ADD9	ADD8
10 1-11-	0	ADDL	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
12 bits	\sim	ADDH	ADD11	ADD10	ADD9	ADD8	ADD7	ADD6	ADD5	ADD4
		ADDL		-	-	-	ADD3	ADD2	ADD1	ADD0

6.1.60 Bank 0 R45 ADCVL (Low Byte of Analog-to-Digital Converter Compare Value)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCD7	ADCD6	ADCD5	ADCD4	ADCD3	ADCD2	ADCD1	ADCD0
R/W							

Bits 7~0 (ADCD7~0): Low Byte Data for AD Comparison.

User should use the data format as with ADDH and ADDL register. Otherwise faulty values will result after AD comparison.

6.1.61 Bank 0 R46 ADCVH (High Byte of Analog-to-Digital Converter Compare Value)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCD15	ADCD14	ADCD13	ADCD12	ADCD11	ADCD10	ADCD9	ADCD8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (ADCD15~8): High Byte Data for AD Comparison

User should use the data format as with ADDH and ADDL registers. Otherwise, faulty values will result after AD comparison.

6.1.62 Bank 1 R5 IOCR8

These registers are used to control I/O port direction. They are both readable and writable.

0: Put the relative I/O pin as output

1: Put the relative I/O pin into high impedance

6.1.63 Bank 1 R8 P5PHCR (Port 5 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH57	PH56	PH55	PH54	PH53	PH52	PH51	PH50
R/W							

Bits 7~0 (PH57~PH50): Control bit used to enable pull-high of P57~P50 pins

0: Enable internal pull-high

1: Disable internal pull-high

6.1.64 Bank 1 R9 P6PHCR (Port 6 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH67	PH66	PH65	PH64	PH63	PH62	PH61	PH60
R/W							

Bits 7~0 (PH67~PH60): Control bit used to enable pull-high of P67~P60 pins

0: Enable internal pull-high

1: Disable internal pull-high

6.1.65 Bank 1 RA P78PHCR (Port 7~8 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\searrow					P8LPH	P7HPH	P7LPH
Ŭ.					R/W	R/W	R/W

Bits 7~3: Not used, set to "0" all the time.

Bit 2 (P8LPH): Control bit used to enable pull-high of Port 8 low nibble pin

1: Disable internal pull-high (default)

0: Enable internal pull-high

Bit 1 (P7HPH): Control bit used to enable pull-high of Port 7 high nibble (P77~P74) pin

Bit 0 (P7LPH): Control bit used to enable pull-high of Port 7 low nibble (P73~P72) pin

6.1.66 Bank 1 RB P5PLCR (Port 5 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL57	PL56	PL55	PL54	PL53	PL52	PL51	PL50
R/W							

Bits 7~0 (PL57~PL50): Control bit used to enable pull-low of P57~P50 pins

0: Enable internal pull-low

1: Disable internal pull-low

6.1.67 Bank 1 RC P6PLCR (Port 6 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL67	PL66	PL65	PL64	PL63	PL62	PL61	PL60
R/W							

Bits 7~0 (PL67~PL60): Control bit used to enable pull-low of P67~P60 pins

0: Enable internal pull-low

1: Disable internal pull-low

6.1.68 Bank 1 RD P78PLCR (Port 7~8 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			\geq		P8LPL	P7HPL	P7LPL
	\searrow				R/W	R/W	R/W

Bits 7~3: Not used, set to "0" all the time.

Bit 2 (P8LPL): Control bit used to enable pull-low of Port 8 low nibble pin

1: Disable internal pull-low (default)

0: Enable internal pull-low

Bit 1 (P7HPL): Control bit used to enable pull-low of Port 7 high nibble (P77~P74) pin **Bit 0 (P7LPL):** Control bit used to enable pull-low of Port 7 low nibble (P73~P72) pin

6.1.69 Bank 1 RE P5HDSCR (Port 5 High Drive/Sink Control Register)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

H57	H56	H55	H54	H53	H52	H51	H50
R/W							

Bits 7~0 (H57~H50): P57~P50 high drive/sink current control bits

0: Enable high drive/sink

1: Disable high drive/sink

6.1.70 Bank 1 RF P6HDSCR (Port 6 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
H67	H66	H65	H64	H63	H62	H61	H60
R/W							

Bits 7~0 (H67~H60): P67~P60 high drive/sink current control bits

0: Enable high drive/sink

1: Disable high drive/sink

6.1.71 Bank 1 R10 P78HDSCR (Port 7~8 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				\sim	P8LHDS	P7HHDS	P7LHDS
					R/W	R/W	R/W

Bits 7~3: Not used, set to "0" all the time.

Bit 2 (P8LHDS): Control bit used to enable high drive/sink of Port 8 low nibble pin

1: Disable high drive/sink (default)

- 0: Enable high drive/sink
- Bit 1 (P7HHDS): Control bit used to enable high drive/sink of Port 7 high nibble (P77~P74) pin

Bit 0 (P7LHDS): Control bit used to enable high drive/sink of Port 7 low nibble (P73~P72) pin

6.1.72 Bank 1 R11 P5ODCR (Port 5 Open-drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD57	OD56	OD55	OD54	OD53	OD52	OD51	OD50
R/W							

Bits 7~0 (ØD57~OD50): P57~P50 Open-drain control bits

0: Disable open-drain function

1: Enable open-drain function

6.1.73 Bank 1 R12 P6ODCR (Port 6 Open-drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD67	OD66	OD65	OD64	OD63	OD62	OD61	OD60
R/W							

Bits 7~0 (OD67~OD60): P67~P60 Open-drain control bits

0: Disable open-drain function

1: Enable open-drain function

6.1.74 Bank 1 R13 P78ODCR (Ports 7~8 Open-drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
					P8LOD	P7HOD	P7LOD	
					R/W	R/W	R/W	

Bits 7~3: Not used, set to "0" all the time

Bit 2 (P8LOD): Control bit used to enable open-drain of Port 8 low nibble pin

0: Disable open-drain function (default)

1: Enable open-drain function

Bit 1 (P7HOD): Control bit used to enable open-drain of Port 7 high nibble (P77~P74) pin

Bit 0 (P7LOD): Control bit used to enable open-drain of Port 7 low nibble (P73~P72) pin

6.1.75 Bank 1 R14 DeadTCR (Dead Time Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			DEADTCE	DEADTBE	DEADTAE	DEADTP1	DEADTP0
		\land	R/W	R/W	R/W	R/W	R/W

Bits 7~5: Not used, set to "0" all the time

Bit 4 (DEADTCE): Enable dead-time function for PWMC and /PWMC (for dual PWM)

0: Disable (default)

1: Enable

Bit 3 (DEADTBE): Enable dead-time function for PWMB and /PWMB (for dual PWM)

0: Disable (default)

1: Enable.

Bit 2 (DEADTAE): Enable dead-time function for PWMA and /PWMA (for dual PWM)

- 0: Disable (default)
- 1: Enable.

Bits 1~0 (DEADTP1~DEADTP0): Dead-time prescaler

DEADTP1 DEADTP0 Prescaler

0	0	1:1 (default)
0	1	1:2
1	0	1:4
1	1	1:8

NOTE

The deadtime function is used only for dual PWM. When using single PWM function (not dual PWM), the deadtime function is always disabled.

6.1.76 Bank 1 R15 DeadTR (Dead Time Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DEADTR7	DEADTR6	DEADTR5	DEADTR4	DEADTR3	DEADTR2	DEADTR1	DEADTR0
R/W							

Bits 7~0 (DEADTR7~0): The contents of the register are dead-time

6.1.77 Bank 1 R16 PWMSCR (PWM Source Clock Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			DEADS		PWMCS	PWMBS	PWMAS
			R/W		R/W	R/W	R/W

Bits 7~5: Not used, set to "0" all the time.

Bit 4 (DEADS): Clock selection for dead-time timer

0: Fs (default)

1: Fm

Bit 3: Not used, set to "0" all the time.

Bit 2 (PWMCS): Clock selection for PWMC timer

0: Fs (default)

1: Fm

Bit 1 (PWMBS): Clock selection for PWMB timer

0: Fs (default)

1: Fm

Bit 0 (PWMAS): Clock selection for PWMA timer

0: Fs (default)

1: Fm

6.1.78 Bank 1 R17 PWMACR (PWMA Control Register)

Bit 7 Bit 6 Bit 5 Bit 4 Bit	3 Bit 2 Bit 1 Bit 0
-----------------------------	---------------------

PWMAE	IPWMAE	PWMAA	IPWMAA	TAEN	TAP2	TAP1	TAP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (PWMAE): PWMA enable bit

0: Disable (default)

1: Enable. The compound pin is used as PWMA pin

Bit 6 (IPWMAE): Inverse PWMA enable bit

- 0: Disable (default)
- 1: Enable. The compound pin is used as /PWMA pin

Bit 5 (PWMAA): Active level of PWMA

- 0: Duty-deadtime is logic 1 (default)
- 1: Duty-deadtime is logic 0
- Bit 4 (IPWMAA): active level of inverse PWMA
 - 0: Period-duty-deadtime is logic 1 (default)
 - 1: Period-duty-deadtime is logic 0
- Bit 3 (TAEN): TMRA enable bit. All PWM function are valid only as this bit is set

0: TMRA is off (default value)

1: TMRA is on

PWMXEN	TXEN	Function description
0	0	Not used as PWM function; I/O pin or other functional
		pins.
0		Timer function; I/O pin or other function pins.
1		PWM function, the waveform remains at inactive level.
1	$\left \begin{array}{c} \left\langle 1 \right\rangle \right\rangle$	PWM function, the normal PWM output waveform.
\sim		

TAP2	TAP1	TAP0	Prescaler							
0	0	0	1:1 (default)							
0	0	1	1:2							
0	1	0	1:4							
0	1	1	1:8							
1	0	0	1:16							
1	0	1	1:64							
1	1	0	1:128							
1	1	1	1:256							

Bits 2~0 (TAP2~TAP0): TMRA clock prescaler option bits

6.1.79 Bank 1 R18 PRDAL (Low byte of PWMA period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRDA7	PRDA6	PRDA5	PRDA4	PRDA3	PRDA2	PRDA1	PRDA0
R/W							

Bits 7~0 (PRDA7~0): The contents of the register are low byte of PWMA period.

6.1.80 Bank 1 R19 PRDAH (High byte of PWMA period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRDA15	PRDA14	PRDA13	PRDA12	PRDA11	PRDA10	PRDA9	PRDA8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (PRDA15~8): The contents of the register are high byte of PWMA period.

6.1.81 Bank 1 R1A DTAL (Low byte of PMWA duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DTA7	DTA6	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0
R/W							

Bits 7~0 (DTA7~0): The contents of the register are low byte of PWMA duty.

6.1.82 Bank 1 R1B DTAH (High byte of PMWA duty)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	DTA15	DTA14	DTA13	DTA12	DTA11	DTA10	DTA9	DTA8
~	R/W							

Bits 7~0 (DTA15~8): The contents of the register are high byte of PWMA duty.

6.1.83 Bank 1 R1C TMRAL (Low byte of TimerA)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMRA7	TMRA6	TMRA5	TMRA4	TMRA3	TMRA2	TMRA1	TMRA0
R	R	R	R	R	R	R	R

Bits 7~0 (TMRA7~0): The contents of the register are low byte of the PWMA timer which is counting. This is read-only.

6.1.84 Bank 1 R1D TMRAH (High byte of TimerA)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMRA15	TMRA14	TMRA13	TMRA12	TMRA11	TMRA10	TMRA9	TMRA8
R	R	R	R	R	R	R	R

Bits 7~0 (TMRA15~8): The contents of the register are high byte of the PWMA timer which is counting. This is read-only.

6.1.85 Bank 1 R1E PWMBCR (PWMB Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMBE	IPWMBE	PWMBA	IPWMBA	TBEN	TBP2	TBP1	TBP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (PWMBE): PWMB enable bit

0: Disable (default)

1: Enable. The compound pin is used as PWMB pin

Bit 6 (IPWMBE): Inverse PWMB enable bit

0: Disable (default)

- 1: Enable, The compound pin is used as /PWMB pin
- Bit 5 (PWMBA): Active level of PWMB
 - 0: duty-deadtime is logic 1 (default)
 - 1: duty-deadtime is logic 0
- Bit 4 (IPWMBA): Active level of inverse PWMB
 - 0: period-duty-deadtime is logic 1 (default)
 - 1: period-duty-deadtime is logic 0
- Bit 3 (TBEN): TMRB enable bit. All PWM functions are valid only as this bit is set
 - 0 = TMRB is off (default value)
 - 1 = TMRB is on

TBP2	TBP1	TBP0	Prescaler
0	0	0	1:1 (default)
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bits 2~0 (TBP2~TBP0): TMRB clock prescaler option bits

6.1.86 Bank 1 R1F PRDBL (Low byte of PWMB period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRDB7	PRDB6	PRDB5	PRDB4	PRDB3	PRDB2	PRDB1	PRDB0
R/W							

Bits 7~0 (PRDB7~0): The contents of the register are low byte of the PWMB period.

6.1.87 Bank 1 R20 PRDBH (High byte of PWMB period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRDB15	PRDB14	PRDB13	PRDB12	PRDB11	PRDB10	PRDB9	PRDB8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (PRDB15~8): The contents of the register are high byte of PWMB period.

6.1.88 Bank 1 R21 DTBL (Low byte of PMWB duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DTB7	DTB6	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0
R/W							

Bits 7~0 (DTB7~0): The contents of the register are low byte of the PWMB duty.

6.1.89 Bank 1 R22 DTBH (High byte of PMWB duty)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\bigcirc	DTB15	DTB14	DTB13	DTB12	DTB11	DTB10	DTB9	DTB8
	R/W							

Bits 7~0 (DTB15~8): The contents of the register are high byte of the PWMB duty.

6.1.90 Bank 1 R23 TMRBL (Low byte of TimerB)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMRB7	TMRB6	TMRB5	TMRB4	TMRB3	TMRB2	TMRB1	TMRB0
R	R	R	R	R	R	R	R

Bits 7~0 (TMRB7~0): The contents of the register are low byte of the PWMB timer which is counting. This is read-only.

6.1.91 Bank 1 R24 TMRBH (High byte of TimerB)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TMRB15	TMRB14	TMRB13	TMRB12	TMRB11	TMRB10	TMRB9	TMRB8	
R	R	R	R	R	R	R	R	\searrow

Bits 7~0 (TMRB15~8): The contents of the register are high byte of the PWMB timer which is counting. This is read-only.

6.1.92 Bank 1 R25 PWMCCR (PWMC Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCE	IPWMCE	PWMCA	IPWMCA	TCEN	TCP2	TCP1	TCP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (PWMCE): PWMC enable bit

0: Disable (default)

1: Enable. The compound pin is used as PWMC pin

Bit 6 (IPWMCE): Inverse PWMC enable bit

0: Disable (default)

1: Enable. The compound pin is used as /PWMC pin

Bit 5 (PWMCA): Active level of PWMC

0: duty-deadtime is logic 1 (default)

1: duty-deadtime is logic 0

Bit 4 (IPWMCA): Active level of inverse PWMC

0: period-duty-deadtime is logic 1 (default)

1: period-duty-deadtime is logic 0

Bit 3 (TCEN): TMRC enable bit. All PWM functions are valid only as this bit is set.

0 = TMRC is off (default value)

1 = TMRC is on

TCP2	TCP1	TCP0	Prescaler
0	0	0	1:1 (default)
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bits 2~0 (TCP2~TCP0): TMRC clock prescaler option bits

6.1.93 Bank 1 R26 PRDCL (Low byte of PWMC period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRDC7	PRDC6	PRDC5	PRDC4	PRDC3	PRDC2	PRDC1	PRDC0
R/W							

Bits 7~0 (PRDC7~0): The contents of the register are low byte of the PWMC period.

6.1.94 Bank 1 R27 PRDCH (High byte of PWMC period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRDC15	PRDC14	PRDC13	PRDC12	PRDC11	PRDC10	PRDC9	PRDC8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (PRDC15~8): The contents of the register are high byte of PWMC period.

6.1.95 Bank 1 R28 DTCL (Low byte of PMWC duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DTC7	DTC6	DTC5	DTC4	DTC3	DTC2	DTC1	DTC0
R/W							

Bits 7~0 (DTC7~0): The contents of the register are low byte of the PWMC duty.

6.1.96 Bank 1 R29 DTCH (High byte of PMWC duty)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\bigcirc	DTC15	DTC14	DTC13	DTC12	DTC11	DTC10	DTC9	DTC8
$\langle \rangle$	R/W							

Bits 7~0 (DTC15~8): The contents of the register are high byte of the PWMC duty.

6.1.97 Bank 1 R2A TMRCL (Low byte of TimerC)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMRC7	TMRC6	TMRC5	TMRC4	TMRC3	TMRC2	TMRC1	TMRC0
R	R	R	R	R	R	R	R

Bits 7~0 (TMRC7~0): The contents of the register are low byte of the PWMC timer which is counting. This is read-only.

6.1.98 Bank 1 R2B TMRCH (High byte of TimerC)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMRC15	TMRC14	TMRC13	TMRC12	TMRC11	TMRC10	TMRC9	TMRC8
R	R	R	R	R	R	R	R

Bits 7~0 (TMRC15~8): The contents of the register are high byte of the PWMC timer which is counting. This is read-only.

6.1.99 Bank 1 R33 URCR (UART Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UINVEN	UMODE1	UMODE0	BRATE2	BRATE1	BRATE0	UTBE	TXE
R/W	R/W	R/W	R/W	R/W	R/W	∕ R	R/W

Bit 7 (UINVEN): Enable UART TXD and RXD Port Inverse Output Bit

0: Disable TXD and RXD port inverse output.

1: Enable TXD and RXD port inverse output.

Bits 6~5 (UMODE1~UMODE0): UART mode select bits

UMODE1 UMO	DE0 UART Mode
0 0	7-bit
	8-bit
	9-bit
	Reserved

Bits 4~2 (BRATE2~BRATE0): Transmit Baud rate select

BRATE2	BRATE1	BRATE0	Baud Rate	8 MHz	
0	0	0	Fc/13	38400	
0	0	1	Fc/26	19200	
0	1	0	Fc/52	9600	
0	1	1	Fc/104	4800	
1	0	0	Fc/208	2400	
1	0	1	Fc/416	1200	
1	1	0	TC3/2	_	
1	1	1	Reserved		

Bit 1 (UTBE): UART transfer buffer empty flag. Set to "1" when transfer buffer is empty. Reset to "0" automatically when writing to the URTD register. The <u>UTBE bit will be</u> <u>cleared by hardware when enabling transmission. The UTBE bit is read-only.</u> <u>Therefore, writing to the URTD register is necessary in starting transmission shifting.</u>

Bit 0 (TXE): Enable transmission

0: Disable

1: Enable

6.1.100 Bank 1 R34 URS (UART Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URTD8	EVEN	PRE	PRERR	OVERR	FMERR	URBF	RXE
W	R/W	R/W	R/W	R/W	R/W	R	R/W

Bit 7 (URTD8): UART Transmit Data Bit 8. Write-only.

Bit 6 (EVEN): Select parity check

0: Odd parity

1: Even parity

Bit 5 (PRE): Enable parity addition

0: Disable

1: Enable

- Bit 4 (PRERR): Parity error flag. Set to 1 when parity error occurred, cleared to 0 by software.
- Bit 3 (OVERR): Over running error flag. Set to 1 when overrun error occurred, cleared to 0 by software.
- Bit 2 (FMERR): Framing error flag. Set to 1 when framing error occurred, cleared to 0 by software.
- Bit 1 (URBF): UART read buffer full flag. Set to 1 when one character is received. Reset to 0 automatically when read from the URS register. <u>URBF will</u> <u>be cleared by hardware when enabling receiving.</u> The URBF bit is <u>read-only.</u> <u>Therefore, reading the URS register is necessary to avoid</u> <u>overrun error.</u>

Bit 0 (RXE): Enable receiving

- 0: Disable
- 1: Enable

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
URTD7	URTD6	URTD5	URTD4	URTD3	URTD2	URTD1	URTD0		
W	W	W	W	W	W	W	W		

6.1.101 Bank 1 R35 URTD (UART Transmit Data Buffer Register)

Bits 7~0 (URTD7~URTD0): UART transmit data buffer. Write-only.

6.1.102 Bank 1 R36 URRDL (UART Receive Data Low Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URRD7	URRD6	URRD5	URRD4	URRD3	URRD2	URRD1	URRD0
R	R	R	R	R	R	R	R

Bits 7~0 (URRD7~URRD0): UART Receive Data Buffer. Read-only.

6.1.103 Bank 1 R37 URRDH (UART Receive Data High Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URRD8	-	_	_	-	_	_	URSS
R	-	-	-	-	-	- /~	R/W

Bit 7 (URRD8): UART Receive Data Bit 8. Read-only.

Bits 6~1: Not used, set to "0" all the time.

Bit 0 (URSS): UART clock source select bit

0: Fc is set to Fs

1: Fc is set to Fm

6.1.104 Bank 1 R45 TBPTL (Table Pointer Low Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TB7	TB6	TB5	TB4	ТВЗ	TB2	TB1	TB0
R/W							

Bits 7~0 (TB7~TB0): Table Pointer Address Bits 7~0.

6.1.105 Bank 1 R46 TBPTH (Table Pointer High Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLB	GP	GP	GP	TB11	TB10	TB9	TB8
R/W							

Bit 7 (HLB): Take MLB or LSB at machine code.

Bits 6~4 (GP): General Purpose read/write bits.

Bits 3~0 (TB11~TB8): Table Pointer Address Bits 11~8.

6.1.106 Bank 1 R47 STKMON (Stack Monitor)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STOV	-	-	-	STL3	STL2	STL1	STL0
R	Ι	Ι	Ι	R	R	R	R

Bit 7 (STOV): Stack pointer overflow indication bit. Read-only.

Bits 6~4: Not used, set to "0" all the time.

Bits 3~0 (STL3~ STL0): Stack pointer number. Read-only.

6.1.107 Bank 1 R48 PCH (Program Counter High)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	PC11	PC10	PC9	PC8
-	-	-	-	R/W	R/W	R/W	R/W

Bits 7~4: Not used, set to "0" all the time.

Bits 3~0 (PC11~PC8): Program Counter high byte.

6.1.108 Bank 1 R49 HLVDCR (High / Low Voltage Detector Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLVDEN	IRVSF	VDSB	VDM	HLVDS3	HLVDS2	HLVDS1	HLVDS0
R/W	R	R	R/W	R/W	R/W	R/W	R/W

Bit 7 (HLVDEN): High/Low Voltage Detector Enable Bit

0: Disable low voltage detector

1: Enable low voltage detector

Bit 6 (IRVSF): Internal Reference Voltage Stable Flag bit

1: Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range

0: Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage range and the HLVD interrupt should not be enabled

Bit 5 (VDSB): Voltage Detector State Bit. This is a read-only bit.

1: VDD > HLVD trip point (HLVDS<3:0>)

0: VDD < HLVD trip point (HLVDS<3:0>)

Bit 4 (VDM): Voltage Direction Magnitude Select bit

1: Event occurs when voltage equals or exceeds trip point (HLVDS<3:0>)

0: Event occurs when voltage equals or falls below trip point (HLVDS<3:0>)

	HLVDIE	HLVDEN	VDM	IRVSF	VDSB	HLVDSF	Interrupt
/	0		1	1	0->1	0->1	Not happened
		1	1	1	1->0	0	Not happened
	0	\searrow	0	1	0->1	0	Not happened
	0	∕ 1	0	1	1->0	0->1	Not happened
	/ 1	0	Х	Х	1	0	Not happened
	1	1	Х	0	Х	0	Not happened
	<u> </u>	1	1	1	0->1	0->1	Happened
	1	1	1	1	1->0	0	Not happened
	1	1	0	1	0->1	0	Not happened
	1	1	0	1	1->0	0->1	Happened

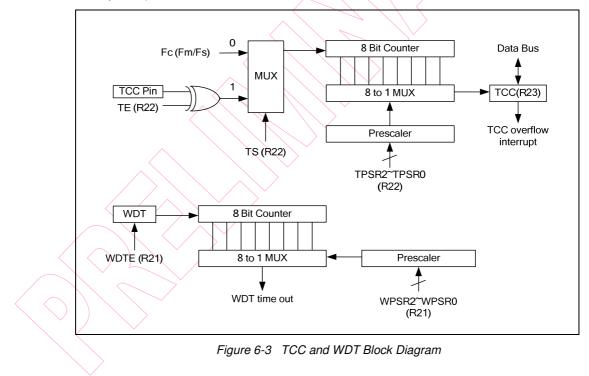
HLVDS3	HLVDS2	HLVDS1	HLVDS0	HLVD Voltage Level
0	0	0	0	4.7V
0	0	0	1	4.5V
0	0	1	0	4.3V
0	0	1	1	4.1V
0	1	0	0	3.9V
0	1	0	1	3.7V
0	1	1	0	3.5V
0	1	1	1	3.3V
1	0	0	0	3.1V <
1	0	0	1	2.9V
1	0	1	0	2.8V
1	0	1	1	2.6V
1	1	0	0	2.5V
1	1	0	1	2.4V
1	1	1	0	2.3V
1	1	1	1	2.2V

Bits 3~0 (HLVDS3~HLVDS0): High/Low Voltage Detector Level Bits

6.1.109 Bank 1 R4A~R4C: (Reserve)

6.1.110 Bank 0 R50~R7F, Bank 0~3 R80~RFF

All of these are 8-bit general-purpose registers.

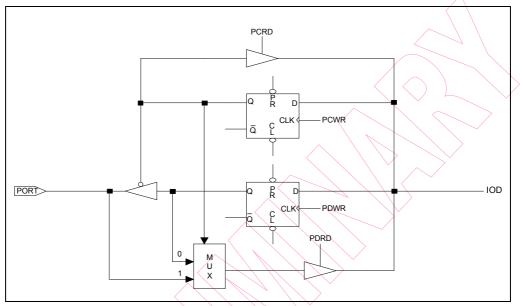


6.2 TCC/WDT and Prescaler

There are two 8-bit counters available as prescalers for the TCC and WDT, respectively. The TPSR0~TPSR2 bits of the TCCCR register (Bank 0 R22) are used to determine the ratio of the TCC prescaler. Likewise, the WPSR0~WPSR2 bits of the WDTCR register (Bank 0 R21) are used to determine the prescaler of WDT. The prescaler counter will be cleared by the instructions each time they are written into TCC. The WDT and prescaler counter will be cleared by the "WDTC" and "SLEP" instructions. Figure 6-3 depicts the Block Diagram of TCC/WDT.

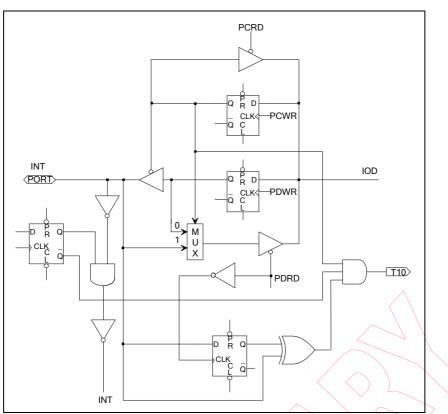
TCCD (Bank 0 R23) is an 8-bit timer/counter. The clock source of TCC can be internal clock or external signal input (edge selectable from the TCC pin). If the TCC signal sources from an internal clock, the TCC will be incremented by 1 at Fc clock (without prescaler). If the TCC signal sources from an external clock input, the TCC will be incremented by 1 at every falling edge or rising edge of the TCC pin. The TCC pin input time length (kept in High or low level) must be greater than 1/Fc. **The TCC will stop running when sleep mode occurs.**

The Watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even after the oscillator driver has been turned off (i.e., in sleep mode). During normal operation or sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any time during normal mode by software programming. Refer to WDTE bit of WDTCR (Bank 0 R21) register. With no prescaler, the WDT time-out period is approximately 16 ms¹ (one oscillator start-up timer period).


¹ VDD=2.1~5.5V, Temp= -40°C~85°C, WDT Time-out period = 16ms ± 10%.

6.3 I/O Ports

The I/O registers, Port 5~Port A are bidirectional tri-state I/O ports. All of which can be pulled-high and pulled-low internally by software. In addition, they can have open-drain output and high sink/drive setting by software. Also, Ports 5~8 have wake up, interrupt function, and input status change interrupt function. Each I/O pin can be defined as an "input" or "output" pin by I/O control registers (IOC5 ~ IOCA).


The I/O registers and I/O control registers are both readable and writable. I/O interface circuits for Port 5 \sim Port A are shown in Figures 6-4 \sim 6-7.

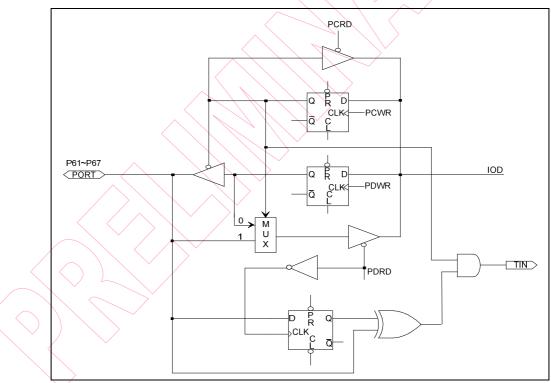

Note: Pull-down is not shown in the figure.

Figure 6-4 Circuit of I/O Port and I/O Control Register for Port 5~8

Note: Pull-high (down) and Open-drain are not shown in the figure. Figure 6-5 Circuit of I/O Port and I/O Control Register for INT.

Note: Pull-high (down) and Open-drain are not shown in the figure. Figure 6-6 Circuit of I/O Port and I/O Control Register for Ports 5~8

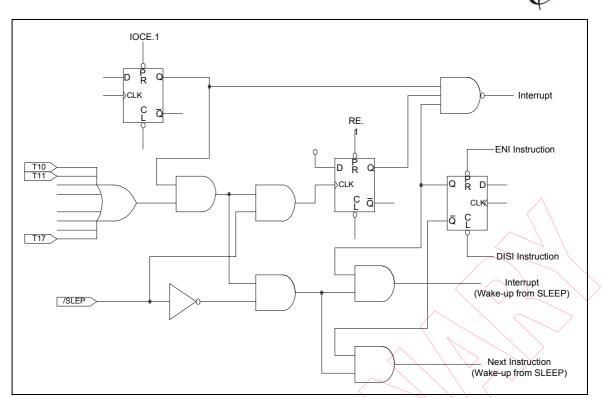


Figure 6-7 Block Diagram of I/O Port 5~8 with Input Change Interrupt/Wake-up

Usage of Ports 5~8 Input Statu	is Change Wake-up/Interrupt
(I) Wake-up	(II) Wake-up and interrupt
(a) Before Sleep	(a) Before Sleep
1. Disable WDT	1. Disable WDT
2. Read I/O Port (MOV R6, R6)	2. Read I/O Port (MOV R6, R6)
3. Execute "ENI" or "DISI"	3. Execute "ENI" or "DISI"
4. Enable wake-up bit (Set WUE6H=1, WUE6L=1)	4. Enable wake-up bit (Set WUE6H=1, WUE6L=1)
5. Execute "SLEP" instruction	5. Enable interrupt (Set ICIE =1)
(b) After wake-up	6. Execute "SLEP" instruction
\rightarrow Next instruction	(b) After wake-up
	1. IF "ENI" \rightarrow Interrupt vector (0006H)
	2. IF "DISI" \rightarrow Next instruction

	Usage of Ports 5~8 Input Change Wake	\land		$\overline{\ }$
Table 1	Usage of Ports 5~8 Input Change Wake	-up/Interr	upt Fun	ction

6.4 Reset and Wake-up

6.4.1 Reset

A reset is initiated by one of the following events:

- (1) Power-on reset
- (2) /RESET pin input "low"
- (3) WDT time-out (if enabled)
- (4) LVR (if enabled)

The device is kept in a reset condition for a period of approximately 16ms² (one oscillator start-up timer period) after the reset is detected. If the /Reset pin goes "low" or WDT time-out is active, a reset is generated. In IRC mode, the reset time is WSTO and 8 clocks; in High XTAL mode, the reset time is WSTO and 510 clocks; and in low XTAL mode, the reset time is WSTO and 510 clocks (Fsub). Once a reset occurs, the following functions are performed. Refer to Figure 6-8.

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The Watchdog timer and prescaler are cleared.
- The control register bits are set according to the entries shown in Table 2 Summary of Register Initial Values after Reset.

Sleep (power-down) mode is asserted by executing the "SLEP" instruction. While entering sleep mode, WDT (if enabled) is cleared but keeps on running. After wake-up is generated, the wake-up time in IRC mode is WSTO and 8 clocks, WSTO and 510 clocks in High XTAL mode, and WSTO and 510 clocks (Fsub) in low XTAL mode. The controller can be awakened by:

- (1) External reset input on /RESET pin.
- (2) WDT time-out (if enabled).
- (3) External (/INT) pin changes (if INTWKX is enabled).
- (4) Port input status changes (if ICWKPX is enabled).
- (5) SPI received data when SPI acts as a Slave device (if SPIWK is enabled).
- (6) $\int_{-\infty}^{2} C$ received data when I²C acts as a Slave device (if I²CWK is enabled).
- (7) High/Low Voltage Detector (if HLVDWK enable).
- (8) A/D conversion completed (if ADWK is enabled).
- (9) Comparator output status change (if CMPWK is enabled).

² VDD=2.1 \sim 5.5V, Temp=-40°C \sim 85°C, WDT time-out period = 16ms ± 10%.

The first two cases will cause the EM88F715N to reset. The T and P flags of R3 can be used to determine the source of the reset (wake-up). Case 3~8 are considered the continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) determines whether or not the controller branches to the interrupt vector following a wake-up. If ENI is executed before SLEP, the instruction will begin to execute from the Address 0X02~0X38 by each interrupt vector after wake-up. If DISI is executed before SLEP, the instruction right next to SLEP after wake-up.

Only one of Cases 3~8 can be enabled before entering into sleep mode. That is,

- [a] If WDT is enabled before SLEP, the EM88F715N can be woken up only by Case 1 or Case 2. For further details, refer to Section 6.5, *Interrupt*.
- [b] If the External (INT9~0) pin change is used to wake up the EM88F715N and the INTWKX bit is enabled before SLEP, WDT must be disabled. Hence, the EM88F715N can be woken up only by Case 3.
- [c] If Port Input Status Change is used to wake up the EM88F715N and the corresponding wake-up setting is enabled before SLEP, WDT must be disabled. Hence, the EM88F715N can be woken up only by Case 4.
- [d] When SPI acts as Slave device, after receiving data the EM88F715N will wake up and the SPIWK bit of Bank 0 R11 register is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F715N can be woken up only by Case 5.
- [e] When I²C acts as Slave device, after receiving data, the EM88F715N will wake up and the I²CWK bit of Bank 0 R11 register is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F715N can be woken up only by Case 6.
- [f] If High / Low voltage detector is used to wake up the EM88F715N and the HLVDWK bit of Bank 0 R10 register is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F715N can be woken up only by Case 7.
- [g] If AD conversion completed is used to wake up the EM88F715N and the ADWK bit of Bank 0 R10 register is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F715N can be woken up only by Case 8.

[h] If Comparator output status change is used to wake up EM88F715N and CMPWK bits of Bank0 R10 & R11 registers is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F715N can be woken up only by Case 9

Wake-up	Condition	Sleep	Mode	Idle I	Mode	Green	Mode	Normal Mode		
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI	
тсс	TCIE=0			Wake-up	is invalid	Interrupt	Interrupt is invalid		Interrupt is invalid	
(Used as Timer)	TCIE=1	Wake-up is invalid		Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
TOO	TCIE=0	Wake-up	is invalid	Wake-up	is invalid	Interrupt	is invalid	Interrupt is	invalid	
TCC (Used as Counter)	TCIE=1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
PWMA/B/ C	PWMxPIE = 0			Wake-up		Interrupt	is invalid	Interrupt is	invalid	
(When timerA/B/ C match PRDA/B/ C)	PWMxPIE = 1	Wake-up is invalid		Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
PWMA/B/ C	PWMxDIE = 0				Wake-up is invalid		is invalid	Interrupt is	invalid	
(When timerA/B/ C match DTA/B/C)	PWMxDIE = 1	Wake-up	is invalid	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
TC1/2/3	TC1/2/3IE=0			Wake-up	is invalid	Interrupt	is invalid	Interrupt is	invalid	
Interrupt (Used as Timer)	TC1/2/3IE=1	Wake-up	is invalid	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
TC1/2/3	TC1/2/3IE=0	Wake-up	is invalid	Wake-up	is invalid	Interrupt	is invalid	Interrupt is	invalid	
Interrupt (Used as Counter)	TC1/2/3IE=1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	WTIE=0		\bigtriangledown	Wake-up	is invalid.	Interrupt	is invalid.	Interrupt is	invalid.	
Watch Timer	WTIE=1	Wake-up	is invalid	_	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	

 Table 2
 All kinds of Wake-up modes and Interrupt modes are shown below:

(Continuatio	on)					_				
Wake-up	Condition			ldle	Node	Green	Mode	Normal Mode		
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI	
	INTWKx = 0, EXIEx = 0	Wake-up	is invalid	Wake-up	is invalid	Interrupt	is invalid	Interrupt	is invalid	
-	INTWKx = 0, EXIEx = 1	Wake-up	is invalid	Wake-up is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
External INT	$\begin{array}{l} INTWKx = 1,\\ EXIEx = 0 \end{array}$	Wake Next Ins		Wake Next Ins		Interrupt	is invalid	Interrupt	is invalid	
		Wake up	Wake up	Wake up	Wake up		Interrupt	N	Interrupt	
	INTWKx = 1, EXIEx = 1	+ Next Instruction	+ Interrupt Vector	+ Next Instruction	+ Interrupt Vector	Next Instruction	+ Interrupt Vector	Next Instruction	+ Interrupt Vector	
	$\begin{array}{l} ICWKPx = 0, \\ PxICIE = 0 \end{array}$	Wake-up is invalid		Wake-up	is invalid	Interrupt	is invalid	Interrupt	is invalid	
	ICWKPx = 0, PxICIE = 1	Wake-up is invalid		Wake-up	Wake-up is invalid		Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
Pin change	ICWKPx = 1, PxICIE = 0	Wake up + Next Instruction		Next Ins	Wake up + Next Instruction		is invalid	Interrupt		
	ICWKPx = 1, PxICIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	CMPWK=0 CMPIE=0	Wake-up is invalid		Wake-up	is invalid	Interrupt	is invalid	Interrupt	is invalid	
Comparator	CMPWK=0 CMPIE=1	Wake-up is invalid		Wake-up	Wake-up is invalid		Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
output status change)	CMPWK=1 CMPIE=0	Wake up + Next Instruction		Wake up + Next Instruction		Interrupt is invalid		Interrupt	is invalid	
Pin change Comparator (Comparator butput status	CMPWK=1 CMPIE=1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	ADWK = 0, ADIE = 0	Wake-up	is invalid	Wake-up	is invalid	Interrupt	is invalid	Interrupt	is invalid	
	ADWK = 0, ADIE = 1	Wake-up	is invalid	Wake-up is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	ADWK = 1, ADIE = 0	Wake Next Ins			Wake up + Next Instruction		is invalid	Interrupt	is invalid	
	ADWK = 1, ADIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	SPIWK = 0, SPIE = 0	Wake-up		Wake-up		Interrupt	is invalid	Interrupt	is invalid	
-	SPIWK = 0, SPIE = 1	Wake-up	Wake-up is invalid		Wake-up is invalid		Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	SPIWK = 1, SPIE = 0	Wake Next Ins		Wake Next Ins		Interrupt	is invalid	Interrupt is invalid		
	SPIWK = 1, SPIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	

Wake-up	Condition	Sleep	Mode	Idle I	Mode	Green	Mode	Normal Mode		
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI	
	I ² CWK=0 I ² CRIE=0	Wake-up	is invalid	Wake-up	Wake-up is invalid		Interrupt is invalid		Interrupt is invalid	
I ² C	I ² CWK=0 I ² CRIE=1	Wake-up is invalid		Wake-up is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
(Slave mode)	I ² CWK=1 I ² CRIE=0	Wake up + Next Instruction		Wake up + Next Instruction		Interrupt	is invalid	Interrupt is invalid		
	I ² CWK=1 I ² CRIE=1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
UART	UTIE = 0					Interrupt	is invalid.	Interrupt	is invalid.	
Transmit complete Interrupt	UTIE = 1	Wake-up is invalid W		Wake-up	is invalid	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
UART	URIE = 0		Interrupt is invalid		Interrupt is invalid					
Receive data Buffer full Interrupt	URIE = 1	Wake-up is invalid		Wake-up is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
UART	UERRIE = 0					Interrupt	is invalid	Interrupt	is invalid	
Receive Error Interrupt	UERRIE = 1	Wake-up	is invalid	Wake-up	Wake-up is invalid		Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	HLVDWK = 0, HLVDIE = 0	Wake-up	is invalid	Wake-up	is invalid	Interrupt is invalid		Interrupt	is invalid	
High / Low	HLVDWK = 0, HLVDIE = 1	Wake-up	is invalid	Wake-up	Wake-up is invalid		Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
Voltage Detector	HLVDWK = 1, HLVDIE = 0	Wake + Next Ins		+	Wake up + Next Instruction		Interrupt is invalid		Interrupt is invalid	
	HLVDWK = 1, HLVDIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
Low Voltage Reset		Wake up			+ Reset	Re		Res		
WDT Timeout		Wake up	+ Reset	Wake up	+ Reset	Re	set	Res	set	

6.4.2 Status of RST, T, and P of the Status Register

A reset condition is initiated by the following events:

- 1. Power-on condition
- 2. High-low-high pulse on /RESET pin
- 3. Watchdog timer time-out
- 4. When LVR occurs

The values of T and P listed in Table 4 are used to check how the processor wakes up. Table 4 shows the events that may affect the status of T and P.

Table 4 Values of RST, T and P after reset

ТР
*P / *P
0 *P

*P: Previous status before reset

Table 5 Status of T and P Being Affected by Events

Т	Р
1	1
1	1
0	*P
1	0
1	0
	T 1 1 0 1 1

*P: Previous value before reset

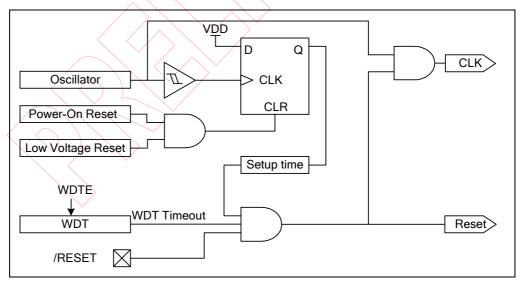


Figure 6-8 Block Diagram of Controller Reset

Table 3 Summary of Register Initial Values after Reset

Legend: U: Unknown or don't care

C: Same with Code option

P: Previous value before reset*t:* Check Table 4

			-	1	1		1	1		
Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	-	-	-
	Bank 0/1	Power-on	U	U	U	U	U	U	U	U
0x00	R0	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
	IAR	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	-	-	-	SBS0	-	-	-	GBS0
	Bank 0/1	Power-on	0	0	0	0	0	0	0	0
0x01	R1	/RESET and WDT	0	0	0	0	0	0	0	0
	BSR	Wake-up from Sleep/Idle	0	0	0	Ρ	0 <	0	0	Ρ
		Bit Name	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
	Bank 0/1	Power-on	0	0	0	0	0	0	0	0
0x02	R2	/RESET and WDT	0	0	0	0	0	0	0	0
	PCL	Wake-up from Sleep/Idle	Ρ	Ρ	P	Р	P	P	Р	Ρ
		Bit Name	INT	Ν	OV	Т	Р	Z	DC	С
	Bank 0/1	Power-on	0	U	U	1	1	U	U	U
0x03	R3 SR	/RESET and WDT	0	P	P	t	t	Р	Р	Р
		Wake-up from Sleep/Idle	P	Р	Р	t	t	Р	Ρ	Ρ
		Bit Name	RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
	Bank 0/1	Power-on	1	1	1	1	1	1	1	1
0x04	R4	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
	RSR	Wake-up from Sleep/Idle	Ρ	Р	Р	Ρ	Р	Р		Ρ
		Bit Name	P57	P56	P55	P54	P53	P52	P51	P50
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X05	R5	/RESET and WDT	0	0	0	0	0	0	0	0
	Port 5	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P67	P66	P65	P64	P63	P62	P61	P60
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0x06	R6	/RESET and WDT	0	0	0	0	0	0	0	0
	Port 6	Wake-up from Sleep/Idle	Ρ	Р	Р	Ρ	Р	Р	Р	Ρ

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	P77	P76	P75	P74	P73	P72	-	-
	Bank 0	Power-on	0	0	0	0	0	0	U	U
0x07	R7	/RESET and WDT	0	0	0	0	0	0	U	U
	Port 7	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	U	U
		Bit Name							P81	P80
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0x08	R8	/RESET and WDT	0	0	0	0	0	0	0	0
	Port 8	Wake-up from Sleep/Idle	Ρ	Ρ	Р	Ρ	Ρ	P	P	P
		Bit Name	IOC57	IOC56	IOC55	IOC54	IOC53	IOC52	IOC51	IOC50
	Bank 0	Power-on	1	1	1	1	1	Ţ	1	1
0X0B	RB	/RESET and WDT	1	1	1	1	1			1
	IOCR5	Wake-up from Sleep/Idle	Ρ	Ρ	Р	P	P	Р	Р	Р
		Bit Name	IOC67	IOC66	IOC65	IOC64	IOC63	IOC62	IOC61	IOC60
	Bank 0	Power-on	1	1	1		T)	[∼] 1	1	1
0x0C	RC	/RESET and WDT	1	1	N N	Ţ	I	1	1	1
	IOCR6	Wake-up from Sleep/Idle	Р	P	P	P	Р	Ρ	Р	Ρ
		Bit Name	IOC77	IOC76	10C75	IOC74	IOC73	IOC72	-	-
	Bank 0	Power-on	1	1	1	^{>} 1	1	1	U	U
0X0D	RD	/RESET and WDT	1	1	1	1	1	1	U	U
	IOCR7	Wake-up from Sleep/Idle	P	Р	Р	Ρ	Ρ	Р	U	U
		Bit Name	CPUS	IDLE	PERCS	IIPS	FMSF	RCM2	RCM1	RCM0
	Bank 0	Power-on	1	1	0	0	0	С	С	С
0x0E	RE	/RESET and WDT) 1	1	0	0	0	С	С	С
	OMCR	Wake-up from Sleep/Idle	Р	Р	Р	Ρ	Ρ	Р	Р	Р
		Bit Name	EI76ES	EI54ES	El32ES 1	EI32ES 0	EI1ES1	EI1ES0	EI0ES1	EI0ES0
	Bank 0	Power-on	1	1	1	1	1	1	1	1
0x0F	RF	/RESET and WDT	1	1	1	1	1	1	1	1
	EIESCR	Wake-up from Sleep/Idle	Ρ	Р	Ρ	Ρ	Ρ	Р	Р	Ρ

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name		CMPW K	HLVDW K	ADWK	INTWK1	INTWK0	-	-
0x10	Bank 0 R10	Power-on	0	0	0	0	0	0	U	U
UXIU	WUCR1	/RESET and WDT	0	0	0	0	0	0	U	U
		Wake-up from Sleep/Idle	0	Р	Ρ	Ρ	Ρ	Ρ	U	U
		Bit Name	-	-	-	-	SPIWK	I ² CWK	-	-
	Bank 0	Power-on	U	U	U	U	0	0	U	U
0x11	R11	/RESET and WDT	U	U	U	U	0	0	U	U
	WUCR2	Wake-up from Sleep/Idle	U	U	U	U	Ρ	Р	U	U
		Bit Name	ICWKP 8	ICWKP 7	ICWKP 6	ICWKP 5		INTWK 76	INTWK 54	INTWK 32
0.40	Bank 0	Power-on	0	0	0	0	0	0	0	0
0x12	R12 WUCR3	/RESET and WDT	0	0	0	0	0	0	0	0
	Weene	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Р	P	Р	P	Ρ
		Bit Name	-	CMPSF	HLVDSF	ADSF	EXSF1	EXSF0		TCSF
	R14	Power-on	U	0	0	Q	0	0	0	0
0X14		/RESET and WDT	U	0	0	0	0	0	0	0
	SFR1	Wake-up from Sleep/Idle	U	P	P	P	P	Ρ	Ρ	Ρ
		Bit Name	-	-	UERRS F	URSF	UTSF	TC3DA SF	TC2DA SF	TC1DA SF
0X15	Bank 0 R15	Power-on	Ų	U	0	<u>́</u> о	0	0	0	0
0712	SFR2	/RESET and WDT	J	U //	0	0	0	0	0	0
		Wake-up from Sleep/Idle	U	U	P	Р	Ρ	Ρ	Ρ	Ρ
		Bit Name		\searrow	PWMC PSF	PWMC DSF	PWMBP SF	PWMBD SF	PWMAP SF	PWMAD SF
0)(10	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X16	R16 SFR3	RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	Р	Р	Р	Р	Р	Р
		Bit Name	P8ICSF	P7ICSF	P6ICSF	P5ICSF	SPISF	I2CSTP SF	I2CRSF	I2CTSF
0217	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X17	R17 SFR4	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Ρ	Ρ	Р	Р	Ρ	Р	Ρ	Р

(Continuation)

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name			EXSF7	EXSF6	EXSF5	EXSF4	EXSF3	EXSF2
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X18	R18	/RESET and WDT	0	0	0	0	0	0	0	0
	SFR5	Wake-up from Sleep/Idle	0	0	Р	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	SHSF					TC3DBSF	TC2DB SF	TC1DB SF
0X19	Bank 0 R19	Power-on	0	0	0	0	0	0	0	0
0/19	SFR6	/RESET and WDT	0	0	0	0	0	0	0	0
	0.110	Wake-up from Sleep/Idle	Ρ	0	0	0	0	P	P	Р
		Bit Name		CMPIE	HLVDIE	ADIE	EXIE1	EXIE0		TCIE
	Bank 0	Power-on	0	0	0	0	0	0	0	> 0
0X1B	R1B	/RESET and WDT	0	0	0	0	0	0	0	0
	IMR1	Wake-up from Sleep/Idle	0	Р	Р	P	P	P	0	Р
		Bit Name	-	-	UERRSF	URIE	UTIE	TC3IE	TC2IE	TC1IE
	Bank 0	Power-on	U	U	0	0	0	<u>> о</u>	0	0
0X1C	R1C	/RESET and WDT	U	U	0	0	0	0	0	0
	IMR2	Wake-up from Sleep/Idle	U	U	P	P	P	Р	Ρ	Ρ
		Bit Name			PWMCPI E	PWMCD IE	PWMBP IE	PWMBDI E	PWMA PIE	PWMA DIE
0)/4 D	Bank 0	Power-on	0	0	O	0	0	0	0	0
0X1D	R1D IMR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	Р	Р	Р	Р	Р	Р
		Bit Name	P8ICIE	P7ICIE	P6ICIE	P5ICIE	SPIIE	I ² CSTPIE	I ² CRIE	I ² CTIE
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X1E	R1E	/RESET and WDT)0	0	0	0	0	0	0	0
	IMR4	Wake-up from Sleep/Idle	P	Ρ	Р	Р	Ρ	Р	Р	Ρ
		Bit Name			EXIE7	EXIE6	EXIE5	EXIE4	EXIE3	EXIE2
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X1F	R1F	/RESET and WDT	0	0	0	0	0	0	0	0
	IMR5	Wake-up from Sleep/Idle	0	0	Ρ	Ρ	Ρ	Р	Р	Ρ
		Bit Name	SHIE							
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X20	R20	/RESET and WDT	0	0	0	0	0	0	0	0
	IMR6	Wake-up from Sleep/Idle	Ρ	0	0	0	0	0	0	0

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	WDTE	FSSF			PSWE	WPSR2	WPSR1	WPSR0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X21	R21	/RESET and WDT	0	0	0	0	0	0	0	0
	WDTCR	Wake-up from Sleep/Idle	Ρ	Р	0	0	Р	Ρ	Ρ	Ρ
		Bit Name	-	TCCS	TS	TE	PSTE	TPSR2	TPSR1	TPSR0
	Bank 0	Power-on	U	0	0	0	0	0	0	0
0X22	R22	/RESET and WDT	U	0	0	0	0	0	0	0
	TCCR	Wake-up from Sleep/Idle	U	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ
		Bit Name	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X23	R23	/RESET and WDT	0	0	0	0	0	0	0	0
	TCCD	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Р	P	Р	P	Ρ
	Bank 0 R24 TC1CR1	Bit Name	TC1S	TC1RC	TC1SS1	TC1MOD	TC1FF	TC10MS	TC1IS1	TC1IS0
		Power-on	0	0	0	0	0	0	0	0
0X24		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Ρ	Р	P	P	P	Р	Ρ	Ρ
		Bit Name	TC1M2	TC1M1	TC1M0	TC1SS0	TC1CK3	TC1CK2	TC1CK1	TC1CK0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X25	R25	/RESET and WDT	0	0	0	0	0	0	0	0
	TC1CR2	Wake-up from Sleep/Idle	P	P	P	Р	Ρ	Ρ	Ρ	Р
		Bit Name	TC1DA7	TC1DA6	TC1DA5	TC1DA4	TC1DA3	TC1DA2	TC1DA1	TC1DA0
	Bank 0	Power-on	0	O	0	0	0	0	0	0
0X26	R26	/RESET and WDT	0	0	0	0	0	0	0	0
	TC1DA	Wake-up from Sleep/Idle	Р	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	TC1DB7	TC1DB6	TC1DB5	TC1DB4	TC1DB3	TC1DB2	TC1DB1	TC1DB0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X27	R27	/RESET and WDT	0	0	0	0	0	0	0	0
	TC1DB	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Ρ

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TC2S	TC2RC	TC2SS1	-	TC2FF	TC2OMS	TC2IS1	TC2IS0
	Bank 0	Power-on	0	0	0	U	0	0	0	0
0X28	R28	/RESET and WDT	0	0	0	U	0	0	0	0
	TC2CR1	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	U	Ρ	Ρ	Ρ	Р
		Bit Name	TC2M2	TC2M1	TC2M0	TC2SS0	TC2CK3	TC2CK2	TC2CK1	TC2CK0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X29	R29	/RESET and WDT	0	0	0	0	0	0	0	0
	TC2CR2	Wake-up from Sleep/Idle	Ρ	Р	Р	Р	Р	P	Р	P
		Bit Name	TC2DA7	TC2DA6	TC2DA5	TC2DA4	TC2DA3	TC2DA2	TC2DA1	TC2DA0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X2A	R2A	/RESET and WDT	0	0	0	Ø	0	0		0
	TC2DA	Wake-up from Sleep/Idle	Ρ	Ρ	P	P	P	P	Р	Р
		Bit Name	TC2DB7	TC2DB6	TC2DB5	TC2DB4	TC2DB3	TC2DB2	TC2DB1	TC2DB0
	Bank 0 R2B TC2DB	Power-on	0	0	0	0	0	0	0	0
0X2B		/RESET and WDT	0	0	Q	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	P	R	P	Р	Р	Р	Р
		Bit Name	TC3S	TC3RC	TC3SS1	-	TC3FF	TC3OMS	TC3IS1	TC3IS0
	Bank 0	Power-on	0	0		U	0	0	0	0
0X2C	R2C	/RESET and WDT	0	0	0	U	0	0	0	0
	TC3CR1	Wake-up from Sleep/Idle	Ē	P	P	U	Ρ	Ρ	Ρ	Р
		Bit Name	TC3M2	TC3M1	TC3M0	TC3SS0	TC3CK3	TC3CK2	TC3CK1	TC3CK0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X2D	R2D	/RESET and WDT	o	0	0	0	0	0	0	0
	TC3CR2	Wake-up from Sleep/Idle	P	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	TC3DA7	TC3DA6	TC3DA5	TC3DA4	TC3DA3	TC3DA2	TC3DA1	TC3DA0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X2E	R2E	/RESET and WDT	0	0	0	0	0	0	0	0
	TC3DA	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TC3DB7	TC3DB6	TC3DB5	TC3DB4	TC3DB3	TC3DB2	TC3DB1	TC3DB0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X2F	R2F	/RESET and WDT	0	0	0	0	0	0	0	0
	TC3DB	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	Strobe/ Pend	IMS	ISS	STOP	SAR_ EMPTY	ACK	FULL	EMPTY
0,700	Bank 0	Power-on	0	0	0	0	1	0	0	1
0X30	R30 I ² CCR1	/RESET and WDT	0	0	0	0	1	0	0	1
		Wake-up from Sleep/Idle	Р	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Р
		Bit Name	I ² CBF	GCEN	-	BBF	l ² CTS2	l ² CTS1	ŶCTS0	I ² CEN
	Bank 0	Power-on	0	0	U	0	0	0	0	0
0X31	R31	/RESET and WDT	0	0	U	0	0	0	0	0
	l ² CCR2	Wake-up from Sleep/Idle	Ρ	Ρ	U	P	R	P	P	Р
		Bit Name	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
	Bank 0 R32 I ² CSA	Power-on	0	0	0	0	0	0	0	0
0X32		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Ρ	P	P	Р	Р	Ρ	Ρ	Ρ
		Bit Name	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X33	R33	/RESET and WDT	0	0	0	0	0	0	0	0
	I ² CDB	Wake-up from Sleep/Idle	Р	P	P	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
	Bank 0	Power-on	1	1	1	1	1	1	1	1
0X34	R34	/RESET and WDT	\ge 1	1	1	1	1	1	1	1
	I ² CDAL	Wake-up from Sleep/Idle	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
	$\langle \rangle$	Bit Name	-	-	-	-	-	-	DA9	DA8
	Bank 0	Rower-on	U	U	U	U	U	U	1	1
0X35	R35	/RESET and WDT	U	U	U	U	U	U	1	1
	I ² CDAH	Wake-up from Sleep/Idle	U	U	U	U	U	U	Ρ	Р

EM88F715N 8-Bit Microprocessor

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X36	R36	/RESET and WDT	0	0	0	0	0	0	0	0
	SPICR	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	DORD	TD1	TD0	-	OD3	OD4	-	RBF
	Bank 0	Power-on	0	0	0	U	0	0 _	U	0
0X37	R37	/RESET and WDT	0	0	0	U	0	0		0
	SPIS	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	U	Р	E	U	P
		Bit Name	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
	Bank 0	Power-on	U	U	U	U	U	J		U
0X38	R38	/RESET and WDT	Р	Р	Р	P	P	P	Р	Р
	SPIR	Wake-up from Sleep/Idle	Ρ	Ρ	P	P	P	P	Р	Р
		Bit Name	SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
	Bank 0	Power-on	U	U	U	Ų	U	U	U	U
0X39	R39 SPIW	/RESET and WDT	Р	Р	R	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	P	Pr.	P	P	Ρ	Ρ	Р
		Bit Name	CRS	CPOUT	CS1	CS0		CC+S1	CC+S0	SDPWM A
0704	BANK 0, R3A	Power-On	0	0	0	0	0	0	0	0
0X3A	CMPCR1	/RESET and WDT	0	0	> 0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	P	Ρ	Ρ	0	0	Ρ	Р
		Bit Name							CIRL2	SDPWM B
OVOD	BANK 0, R3B	Power-On	<u> </u>	0	0	0	0	0	0	0
0X3B	CMPCR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	0	0	Ρ	Ρ
		Bit Name						CIRL1	CIRL0	SDPWM C
0X3C	BANK 0, R3C	Power-On	0	0	0	0	0	0	0	0
0730	CMPCR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	0	Ρ	Ρ	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	CKR2	CKR1	CKR0	ADRUN	ADP	ADOM	SHS1	SHS0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X3E	R3E	/RESET and WDT	0	0	0	0	0	0	0	0
	ADCR1	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	CALI	VPIS2	ADIM	ADCMS	VPIS1	VPIS0	VREFP	VREFN
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X3F	R3F	/RESET and WDT	0	0	0	0	0	0	0	0
	ADCR2	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	ADIS4	ADIS3	ADIS2	ADIS1	ADIS0
	Bank 0	Power-on	U	U	U	0	0	0	0	0
0X40	R40	/RESET and WDT	U	U	U	0	0	0	0	0
	ADISR	Wake-up from Sleep/Idle	U	U	U	Р	P	P	P	Р
		Bit Name	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Bank 0	Power-on	0	0	0	Q	0	0	0	0
0X41	R41	/RESET and WDT	0	0	0	0) 0	0	0	0
	ADER1	Wake-up from Sleep/Idle	Ρ	P	P	Р	P	Р	Ρ	Р
		Bit Name	-	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8
	Bank 0	Power-on	U	0	0	0	0	0	0	0
0X42	R42	/RESET and WDT	U	0	0	0	0	0	0	0
	ADER2	Wake-up from Sleep/Idle	Ų	P	P	Р	Р	Р	Р	Р
		Bit Name	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
	Bank 0	Power-on	U	<u>کل</u>	U	U	U	U	U	U
0X43	R43	/RESET and WDT	U	νU	U	U	U	U	U	U
	ADDL	Wake-up from Sleep/Idle	Р	Р	Ρ	Р	Р	Ρ	Р	Р
		Bit Name	ADD15	ADD14	ADD13	ADD12	ADD11	ADD10	ADD9	ADD8
	Bank 0	Power-on	U	U	U	U	U	U	U	U
0X44	R44	/RESET and WDT	U	U	U	U	U	U	U	U
	ADDH	Wake-up from Sleep/Idle	Р	Ρ	Ρ	Р	Р	Ρ	Р	Р
		Bit Name	ADCV7	ADCV6	ADCV5	ADCV4	ADCV3	ADCV2	ADCV1	ADCV0
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X45	R45	/RESET and WDT	0	0	0	0	0	0	0	0
	ADCVL	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	ADCV15	ADCV14	ADCV13	ADCV12	ADCV11	ADCV10	ADCV9	ADCV8
	Bank 0	Power-on	0	0	0	0	0	0	0	0
0X46	R46	/RESET and WDT	0	0	0	0	0	0	0	0
	ADCVH	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name							IOC81	IOC80
	Bank 1	Power-on	0	0	0	0	0	0	1	1
0X05	R5	/RESET and WDT	0	0	0	0	0	0	/	1
	IOCR8	Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	P
		Bit Name	PH57	PH56	PH55	PH54	PH53	PH52	PH51	PH50
	Bank 1	Power-on	1	1	1	1				1
0X08	R8	/RESET and WDT	1	1	1	1		\sim 1	\searrow	1
	P5PHCR	Wake-up from Sleep/Idle	Ρ	Ρ	P	P	P	P	Р	Р
		Bit Name	PH67	PH66	PH65	PH64	PH63	PH62	PH61	PH60
	Bank 1	Power-on	1	1 🧹	1	1		1	1	1
0X09	R9	/RESET and WDT	1	1			\searrow	1	1	1
	P6PHCR	Wake-up from Sleep/Idle	Р	P	Ř	P	P	Ρ	Ρ	Ρ
		Bit Name						P8LPH	P7HPH	P7LPH
	Bank 1	Power-on <	1	Ì	$\langle h \rangle$	1	1	1	1	1
0X0A	RA	/RESET and WDT		1	$\overline{}$	1	1	1	1	1
	P78PHCR	Wake-up from Sleep/Idle	P	P	P	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	PL57	PL56	PL55	PL54	PL53	PL52	PL51	PL50
	Bank 1	Power-on	1	1	1	1	1	1	1	1
0X0B	RB	/RESET and WDT	\sum	1	1	1	1	1	1	1
	P5PLCR	Wake-up from Sleep/Idle	P	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	PL67	PL66	PL65	PL64	PL63	PL62	PL61	PL60
	Bank 1	Power-on	1	1	1	1	1	1	1	1
0X0C	RC	/RESET and WDT	1	1	1	1	1	1	1	1
	P6PLCR	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name						P8LPL	P7HPL	P7LPL
	Bank 1	Power-on	1	1	1	1	1	1	1	1
0X0D	RD	/RESET and WDT	1	1	1	1	1	1	1	1
	P78PLCR	Wake-up from Sleep/Idle	Ρ	Р	Ρ	Ρ	Ρ	Р	Ρ	Ρ
		Bit Name	HDS57	HDS56	HDS55	HDS54	HDS53	HDS52	HDS51	HDS50
	Bank 1	Power-on	1	1	1	1	1	1	1	1
0X0E	RE	/RESET and WDT	1	1	1	1			1	1
	P5HDSCR	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Р	P	Р	P	Ρ
		Bit Name	HDS67	HDS66	HDS65	HDS64	HDS63	HDS62	HDS61	HDS60
	Bank 1	Power-on	1	1	1 (1	T _		1	1
0X0F	RF	/RESET and WDT	1	1	1	1	> 1	1	1	1
	P6HDSCR	Wake-up from Sleep/Idle	Ρ	Р	P	Р	P	Р	Ρ	Ρ
		Bit Name						P8LHDS	P7HHDS	P7LHDS
	Bank 1	Power-on	1	1	1	1	1	1	1	1
0X10	R10	/RESET and WDT	1	1	1	1	1	1	1	1
	P78HDSCR	Wake-up from Sleep/Idle	P	P	P	Р	Ρ	Р	Р	Р
		Bit Name	OD57	OD56	OD55	OD54	OD53	OD52	OD51	OD50
	Bank 1	Power-on	0	0	0	0	0	0	0	0
0X11	R11	/RESET and WDT	0	0	0	0	0	0	0	0
	P5ODCR	Wake-up from Sleep/Idle	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	OD67	OD66	OD65	OD64	OD63	OD62	OD61	OD60
	Bank 1	Power-on	0	0	0	0	0	0	0	0
0X12	R2	/RESET and WDT	0	0	0	0	0	0	0	0
	PEODCR	Wake-up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name						P8LOD	P7HOD	P7LOD
	Bank 1	Power-on	0	0	0	0	0	0	0	0
0X13	R13	/RESET and WDT	0	0	0	0	0	0	0	0
	P78ODCR	Wake-up from Sleep/Idle	Р	Р	Р	Ρ	Р	Ρ	Ρ	Р
		Bit Name			DEADT DE	DEADT CE	DEADTB E	DEADTA E	DEADTP 1	DEADT P0
0X14	BANK 1, R14	Power-On	0	0	0	0	0	0	0	0
0/14	DeadTCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	Р	Р	Р	P	P	Р
		Bit Name	DEADT R7	DEADT R6	DEADT R5	DEADT R4	DEADT R3	DEADT R2	DEADT R1	DEADT R0
0X15	BANK 1, R15	Power-On	0	0	0	0	0	0	0	> 0
0/13	DeadTR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Р	P	Р	P	Р	Р
		Bit Name				DEADS		PWMCS	PWMBS	PWMAS
	BANK 1, R16	Power-On	0	0	0	0	0) 0	0	0
0X16	PWMSCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	P	0	Р	Р	Р
		Bit Name	PWMAE	IPWMAE	PWMAA	IPWMAA	TAEN	TAP2	TAP1	TAP0
	BANK 1, R17	Power-On	0	0	0	0	0	0	0	0
0X17	PWMACR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	P	Р	P	Р	Р	Р	Р	Р
		Bit Name	PRDA7	PRDA6	PRDA5	PRDA4	PRDA3	PRDA2	PRDA1	PRDA0
	BANK 1, R18	Power-On	0	0	0	0	0	0	0	0
0X18	PRDAL	/RESET and WDT	Ŏ	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	P	Ρ	Ρ	Р	Р	Р	Р	Ρ
		Bit Name	PRDA15	PRDA14	PRDA13	PRDA12	PRDA11	PRDA10	PRDA9	PRDA8
	BANK 1, R19	Power-On	0	0	0	0	0	0	0	0
0X19	PRDAH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Р	Р	Р	Р
		Bit Name	DTA7	DTA6	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0
	BANK 1, R1A	Power-On	0	0	0	0	0	0	0	0
0X1A	DTAL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	DTA15	DTA14	DTA13	DTA12	DTA11	DTA10	DTA9	DTA8
	BANK 1, R1B	Power-On	0	0	0	0	0	0	0	0
0X1B	DTAH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	Ρ	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	TMRA7	TMRA6	TMRA5	TMRA4	TMRA3	TMRA2	TMRA1	TMRA0
	BANK 1, R1C	Power-On	0	0	0	0	0	0	0	1
0X1C	TMRAL	/RESET and WDT	0	0	0	0	0	0	0	1
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	TMRA15	TMRA14	TMRA13	TMRA12	TMRA11	TMRA10	TMRA9	TMRA8
	BANK 1, R1D	Power-On	0	0	0	0	0	0	0	0
0X1D	TMRAH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	P	P	Ρ	Ρ
		Bit Name	PWMBE	IPWMBE	PWMBA	IPWMBA	TBEN	TBP2	TBP1	TBP0
	BANK 1, R1E	Power-On	0	0	0	0 <	0	0	0	0
0X1E	PWMBCR	/RESET and WDT	0	0	0	0	Ő	0	0	0
		Wake-Up from Sleep/Idle	Р	Ρ	P	R	Р	P	Ρ	Ρ
		Bit Name	PRDB7	PRDB6	PRDB5	PRDB4	PRDB3	PRDB2	PRDB1	PRDB0
	BANK 1, R1F	Power-On	0	0 <	0	0	0	0	0	0
0X1F	PRDBL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Р	P	Р	Ρ	Ρ	Ρ
		Bit Name	PRDB15	PRDB14	PRDB13	PRDB12	PRDB11	PRDB10	PRDB9	PRDB8
	BANK 1, R20	Power-On	0	0	0	0	0	0	0	0
0X20	PRDBH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	P	Р	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	DTB7	DTB6	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0
	BANK 1, R21	Power-On	<u> </u>	0	0	0	0	0	0	0
0X21	DAINK 1, H21	/RESET and WDT	Ø	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	Ρ	Ρ	Ρ	Ρ
/		Bit Name	DTB15	DTB14	DTB13	DTB12	DTB11	DTB10	DTB9	DTB8
	BANK 1, R22	Power-On	0	0	0	0	0	0	0	0
0X22	DTBH	/RESET and WDT	0	0	0	0	0	0	0	0
	Наци	Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TMRB7	TMRB6	TMRB5	TMRB4	TMRB3	TMRB2	TMRB1	TMRB0
	BANK 1, R23	Power-On	0	0	0	0	0	0	0	0
0X23	TMRBL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Р	Р	Ρ	Р	Р
		Bit Name	TMRB15	TMRB14	TMRB13	TMRB12	TMRB11	TMRB10	TMRB9	TMRB8
	BANK 1, R24	Power-On	0	0	0	0	0	0	0	0
0X24	TMRBH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Ρ	Ρ	Ρ	Ρ	P	P	Р
		Bit Name	PWMCE	IPWMCE	PWMCA	IPWMCA	TCEN	TCP2	TCP1	TCP0
	BANK 1, R25	Power-On	0	0	0	0	о <	0	0	0
0X25	PWMCCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	P	P	P	P	Р
		Bit Name	PRDC7	PRDC6	PRDC5	PRDC4	PRDC3	PRDC2	PRDC1	PRDC0
	BANK 1, R26	Power-On	0	0	0 <	0	0	0	0	0
0X26	PRDCL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Р	P	P	P	Р	Ρ	Ρ
		Bit Name	PRDC15	PRDC14	PRDC13	PRDC12	PRDC11	PRDC10	PRDC9	PRDC8
	BANK 1, R27	Power-On	0	Ø	ø	0	0	0	0	0
0X27	PRDCH	/RESET and WDT	0	Ø	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	P	P	P	P	Ρ	Ρ	Ρ	Р
		Bit Name	DTC7	DTC6	DTC5	DTC4	DTC3	DTC2	DTC1	DTC0
	BANK 1, R28	Power-On		0	0	0	0	0	0	0
0X28	DTCL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	DTC15	DTC14	DTC13	DTC12	DTC11	DTC10	DTC9	DTC8
	BANK 1, R29	Power-On	0	0	0	0	0	0	0	0
0X29	DTCH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	TMRC7	TMRC6	TMRC5	TMRC4	TMRC3	TMRC2	TMRC1	TMRC0
	BANK 1, R2A	Power-On	0	0	0	0	0	0	0	0
0X2A	TMRCL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TMRC15	TMRC14	TMRC13	TMRC12	TMRC11	TMRC10	TMRC9	TMRC8
	BANK 1, R2B	Power-On	0	0	0	0	0	0	0	0
0X2B	TMRCH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Ρ	Ρ	Ρ	Р	Ρ	Р
		Bit Name	UINVEN	UMODE1	UMODE0	BRATE2	BRATE1	BRATE0	UTBE	TXE
	Bank 1	Power-on	0	0	0	0	0	0	1	0
0X33	R33	/RESET and WDT	0	0	0	0	0	0	1	0
	URCR	Wake-up from Sleep/Idle	Р	Ρ	Р	Ρ	Ρ	Р	Ρ	Р
		Bit Name	URTD8	EVEN	PRE	PRERR	OVERR	FMERR	URBF	RXE
	Bank 1	Power-on	U	0	0	0	0	0	0	0
0X34	R34	/RESET and WDT	Р	0	0	0	0	0	0	0
	URS	Wake-up from Sleep/Idle	Р	Ρ	Р	Ρ	P	P	Ρ	Р
		Bit Name	URTD7	URTD6	URTD5	URTD4	URTD3	URTD2	URTD1	URTD0
	Bank 1	Power-on	U	U	U	U	U	U	C	U
0X35	R35	/RESET and WDT	Р	Р	Р	Р	P	Р	P	Р
	URTD	Wake-up from Sleep/Idle	Р	Р	P	R	P	P	Р	Р
		Bit Name	URRD7	URRD6	URRD5	URRD4	URRD3	URRD2	URRD1	URRD0
	Bank 1	Power-on	U	U 🧹		Ç	<u></u>	U	U	U
0X36	R36	/RESET and WDT	Р	P	P	Р	Р	Р	Р	Р
	URRDL	Wake-up from Sleep/Idle	Р	Р	Р	P	Р	Р	Р	Р
		Bit Name	URRD8	-	-	-	-	-	-	-
	Bank 1	Power-on	U	U	U	U	U	U	U	U
0X37	R37	/RESET and WDT	P	Ų	Ŭ	U	U	U	U	U
	URRDH	Wake-up from Sleep/Idle	Р	U	U	U	U	U	U	U

EM88F715N 8-Bit Microprocessor

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	Bank 1	Power-on	0	0	0	0	0	0	0	0
0X45	R45	/RESET and WDT	0	0	0	0	0	0	0	0
	TBPTL	Wake-up from Sleep/Idle	Р	Ρ	Ρ	Р	Р	Р	Р	Р
		Bit Name	HLB	GP	GP	GP	TB11	TB10	TB9	TB8
	Bank 1	Power-on	0	0	0	0	0	0	0	0
0X46	R46	/RESET and WDT	0	0	0	0	0	0	0	0
	TBPTH	Wake-up from Sleep/Idle	Р	Ρ	Ρ	Р	Р	P	Ρ	P
		Bit Name	STOV	-	-	-	STL3	STL2	STL1	STL0
	Bank 1	Power-on	0	U	U	U	0	0	0	0
0X47	R47	/RESET and WDT	0	U	U	U	0	0	0	0
	STKMON	Wake-up from Sleep/Idle	Ρ	U	U	U	P	P	Р	Р
		Bit Name	-	-	-	-	PC11	PC10	PC9	PC8
	Bank 1	Power-on	U	U	U	U	0	0	0	0
0X48	R48	/RESET and WDT	U	Ú) Ø	Ų	0	0	0	0
	PCH	Wake-up from Sleep/Idle	U	J	U	U	Р	Р	Ρ	Р
		Bit Name	HLVDEN	IRVSF	VDSB	VDM	HLVDS3	HLVDS2	HLVDS1	HLVDS0
	Bank 1	Power-on	0	0		0	1	1	1	1
0X49	R49	/RESET and WDT	0	0	1	0	1	1	1	1
	HLVDCR	Wake-up from Sleep/Idle	Р	P	Ρ	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0X50	Bank 0	Power-on	U	U	U	U	U	U	U	U
~ 0X7F	R50~R7F	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
	1130 (11/1	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0X80	Bank 0~3	Power-on	U	U	U	U	U	U	U	U
~ 0XFF	R80~RFF	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
0/11		Wake-up from Sleep/Idle	Р	Р	Ρ	Р	Р	Р	Р	Р

6.5 Interrupt

	o= · · · · · · · · · · · · · · · · · · ·		· · · ·	
The EM88F715N has	25 interrupts (11	external, 14	internal) as	listed below:

Interr	upt Source	Enable Condition	Int. Flag	Int. Vector	Priority
Internal/External	Reset	-	-	0	High 0
External	INT	ENI + EXIE=1	EXSF	2	1
External	Pin change	ENI +ICIE=1	ICSF	4	2
Internal	TCC	ENI + TCIE=1	TCSF	6	3
Internal	HLVD	ENI+HLVDEN & HLVDIE=1	HLVDSF	8	4
External	Comparator	ENI+CMPIE=1	CMPSF	А	5
Internal	SPI	ENI + SPIIE=1	SPISF	С	6
Internal	AD	ENI + ADIE=1	ADSF	10	7
Internal	TC1(TCXDA)	ENI + TC1IE=1	TC1SF	12	8
Internal	PWMPA	ENI+PWMPAIE=1	PWMPASF	14	9
Internal	PWMDA	ENI+PWMDAIE=1	PWMDASF	16	10
Internal	I ² C Transmit	ENI+ I ² CTIE	I ² CTSF	1A	11
Internal	I ² C Receive	ENI+ I ² CRIE	I ² CRSF	10	12
Internal	I ² CSTOP	ENI+ I ² CSTPIE	I ² CSTPSF	1E	13
Internal	TC2(TCXDA)	ENI + TC2IE=1	TC2SF	22	14
Internal	PWMPB	ENI+PWMPBIE=1	PWMPBSF	24	15
Internal	PWMDB	ENI+PWMDBIE=1	PWMDBSF	26	16
Internal	TC3(TCXDA)	ENI + TC3IE=1	TC3SF	28	17
Internal	PWMPC	ENI+PWMPCIE=1	PWMPCSF	2A	18
Internal	PWMDC	ENI+PWMDCIE=1	PWMDCSF	2C	19
Internal	UART Receive error	ENI+UERRIE=1	UERRSF	2E	20
Internal	UART Receive	ENI + URIE=1	URSF	30	21
Internal	UART Transmit	ENI + UTIE=1	UTSF	32	22
External	System hold	ENI + SHIE=1	SHSF	34	23

Bank 0 R15~R1A are the interrupt status registers that record the interrupt requests in relative flags/bits. Bank 0 R1B~R20 is the Interrupt Mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the enabled interrupts occurs, the next instruction will be fetched from their individual addresses. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine and before interrupts are enabled to avoid recursive interrupts.

The flag (except ICSF bit delete) in the Interrupt Status Register is set regardless of the status of its mask bit or the execution of ENI. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

External interrupt is equipped with digital noise rejection circuit (input pulse of less than **4 system clock time** is eliminated as noise), **but in Low XTAL oscillator (LXT) mode, the noise rejection circuit is disabled**. When an interrupt (Falling edge) is generated by the External interrupt (when enabled), the next instruction will be fetched from Address 0X02H.

Before the interrupt subroutine is executed, the contents of ACC, R3 (Bit 0~Bit 4) and R4 registers are saved by hardware. If another interrupt occurs, the ACC, R3 (Bit 0~Bit 4) and R4 registers will be replaced by the new interrupt. After the interrupt service routine is finished, ACC, R3 (Bit 0~Bit 4) and R4 are restored.

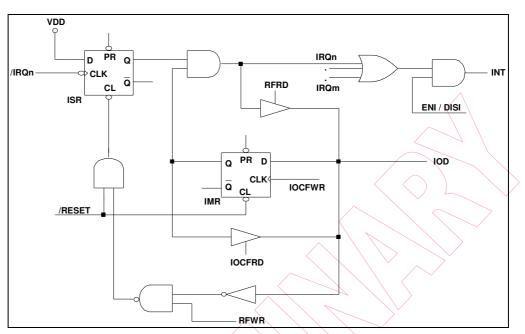
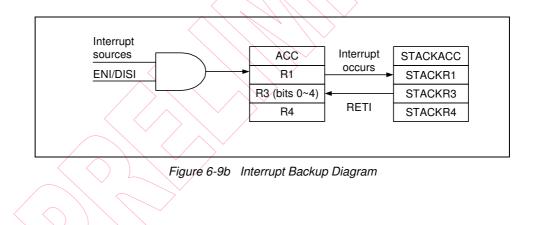



Figure 6-9a Interrupt Input Circuit

6.6 A/D Converter

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0x2E	ADCR1	CKR2	CKR1	CKR0	ADRUN	ADP	ADOM	SHS1	SHS0
Bank 0	0x3E	ADCRI	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x3F	ADCR2	-	VPIS2	ADIM	ADCMS	VPIS1	VPIS0	VREFP	VREFN
Dalik U	UXSF	ADCh2	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x40	ADISR	-	-	-	ADIS4	ADIS3	ADIS2	ADIS1	ADIS0
Dalik U	0240	ADISH	-	-	-	R/W	R/W	R/W	R/W	R/W
Bank 0	0x41	ADER1	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
Dank U	0841	ADERI	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x42	ADER2	ADE15	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8
Dalik U	0842	ADENZ	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x43	ADDL	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
Dalik U	0843	ADDL	R	R	R	R	R	R	R	R
Bank 0	0x44	ADDH	ADD15	ADD14	ADD13	ADD12	ADD11	ADD10	ADD9	ADD8
Dalik U	0244	ADDI	R	R	R	R	R	R	R	R
Bank 0	0x45	ADCVL	ADCD7	ADCD6	ADCD5	ADCD4	ADCD3	ADCD2	ADCD1	ADCD0
Dalik U	0245	ADCVL	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x46	ADCVH	ADCD15	ADCD14	ADCD13	ADCD12	ADCD11	ADCD10	ADCD9	ADCD8
Dalik U	0240	ADCVII	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x10	WUCR1	-	-	-	ADWK				-
Dalik U	0,10	WOCHT	-	-	-	R/W	Ľ		> -	-
Bank 0	0x15	SFR1	-	-	-	ADSF	$\backslash - \rangle$		-	-
Dank U	0.15	5111	-	-	- /~	R/W		/ _	-	-
Bank 0	0x1B	IMR1	-	-		ADIE		> -	-	-
Darik U			-	-		R/W	>`	-	-	-

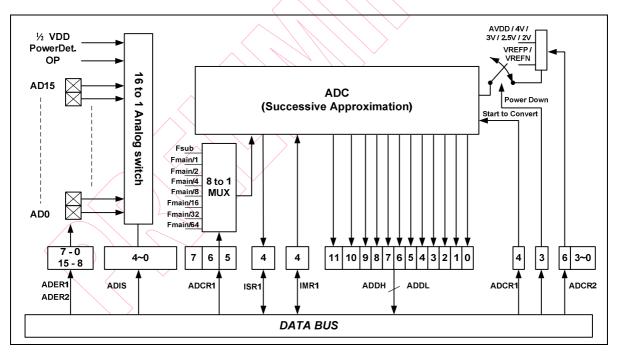


Figure 6-10 AD Converter Functional Block Diagram

This is a 12-bit successive approximation register analog-to-digital converter (SAR ADC). There are two reference voltages for SAR ADC. The positive reference voltage can select internal AVDD, internal voltage sources, or external input pin by setting the VREFN, VREFP and VPIS2~0 bits in ADCR2. Connecting to external positive reference voltage provides more accuracy than using internal AVDD.

6.6.1 ADC Data Register

When the AD conversion is completed, the result is loaded to the ADDH and ADDL. And the ADSF is set if ADIE is enabled.

6.6.2 A/D Sampling Time

The accuracy, linearity, and speed of the successive approximation AD converter are dependent on the properties of the ADC. The source impedance and the internal sampling impedance directly affect the time required to charge the sample and hold capacitor. The application program controls the length of the sample time to meet the specified accuracy. The maximum recommended impedance for the analog source is $10k\Omega$ at VDD = 5V. After the analog input channel is selected, this acquisition time must be done before AD conversion can be started.

6.6.3 A/D Conversion Time

CKR2~0 select the conversion time (TAD). This allows the MCU to run at maximum frequency without sacrificing the accuracy of AD conversion. The following tables show the relationship between T_{AD} and the maximum operating frequencies. The T_{AD} is 0.5 µs for 3V~5.5V and 2 µs for 2.5V~3V.

System Mode	CKR 2~0	Operating Clock of ADC (F _{AD} = 1 / T _{AD})	$\begin{array}{l} \text{Max. F}_{\text{Main}} \\ (\text{V}_{\text{DD}} = 3\text{V} \sim 5.5\text{V}) \end{array}$	$\begin{array}{l} \text{Max. } \textbf{F}_{\text{Main}} \\ (\textbf{V}_{\text{DD}} = 2.5 \textbf{V} \sim 3 \textbf{V}) \end{array}$
	000	F _{Main} / 16	16 MHz	8 MHz
	001	F _{Main} / 8	16 MHz	4 MHz
	010	F _{Main} / 4	8 MHz	2 MHz
Normal	011	F _{Main} / 2	4 MHz	1 MHz
Mode	100	F _{Main} / 64	16 MHz	16 MHz
	101	F _{Main} / 32	16 MHz	16 MHz
	110	F _{Main} / 1	2 MHz	0.5 MHz
	111	F _{Sub}	Fs	Fs
Green Mode	XXX	F _{Sub}	Fs	Fs

* Conversion Time = Sample and Hold (SHS[1:0]=10, 8 * T_{AD}) + 12 * Bit Conversion Time (12 * T_{AD}) + Delay Time between setting ADSTART bit and starting first T_{AD} .

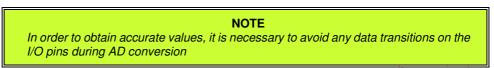
6.6.4 ADC Operation during Sleep Mode

In order to obtain a more accurate ADC value and reduce power consumption, the AD conversion remains operational during sleep mode. As the SLEP instruction is executed, all the MCU operations will stop except for the Oscillator, TCC, TC1~3, PWMA~C and AD conversion.

The AD Conversion is considered completed as determined by:

- 1. The ADRUN bit of the Bank 0-R3E register is cleared to "0".
- 2. The ADSF bit of the Bank 0-R15 register is set to "1".
- 3. The ADWK bit of the Bank 0-R10 register is set to "1" and wakes up from ADC conversion (where it remains in operation during sleep mode).
- 4. Wake up and execution of the next instruction if the ADIE bit of the Bank 0-R1B is enabled and the "DISI" instruction is executed.
- 5. Wake up and enters into interrupt vector if the ADIE bit of Bank 0-R1B is enabled and the "ENI" instruction is executed.
- 6. Enter into an interrupt vector if the ADIE bit of the Bank 0-R1B is enabled and the "ENI" instruction is executed.

The results are fed into the ADDL and ADDH registers when the conversion is completed. If the ADWK is enabled, the device will wake up. Otherwise, the AD conversion will be shut off, no matter what status of the ADPD bit is.


6.6.5 Programming Process/Considerations

Follow these steps to obtain data from the ADC:

- Write to the 16 bits (ADE15~0) on the Bank 0-R41~R42 (ADER1~2) register to define the characteristics of P52~P57, P60~P62, P64~P67 and P74~P77(digital I/O, analog channels, or voltage reference pin)
- 2. Write to the Bank 0-R3E/ADCON register to configure the AD module:
 - a) Select the ADC input channel (ADIS4~0)
 - b) Define the AD conversion clock rate (CKR2~0)
 - c) Select the VREFS input source of the ADC
 - d) Set the ADPD bit to "1" to begin sampling
- 3. Set the ADWK bit, if the wake-up function is employed
- 4. Set the ADIE bit, if the interrupt function is employed
- 5. Write "ENI" instruction, if the interrupt function is employed
- 6. Set the ADRUN bit to "1"
- 7. Write "SLEP" instruction or Polling.
- 8. Wait for either Wake-up or for the ADRUN bit to be cleared to "**0**", and the Status flag (ADSF) is set "**1**" or ADC interrupt occurs.

- 9. Read the ADDL and ADDH conversion data registers. If the ADC input channel changes at this time, the ADDL and ADDH values can be cleared to "**0**".
- 10. Clear the status flag (ADSF).
- 11. For next conversion, go to Step 1 or Step 2 as required. At least two T_{AD} are required before the next acquisition starts. On the other hand, the timing setting ADRUN = 1 must be later than the timing setting ADPD = 1, and the difference between the two timing is also two T_{AD} .

6.6.6 Programming Process for Detecting Internal VDD

VDD is detected within the operation, as described in the previous section, the difference is that before starting the ADC conversion, the first detection of VDD is ready. Therefore, in detecting VDD:

It should be noted that before starting the AD conversion operation, the channel has to be switched to 1/2VDD, the voltage divider needs to be started before AD can be converted. Several points to note is that, precise conversion values can be added in the VDD Pin capacitance, or more than twice the conversion, taking the average of the last few strokes data in order to increase the reliability of the data.

Note that usually before VDD is detected, do not switch the channel to 1/2VDD. As there has always been a DC current consumption, the channel must be switched to another channel analog multiplexer, and it will be shut out of the resistor divider. User attention is required.

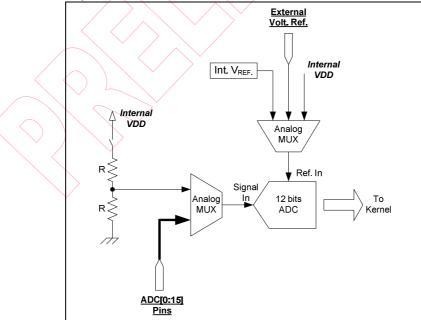


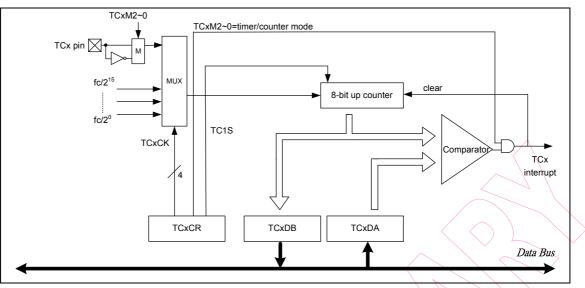
Figure 6-11 ADC and VDD Detection Block Diagram

6.6.7 Sample Demo Programs

```
A. Define System Control Registers
IAR == 0X00 ; Indirect addressing register
SR == 0X03 ; Status register
WUCR1 == 0x10 ; Wakeup Control Register 1
SFR1 == 0x15 ; Status Flag Register 1 of Interrupt
IMR1 == 0x1B ; Interrupt Mask Register 1
B. Define I/O Control Registers
PORT6 == 0X06
PORT7 == 0X07
PORT9 == 0X09
IOCR6 == 0x0C ; I/O Control Register of Port 6
IOCR7 == 0x0D ; I/O Control Register of Port 7
IOCR9 == 0 \times 06; I/O Control Register of Port 9(Bank 1)
C. ADC Control Register
ADCR1 == 0x3E; 7 6 5 4 3 2
                                                   1
                                                        0
               ; CKR1 CKR1 CKR0 ADRUN ADP ADOM SHS1 SHS0
ADISR == 0x40 ; ADC input select register
ADDH == 0x44; The contents are the results of ADC[11:8]
ADDL == 0x45; The contents are the results of ADC[7:0]
D. Define Bits in ADCR1
ADP == 0x3; Power Mode of ADC
ADRUN == 0x4
              ; ADC is executed as the bit is set
E. Program Starts
ORG 0
              ; Initial address
JMP INITIAL
ORG 0x12
           ; ADC Interrupt vector
JMP CLRRE
;
; (User program section)
;
CLRRE:
MOV A, SFR1
AND A, @OBXXXOXXXX; To clear the ADSF bit, "X" by application
MOV SFR1, A
    ADCR1, ADRUN ; To start to execute the next AD conversion
BS
                 ✓; if necessary
RETT
INITIAL:
MOV A, COBO0000001; To define P73 as an analog input
MOV ADISR, A
MOV A, @OB00001000; To select P73 as an analog input channel, and
                    AD power on
```



```
MOV ADCR1, A ; To define P73 as an input pin and set clock
                     rate at fosc/16
En ADC:
MOV A, @OBXXXX1XXX; To define P73 as an input pin, and the others
                  ; are dependent on applications
MOV IOCR7, A
MOV A, @OBXXX1XXXX; Enable the ADWE wake-up function of ADC, "X"
                   ; by application
MOV WUCR1, A
MOV A, @OBXXX1XXXX; Enable the ADIE interrupt function of ADC,
                  ; "X" by application
MOV IMR1, A
ENI
                   ; Enable the interrupt function
BS ADCON, ADRUN ; Start to run the ADC
; If the interrupt function is employed, the following three lines
may be ignored
; If Sleep:
SLEP
;
; (User program section)
;
or
; If Polling:
POLLING:
JBC ADCR1, ADRUN
                   ; To check the ADRUN bit continuously;
JMP POLLING
                  ; ADRUN bit will be reset as the AD conversion
                  ; is completed
;
; (User program section)
```



6.7 Timer

There are three Timers in EM88F715N. Timer 2 and Timer 3 are 8 bits up-counter. Timer 1 can be one 8-bit up-counter or cascaded with Timer 2 as one 16-bit up-counter. If Timer 1 is used as 16-bit up-counter, the circuit resource of Timer 2 would be used. At this time, Timer 2 cannot be used. When updating the DA with cascaded, write TC2DA (High-byte) first before writing TC1DA (Low-byte).

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0.204	TOTODI	TC1S	TC1RC	TC1SS1	TC1MOD	TC1FF	TC10MS	TC1IS1	TC1IS0
Bank 0	0x24	TC1CR1	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
Denk 0	005	TO1000	TC1M2	TC1M1	TC1M0	TC1SS0	TC1CK3	TC1CK2	TC1CK1	TC1CK0
Bank 0	0x25	TC1CR2	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Denk 0	000	TOIDA	TC1DA7	TC1DA6	TC1DA5	TC1DA4	TC1DA3	TC1DA2	TC1DA1	TC1DA0
Bank 0	0x26	TC1DA	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Dank 0	0.07	TOIDD	TC1DB7	TC1DB6	TC1DB5	TC1DB4	TC1DB3	TC1DB2	TC1DB1	TC1DB0
Bank 0	0x27	TC1DB	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0.200	TOODA	TC2S	TC2RC	TC2SS1	-	TC2FF	TC2OMS	TC2IS1	TC2IS0
Bank 0	0x28	TC2CR1	R/W	R/W	R/W	-		R/W	R/W	R/W
Denk 0	000	TOOODO	TC2M2	TC2M1	TC2M0	- <	TC2CK3	TC2CK2	TC2CK1	TC2CK0
Bank 0	0x29	TC2CR2	R/W	R/W	R/W	<u> </u>	R/W	R/W	R/W	R/W
Denk 0	00 4	TC2DA	TC2DA7	TC2DA6	TC2DA5	TC2DA4	TC2DA3	TC2DA2	TC2DA1	TC2DA0
Bank 0	0x3A	IC2DA	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x2P	TC2DB	TC2DB7	TC2DB6	TC2DB5	TC2DB4	TC2DB3	TC2DB2	TC2DB1	TC2DB0
Bank 0	0x3B	IC2DB	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0.20	TOPODA	TC3S	TC3RC	TC3SS1		TC3FF	TC3OMS	TC3IS1	TC3IS0
Bank 0	0x3C	TC3CR1	R/W	R/W	R/W	/ `	R	R/W	R/W	R/W
Bank 0	0.20	TC3CR2	TC3M2	TC3M1	тсзмо		ТСЗСКЗ	TC3CK2	TC3CK1	ТСЗСК0
Bank 0	0x3D	IC3CH2	R/W <	R/W	R/W	\searrow -	R/W	R/W	R/W	R/W
Bank 0	0x3E	TC3DA	TC3DA7	TC3DA6	TC3DA5	TC3DA4	TC3DA3	TC3DA2	TC3DA1	TC3DA0
Dalik U	UXSE	ICSDA	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x3F	тсзрв	TC3DB7	TC3DB6	TC3DB5	TC3DB4	TC3DB3	TC3DB2	TC3DB1	TC3DB0
Dalik U	UXSF	ТСЗДВ	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x15	SFR2	✓ -> ``	- /	-	-	-	TC3DASF	TC2DASF	TC1DASF
Dalik U	0215	JENZ	- /	\sim	-	-	-	F	F	F
Bank 0	0x19	SFR6	-	-	-	-	-	TC3DBSF	TC2DBSF	TC1DBSF
Dalik U	UXIS	JENO	\searrow	-	-	-	-	F	F	F
Bank 0	0x1C	IMR2	$\overline{}$	-	-	-	-	TC3DIE	TC2DIE	TC1DIE
Dalik U			-	-	-	-	-	R/W	R/W	R/W

6.7.1 Timer/Counter Mode

Figure 6-12a Timer/Counter Mode Block Diagram

In Timer/Counter mode, counting up is performed using internal clock or TCx pin. When the contents of the up-counter match with the TCxDA, interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into TCxDB by setting TCxRC to "1".

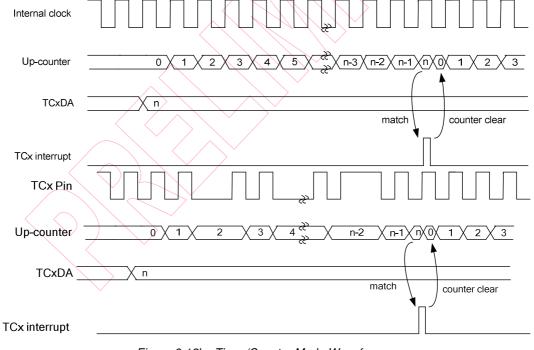
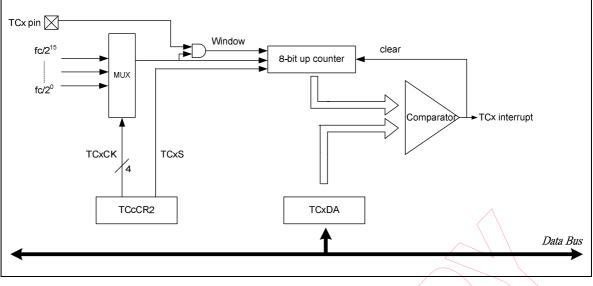
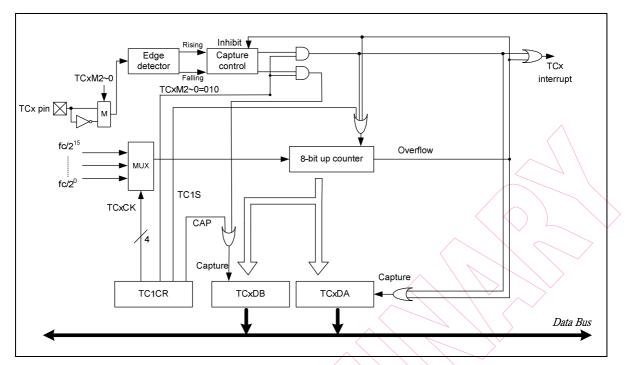



Figure 6-12b Timer/Counter Mode Waveform

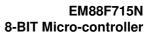


6.7.2 Window Mode

In Window mode, counting up is performed on a rising edge of the pulse that is logical AND of an internal clock and the TCx pin (window pulse). When the contents of the up-counter match with the TCxDA, interrupt is generated and the counter is cleared. The frequency (window pulse) must be lower than the selected internal clock.

TCx pin	
Internal clock	
Up-counter	$ \underbrace{\begin{array}{c} 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
TCxDA	X n
	match counter clear
TCx interrupt	
	\sim
$\langle \bigcirc \rangle$	Figure 6-13b Window Mode Waveform

Figure 6-13a Window Mode Block Diagram



6.7.3 Capture Mode

Figure 6-14a Capture Mode Block Diagram

In Capture mode, the pulse width, period and duty of the TCx input pin are measured and can be used to decode the remote-control signal. The counter is free running by the internal clock. On a rising (falling) edge of TCx pin, the contents of the counter are loaded into TCxDA, then the counter is cleared and interrupt is generated. On a falling (rising) edge of TC1 pin, the contents of the counter are loaded into TCxDB. At this time, the counter is still counting. Once the next rising edge of TCx pin is triggered, the contents of the counter are loaded into TCxDA, the counter is cleared and interrupt is generated again. If overflow before the edge is detected, the FFH is loaded into TCxDA and an overflow interrupt is generated. During interrupt processing, it can be determined whether or not there is an overflow by checking if the TCxDA value is FFH. After an interrupt (capture to TCxDA or overflow detection) is generated, capture and overflow detection are halted until TCxDA is read out.

- (1) normal action
- (2) can not be interrupted
- (3) signal less than 2 timer clk can not be identified
- (4) DA overflow
- (5) DB overflow
- (6) DB overflow after the need for signal rise edge will be re-counted
- (7) 16-bits normal operation
- (8) 16-bits read low byte normal action
- (9) 16-bits read high byte unread low byte before interrupt can not be generated

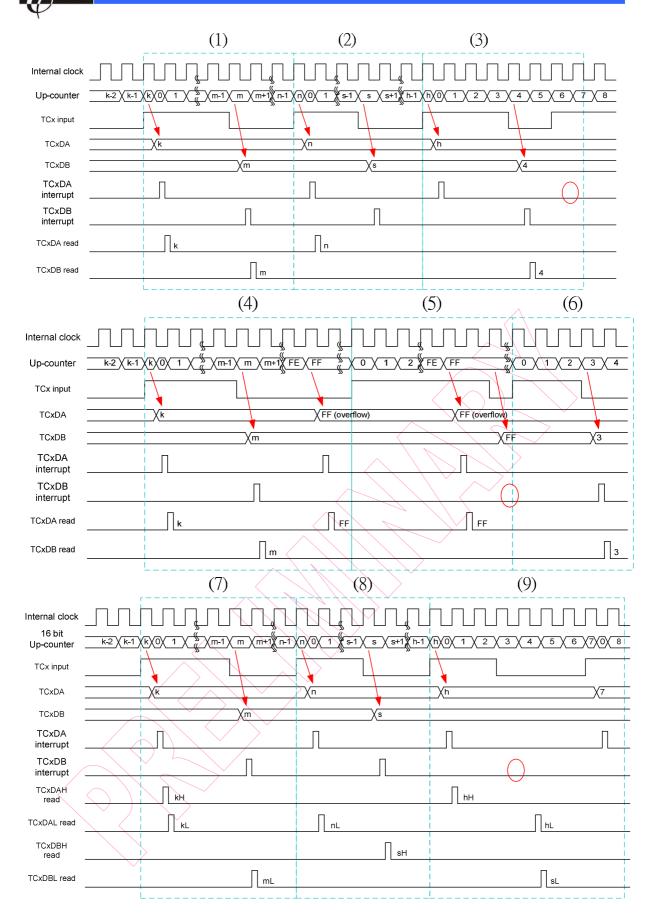
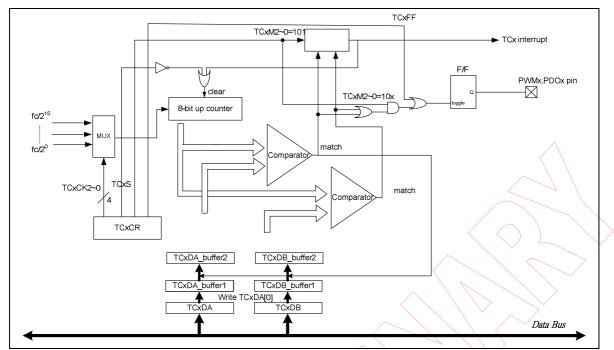



Figure 6-14b Capture Mode Waveform

6.7.4 Programmable Divider Output Mode and Pulse Width Modulation Mode

Figure 6-15a PDO/PWM Mode Block Diagram

Programmable Divider Output (PDO)

In Programmable Divider Output (PDO) mode, counting up is performed using the internal clock. The contents of TCxDA are compared with the contents of the up-counter. The F/F output is toggled and the counter is cleared each time a match is found. The F/F output is inverted and output to PDO pin. This mode can generate 50% of duty pulse output. The PDO pin is initialized to "**0**" during reset. A TCx interrupt is generated each time the PDO output is toggled.

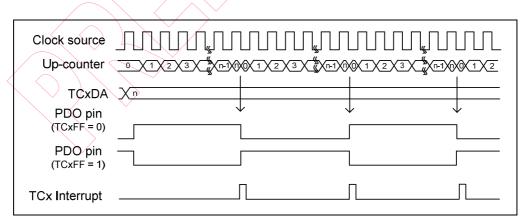
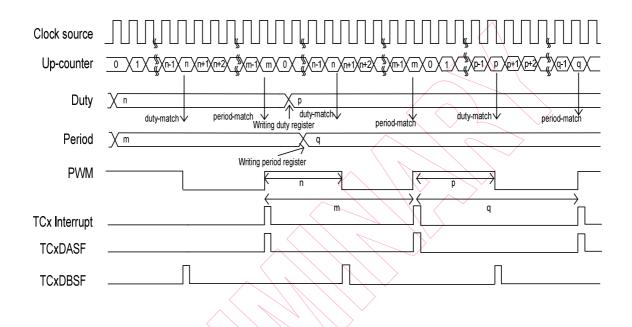



Figure 6-15b PDO Mode Waveform

Pulse Width Modulation (PWM)

In Pulse Width Modulation (PWM) Output mode, counting up is performed using internal clock with prescaler. Duty of PWMx is controlled by TCxDB, and period of PWMx is controlled by TCxDA. Pulse at the PWMx pin is held to high level as long as TCxS=1 or timerx matches TCxDA; meanwhile, the pulse is held to low level as long as Timerx matches TCxDB. Once TCxFF is set to 1, PWMx signal is inverted, a TCx interrupt is generated and defined by TCxIS. On the other hand, although TCxDA and TCxDB can be written anytime, the data of TCxDA and TCxDB are latched only when writing TCxDA0. Therefore, new duty and period of PWM appear at the PMW pin in the last period–match.

Figure 6-15c PWM Mode Waveform

6.7.5 Buzzer Mode

The TCx pin outputs the clock after dividing the frequency.

6.8 PWM (Pulse Width Modulation)

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0x16	SFR3			PWMCPSF	PWMCDSF	PWMBPSF	PWMBDSF	PWMAPSF	PWMADSF
					F	F	F	F	F	F
Bank 0	0x1D	IMR3			PWMCPIE	PWMCDIE	PWMBPIE	PWMBDIE	PWMAPIE	PWMADIE
					R/W	R/W	R/W	R/W	R/W	R/W
Bank 1	0x14	DeadTCR				DEADTCE	DEADTBE	DEADTAE	DEADTP1	DEADTP0
						R/W	R/W	R/W	R/W	R/W
Bank 1	0x15	DeadTR	DEADTR7	DEADTR6	DEADTR5	DEADTR4	DEADTR3	DEADTR2	DEADTR1	DEADTR0
			R/W							
Bank 1	0x16	PWMSCR				DEADS		PWMCS	PWMBS	PWMAS
						R/W		R/W	R/W	R/W
Bank 1	0x17	PWMACR	PWMAE	IPWMAE	PWMAA	IPWMAA	TAEN	TAP2	TAP1	TAP0
			R/W							
Bank 1	0x18	PRDAL	PRDA7	PRDA6	PRDA5	PRDA4	PRDA3	PRDA2	PRDA1	PRDA0
			R/W							
Bank 1	0x19	PRDAH	PRDA15	PRDA14	PRDA13	PRDA12	PRDA11	PRDA10	PRDA9	PRDA8
			R/W							
Bank 1	0x1A	DTAL	DTA7	DTA6	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0
			R/W							
Bank 1	0x1B	DTAH	DTA15	DTA14	DTA13	DTA12	DTA11	DTA10	DTA9	DTA8
			R/W							
Bank 1	0x1C	TMRAL	TMRA7	TMRA6	TMRA5	TMRA4	TMRA3	TMRA2	TMRA1	TMRA0
			R	R	R	R	R	R	R	R
Bank 1	0x1D	TMRAH	TMRA15	TMRA14	TMRA13	TMRA12	TMRA11	TMRA10	TMRA9	TMRA8
			R	R 🔿	R	R	R	R	R	R
Bank 1	0x1E	PWMBCR	PWMBE	IPWMBE	PWMBA	IPWMBA	TBEN	TBP2	TBP1	TBP0
			R/W							
Bank 1	0x1F	PRDBL	PRDB7 <	PRDB6	PRDB5	PRDB4	PRDB3	PRDB2	PRDB1	PRDB0
			R/W							
Bank 1	0x20	PRDBH	PRDB15	PRDB14	PRDB13	PRDB12	PRDB11	PRDB10	PRDB9	PRDB8
			R/W							
Bank 1	0x21	DTBL	DTB7	DTB6	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0
			R/W							
Bank 1	0x22	DTBH	DTB15	DTB14	DTB13	DTB12	DTB11	DTB10	DTB9	DTB8
			R/W							
Bank 1	0x23	TMRBL	TMRB7	TMRB6	TMRB5	TMRB4	TMRB3	TMRB2	TMRB1	TMRB0
			R	R	R	R	R	R	R	R
Bank 1	0x24	TMRBH	TMRB15	TMRB14	TMRB13	TMRB12	TMRB11	TMRB10	TMRB9	TMRB8
			R	R	R	R	R	R	R	R
Bank 1	0x25	PWMCCR		IPWMCE	PWMCA	IPWMCA	TCEN	TCP2	TCP1	TCP0
			R/W							
Bank 1	0x26	PRDCL	PRDC7	PRDC6	PRDC5	PRDC4	PRDC3	PRDC2	PRDC1	PRDC0
			R/W							
	0.07									PRDC8
Bank 1	0x27	PRDCH	PRDC15	PRDC14	PRDC13	PRDC12	PRDC11	PRDC10	PRDC9	FNDCO

Product Specification (V0.7) 05.19.2017

R BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 1	0x28	DTCL	DTC7	DTC6	DTC5	DTC4	DTC3	DTC2	DTC1	DTC0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 1	0x29	DTCH	DTC15	DTC14	DTC13	DTC12	DTC11	DTC10	DTC9	DTC8
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 1	0x2A	TMRCL	TMRC7	TMRC6	TMRC5	TMRC4	TMRC3	TMRC2	TMRC1	TMRC0
			R	R	R	R	R	R	R	R
Bank 1	0x2B	TMRCH	TMRC15	TMRC14	TMRC13	TMRC12	TMRC11	TMRC10	TMRC9	TMRC8
			R	R	R	R	R	R	R	R

6.8.1 Overview

In PWM mode, it produces up to 16-bit resolution PWM output (see the Functional Block Diagram). A PWM output consists of a time period and a duty cycle, and it keeps the output high. The baud rate of the PWM is the inverse of the time period. Figure 25~28 (*PWM Output Timing*) depict the relationships between a time period and a duty cycle.

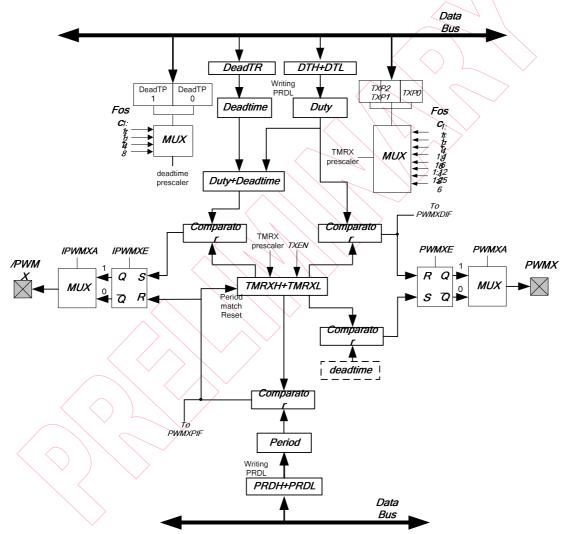


Figure 2. The PWM Functional Block Diagram

PWM and /PWM (inverted PWM) can be used individually or used as dual PWM. When used individually, the definitions of active level between PWM and /PWM are somewhat different.

For example, set period and duty cycle (period > duty), PWMXE=1/0 and IPWMXE=0/1, PWMXA = 1/0, IPWMXA=1/0, and finally set TXEN = 1. The following figures show PWM output timing according to different PWMXA and IPWMXA settings.

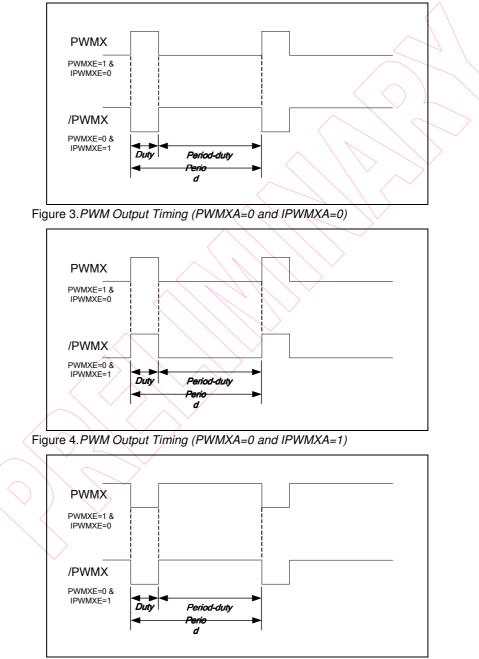


Figure 5.PWM Output Timing (PWMXA=1 and IPWMXA=0)

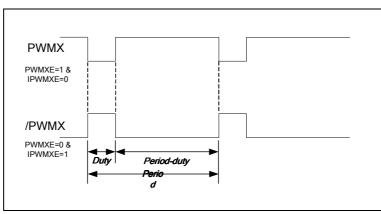


Figure 6.PWM Output Timing (PWMXA=1 and IPWMXA=1)

For the shut-off of operating PWM function, refer to Figure 31.

6.8.2 Increment Timer Counter (TMRX: TMRAH/TMRAL, TMRBH/TMRBL or TMRCH/TMRCL)

TMRX are 16-bit clock counters with programmable prescaler. They are designed for the PWM module as baud rate clock generators. TMR can be read-only. If employed, they can be turned off for power saving by setting TAEN bit [BANK1-R1A <3>], TBEN bit [BANK1-R21<3>], TCEN bit [BANK1-R28<3>], or TDEN bit [BANK1-R2F <3>] to 0.

TMRA, TMRB, TMRC, and TMRD are internal designs and cannot be set.

6.8.3 PWM Time Period (PRDX: PRDAL/H, PRDBL/H or PRDCL/H)

The PWM period is 16-bit resolution. The PWM time period is defined by writing to the PRDX register. When TMRX is equal to PRDX, the following events occur on the next increment cycle:

- TMRX is cleared
- The PWMX pin is set to 1

The PWMXIF pin is set to 1

The following formula describes how to calculate the PWM time period:

$$Period = (PRDX + 1) \times \left(\frac{1}{F_{osc}}\right) \times \frac{CLKS}{2} \times (TMRX \ prescale \ value)$$

Example:

PRDX = 49; Fosc = 4 MHz; TMRX (0, 0, 0) = 1 : 1,

CLKS bit of the Code Option Register = 0 (two oscillator periods);

Then

Period =
$$(49+1) \times \left(\frac{1}{4M}\right) \times \frac{2}{2} \times 1 = 12.5 \mu s$$

6.8.4 PWM Duty Cycle (DTX: DTAH/DTAL, DTBH/DTBL or DTCH/DTCL)

The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared. DTX can be loaded anytime. However, it cannot be latched into DLX until the current value of DLX is equal to TMRX.

The following formula describes how to calculate the PWM duty cycle:

Duty cycle =
$$(DTX) \times \left(\frac{1}{F_{osc}}\right) \times \frac{CLKS}{2} \times (TMRX \ prescale \ value)$$

Example:

DTX = 10; Fosc = 4 MHz; TMRX (0, 0, 0) = 1 : 1, CLKS bit of the Code Option Register = 0 (two oscillator periods);

Then

Duty cycle =
$$(10) \times \left(\frac{1}{4M}\right) \times \frac{2}{2} \times 1 = 2.5 \mu s$$

6.8.5 Dual PWM function

It consists of a complementary PWM (i.e. PWMX and /PWMX), one outputs PWM signal and one other outputs inverted PWM signal, which outputs any pulse width signal user wish by programming relative control registers.

The dead time mode is supported. This means that the complementary PWM signals can be controlled to get a time interval that the complementary PWM signals won't be intersected.

The following Figures 27 \sim 29 show the dual PWM output waveform.

Disable dead time control (DEADTXE = 0). Set period and duty cycle (period > duty). Set PWMXE & IPWMXE = 1, PWMXA = 0/1, IPWMXA = 0/1, and finally set TXEN = 1.

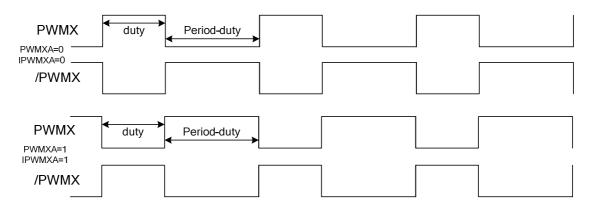


Figure 7. Dual PWMX output waveform (DEADTXE = 0)

Set dead time > 0 (set dead time prescaler if required). Enable dead time control (DEADTXE = 1). Set period and duty cycle (period > duty). Set PWMXE & IPWMXE =1, PWMXA = 0, IPWMXA = 0, and finally set TXEN = 1. For the loading of new duty, period, and deadtime value at run time, refer to subchapter *PWM Programming Process/Steps*.

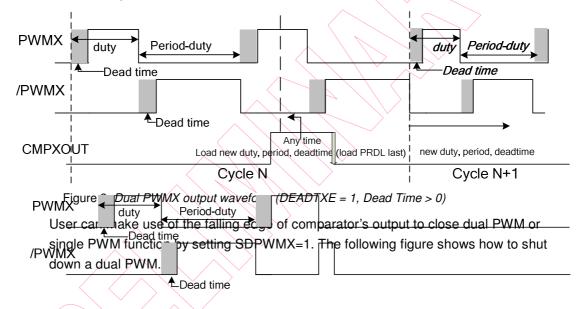


Figure 9. Dual PWMX output waveform (DEADTXE = 1, Dead Time \geq 0, SDPWMX = 1)

6.8.6 Comparator

Changing the output status while matching occurs will simultaneously set the TMRXIF flag.

6.8.7 PWM Programming Process/Steps

- 1. Load the PWM duty cycle to DT.
- 2. Load the PWM dead-time cycle (only for dual PWM function).
- 3. Load the PWM time period to PRD.
- 4. Enable the interrupt function by writing Bank0-R1D, if required.
- 5. Load a desired value for the timer prescaler.
- 6. Set active level of duty of PWM.
- 7. Enable PWMX function, i.e., enable PWMXE control bit. (If using dual PWM function, enable IPWMXE control bit too)
- 8. Finally, enable TMRX function, i.e., enable TXEN control bit.

If the application needs to change PWM duty, period, and dead-time cycle at run time, refer to the following programming steps:

- 1. Load new duty and dead-time cycle (if using dual PWM function) at any time.
- 2. Load new period cycle. The order of loading period cycle must be taken care. As the low byte of PWM period cycle is assigned a value, the new PWM cycle is loaded into circuit.
- 3. The circuit would automatically update the new duty, period, and dead-time cycle to generate new PWM waveform at the next PWM cycle.

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0x10	WUCR1		CMPWK						
				R/W						
Bank 0	0x14	SFR1		CMPSF						
				R/W						
Bank 0	0x1B	IMR1		CMPIE						
				R/W						
Bank 0	0x3A	CMPCR1	CRS	CPOUT	CS1	CS0		CC+S1	CC+S0	SDPWMA
			R/W	R/W	R/W	R/W			R/W	R/W
Bank 0	0x3B	CMPCR2							CIRL2	SDPWMB
									R/W	R/W
Bank 0	0x3C	CMPCR3						CIRL1	CIRL0	SDPWMC
								R/W	R/W	R/W

6.9 Comparator

The MCU has four comparators comprising of two analog inputs and one output. All of comparators can be as OP. The comparator can be utilized to wake up the MCU from sleep mode. The comparator circuit diagram is depicted in the figure below.

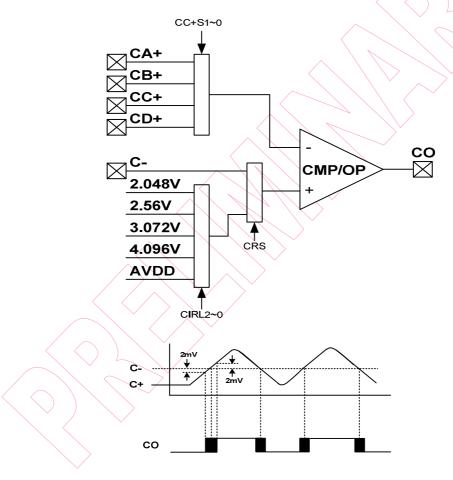


Figure 10. Comparator Circuit Diagram & Operating Mode

6.9.1 External Reference Signal

The analog signal that is presented at Cin– compares to the signal at Cin+, and the digital output (CO) of the comparator is adjusted accordingly by taking the following notes into considerations:

NOTE

- The reference signal must be between Vss and Vdd.
- Comparator with function of internal reference and corresponding pin can be set as comparator I/O or general I/O.
- The non-inverting end of comparator can be connected to Vref.
- The three reference voltage levels for Vref are 2.048V 2.56, 3.072V and 4.096V.
- The falling edge of CO can turn off the corresponding, only PWMx or both of PWMx and /PWMx, depends on the PWMxA and IPWMXA. For example,

(falling edge of CO=> PWMA or both of PWMA and /PWMA)

6.9.2Comparator Outputs

- The compared result is stored in CMPOUT.
- The pin (CO) function is decided through programming the register <CS[1:0]>.

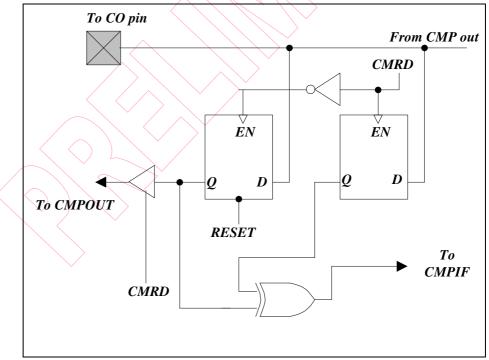
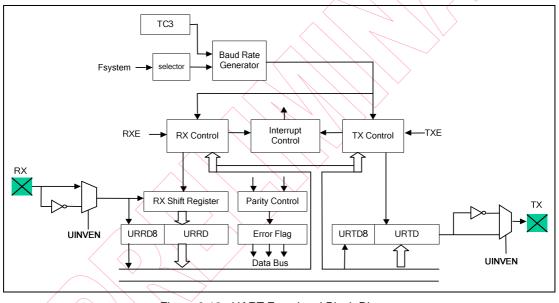


Figure 11. Comparator Output Configuration

6.9.3Comparator Interrupt

- CMPXIE must be enabled for the "ENI" instruction to take effect
- Interrupt is triggered whenever a change occurs on the comparator output pin
- The actual change on the pin can be determined by reading the Bit CPXOUT
- The comparator interrupt flag, CMPXIF, can only be cleared by software


6.9.4Wake-up from SLEEP Mode

- The comparator and the interrupt remain active in SLEEP mode when CMPXIE=1 and CMPWE=1.
- If a comparator output changes state, the interrupt will wake up the device from SLEEP mode.
- The power consumption should be taken into consideration for the benefit of energy conservation.
- If the function is unemployed during SLEEP mode, turn off comparator before entering into sleep mode.

R	egister	s for UA	ART Circu	uit						
R_BAN	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0x16	SFR2	-	-	UERRSF	URSF	UTSF	-	-	-
Dalik U	0,10	3Fh2	-	-	R/W	R/W	R/W	-	-	-
Bank 0	0x1C	IMR2	-	-	UERRIE	URIE	UTIE	-	-	-
Dalik U	UXIC		-	-	R/W	R/W	R/W	-	-	-
Bank 1	0X33	URCR	UINVEN	UMODE1	UMODE0	BRATE2	BRATE1	BRATE0	UTBE	TXE
Dalik I	0733	Unch	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 1	0X34	URS	URTD8	EVEN	PRE	PRERR	OVERR	FMERR	URB	RXE
Dalik I	0734	013	W	R/W	R/W	R/W	R/W	R/W	R	R/W
Bank 1	0x35	URTD	URTD7	URTD6	URTD5	URTD4	URTD3	URTD2	URT	URT
Dalik I	0733	UNID	W	W	W	W	W	W	W	W
Bank 1	0X36	URRDL	URRD7	URRD6	URRD5	URRD4	URRD3	URRD2	URR	URR
Dalik I	0730	UNINDL	R	R	R	R	R	R	R	R
Bank 1	0X37	URRDH	URRD8	-	-	-	-	-	\- <u>-</u>	/-
Dalik I	0/10/	UNDI	R	-	-				-	-

6.10 UART (Universal Asynchronous Receiver/Transmitter)

Figure 6-16 UART Functional Block Diagram

In Universal Asynchronous Receiver Transmitter (UART), each transmitted or received character is individually synchronized by framing it with a start bit and stop bit.

Full duplex data transfer is possible since the UART has independent transmit and receive sections. Double buffering for both sections allows the UART to be programmed for continuous data transfer.

The figure below shows the general format of one character sent or received. The communication channel is normally held in the marked state (high). Character transmission or reception starts with a transition to the space state (low).

The first bit transmitted or received is the start bit (low). It is followed by the data bits, in which the least significant bit (LSB) comes first. The data bits are followed by the parity bit. If present, then the stop bit or bits (high) confirms the end of the frame.

In receiving, the UART synchronizes on a falling edge of the start bit. When two or three "0" are detected during three samples, it is recognized as normal start bit and the receiving operation is started.

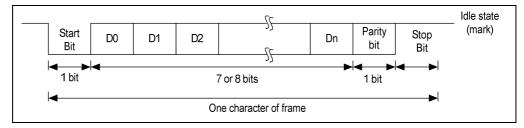


Figure 6-17 Data Format in UART

6.10.1 UART Mode

There are three UART modes. Mode 1 (7 bits data) and Mode 2 (8 bits data) allow the addition of a parity bit. The parity bit addition is not available in Mode 3. Figure 6-18a below shows the data format in each mode.

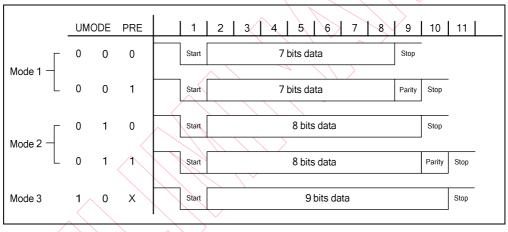


Figure 6-18a UART Model

6.10.2 Transmitting

In transmitting serial data, the UART operates as follows:

- 1. Set the TXE bit of the URCR1 register to enable the UART transmission function.
- 2. Write data into the URTD register and the UTBE bit of the URCR register will be cleared by hardware.
- 3. Then start transmitting.
- 4. Serially transmitted data are transmitted in the following order from the TX pin.
- 5. Start bit: one "**0**" bit is output.
- 6. Transmit data: 7, 8 or 9 bits data are output from the LSB to the MSB.

- 7. Parity bit: one parity bit (odd or even selectable) is output.
- 8. Stop bit: one "1" bit (stop bit) is output.

Mark state: output "1" continues until the start bit of the next transmitted data.

After transmitting the stop bit, the UART generates a UTSF interrupt (if enabled).

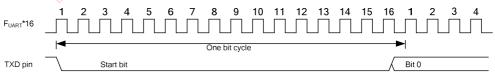
6.10.3 Receiving

In receiving, the UART operates as follows:

- 1. Set the RXE bit of the URS register to enable the UART receiving function. The UART monitors the RX pin and synchronizes internally when it detects a start bit.
- 2. Received data is shifted into the URRD register in the order from LSB to MSB.
- 3. The parity bit and the stop bit are received. After one character is received, the URBF bit of the URS register will be set to "1". This means UART interrupt will occur.
- 4. The UART makes the following checks:
 - (a) Parity check: The received data with number of "1" must match the even or odd parity setting of the EVEN bit in the URS register.
 - (b) Frame check: The start bit must be "0" and the stop bit must be "1".
 - (c) Overrun check: The URBF bit of the URS register must be cleared (that means the URRD register should be read out) before the next received data is loaded into the URRD register.

If any checks failed, the UERRSF interrupt will be generated (if enabled), and an error flag is indicated in PRERR, OVERR or FMERR bit. The error flag should be cleared by software, otherwise, UERRSF interrupt will occur when the next byte is received.

5. Read received data from URRD register. And URBF bit will be set by hardware.


6.10.4 Baud Rate Generator

The baud rate generator is comprised of a circuit that generates a clock pulse to determine the transfer speed of transmission/reception in the UART.

The BRATE2~BRATE0 bits of the URC register can determine the desired baud rate.

6.10.5 UART Timing

1. Transmission Counter Timing:

2. Receiving Counter Timing:

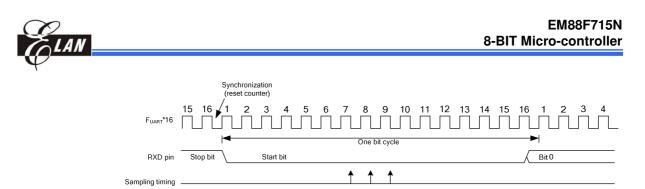


Figure 6-18b UART Timing Diagrams

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0X36	SPICR	CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
Dank U	0830	SPICE	R/W							
Bank 0	0X37	SPIS	DORD	TD1	TD0	-	OD3	OD4	-	RBF
Dank U	0837	3713	R/W	R/W	R/W	-	R/W	R/W	-	R
Bank 0	0X38	SPIR	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
Dalik U	0730	SFIN	R	R	R	R	R	R	R	R
Bank 0	0X39	SPIW	SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
Dank U	0839	SPIW	R/W							
Bank 0	0X18	SFR4	-	-	-	-	SPISF	- <	7.	\-
Dank U	UXIO	361	-	-	-	-	R/W	-	-	
Bonk 0	0X1E	IMR4	-	-	-	-	SPIIE		-	-
Bank 0	UXIE		-	-	-	-	R/W	-	-	- ~

6.11 SPI (Serial Peripheral Interface)

6.11.1 Overview and Feature

Overview:

Figures 6-19 and 6-20 show how EM88F715N communicates with other devices through SPI module. If EM88F715N is a Master controller, it sends clock through the SCK pin. A couple of 8-bit data are transmitted and received at the same time. However, if the EM88F715N is defined as a Slave, its SCK pin could be programmed as an input pin. Data will continue to be shifted based on both clock rate and selected edge. User can also set SPIS Bit 7 (DORD) to determine SPI transmission order; set SPICR Bit 3 (SDOC) to control SDO pin after serial data output status; and set SPIS Bit 6 (TD1) and Bit 5 (TD0) to determine the SDO status output delay times.

Features:

- 1. Operation in either Master mode or Slave mode
- 2. Three-wire or four-wire full duplex synchronous communication
- 3. Programmable baud rates of communication
- 4. Program clock polarity (Bank 0 R36 Bit 7)
- 5. Interrupt flag available for the read buffer full
- 6. SPI transmission order
- 7. After serial data output SDO status select
- 8. SDO status output delay times
- 9. SPI handshake pin
- 10. Up to 4 MHz (maximum) bit frequency

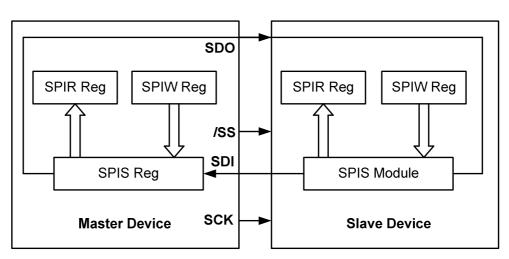


Figure 6-19 SPI Master/Slave Communication

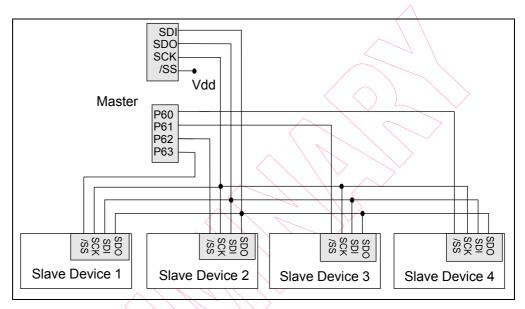


Figure 6-20 SPI Configuration of Single-Master and Multi-Slave

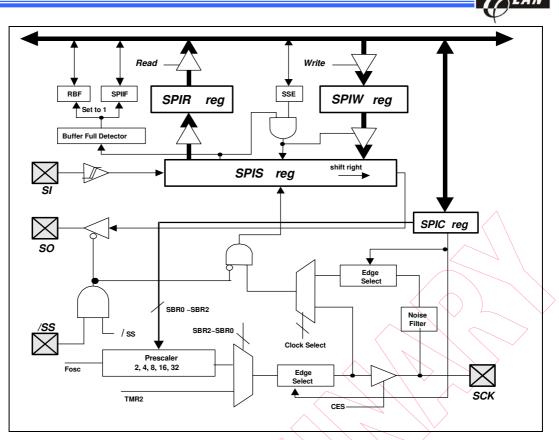


Figure 6-21 SPI Block Diagram

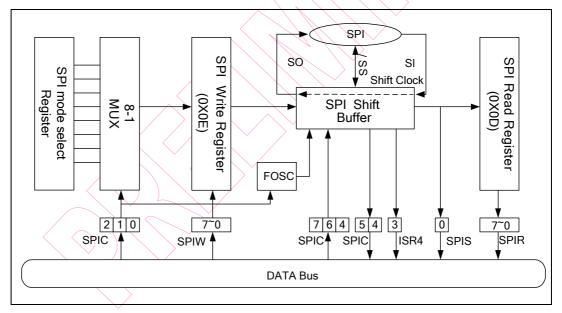


Figure 6-22 Functional Block Diagram of SPI Transmission

Below are the functions of each block and explanations on how to carry out the SPI communication with the signals depicted in Figures 6-21 and 6-22.

- P84/SDA/SI/SEG4: Serial Data In
- P85/SO/SEG5: Serial Data Out
- P86/SCL/SCK/SEG6: Serial Clock

- P87//SS/AD9/SEG8: /Slave Select (Option). This pin (/SS) may be required during Slave mode
- RBF: Set by Buffer Full Detector
- Buffer Full Detector: Set to 1 when an 8-bit shifting is completed.
- SSE: Load the data in SPIS register, and begin shifting
- SPIS reg.: Shift byte in and out. The MSB is shifted first. Both the SPIR and the SPIW registers are shifted at the same time. Once data are written, SPIS starts transmission/reception. The received data will be moved to the SPIR register as the shifting of the 8-bit data is completed. The RBF (Read Buffer Full) flag and the SPISF (SPI Interrupt) flag are then set.
- SPIR reg.: Read buffer. The buffer will be updated as the 8-bit shifting is completed. The data must be read before the next reception is completed. The RBF flag is cleared as the SPIR register reads.
- SPIW reg.: Write buffer. The buffer will deny any attempts to write until the 8-bit shifting is completed.

The SSE bit will be kept in "1" if the communication is still undergoing. This flag must be cleared as the shifting is completed. Users can determine if the next write attempt is available.

- SBRS2~SBRS0: Program clock frequency/rates and sources.
- Clock Select: Select either the internal or the external clock as the shifting clock.
- Edge Select: Select the appropriate clock edges by programming CES bit

6.11.3 SPI Signal and Pin Description

The detailed functions of the four pins, SI, SO, SCK, and /SS are as follows:

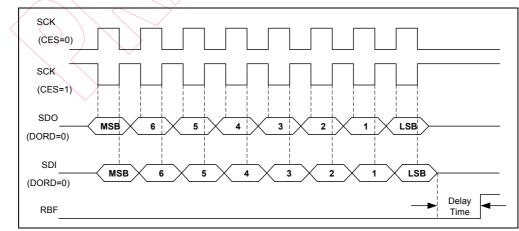
P84/SDA/SI/SEG4:

- Serial Data In
- Receive sequentially, Most Significant Bit (MSB) first, Least Significant Bit (LSB) last
- Defined as high-impedance, if not selected
- Program the same clock rate and clock edge to latch on both the Master and Slave devices
- The received byte will update the transmitted byte
- RBF will be set as SPI operation is completed
- Timing is shown in Figures 6-23 and 6-24.

P85/SO/SEG5:

Serial Data Out

- Transmit sequentially; Most Significant Bit (MSB) first, Least Significant Bit (LSB) last
- Program the same clock rate and clock edge to latch on both the Master and Slave devices
- The received byte will update the transmitted byte
- CES bit will be reset as SPI operation is completed
- Timing is shown in Figures 6-23 and 6-24.


P86/SCL/SCK/SEG6:

- Serial Clock
- Generated by a Master device
- Synchronize the data communication on both SI and SO pins
- CES is used to select the edge to communicate.
- SBR0~SBR2 are used to determine the baud rate of communication
- CES, SBR0, SBR1, and SBR2 bits have no effect in Slave mode
- Timing is shown in Figures 6-23 and 6-24,

P87//SS/AD9/SEG8:

- Slave Select; negative logic
- Generated by a Master device to signify the Slave(s) to receive data
- Go low before the first cycle of SCK appears, and remain low until the last (eighth) cycle is completed
- Ignore the data on the SI and SO pins while /SS is high, because the SO is no longer driven
- Timing is shown in Figures 6-23 and 6-24.

6.11.4 SPI Mode Timing

The SCK edge is selected by programming bit CES. The waveform shown in Figure 6-23 is applicable regardless of whether the EM88F715N is in Master or Slave mode, with /SS disabled. However, the waveform in Figure 6-24 can only be implemented in Slave mode with /SS enabled.

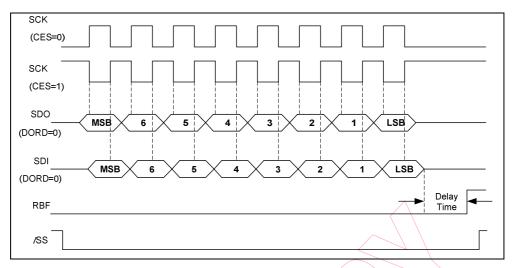


Figure 6-24 SPI Mode with /SS Enabled

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0x30	I ² CCR1	Strobe/Pend	IMS	ISS	STOP	SAR_EMPTY	ACK	FULL	EMPTY
Dalik U	0230		R/W	R/W	R/W	R/W	R	R	R	R
Bank 0	0x31	I ² CCR2	I ² CBF	GCEN	-	BBF	I ² CTS1	I ² CTS0	-	I ² CEN
Dank U	0x31		R	R/W	-	R	R/W	R/W	-	R/W
Bank 0	0x32	I ² CSA	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
Dalik U	0x32	I USA	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x33	I ² CDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Dank U	0x33		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x34		DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
Dank U	0X34	I CDAL	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Denk 0	005		-	-	-	-	- ~	-	DA9	DA8
Bank 0	0x35		-	-	-	-	-		R/W	R/W
Denk 0	010	0504	-	-	-	-		I ² CSTPIF	1 ² CRSF	I ² CTSF
Bank 0	0x18	SFR4	-	-	-	-		R/W	R/W	R/W
Bonk 0	0.415		-	-	-			I ² CSTPIE	I²CRIE	I ² CTIE
Bank 0	0x1E	IMR4	-	-	-		/-//	R/W	R/W	R/W

6.12 I²C Function

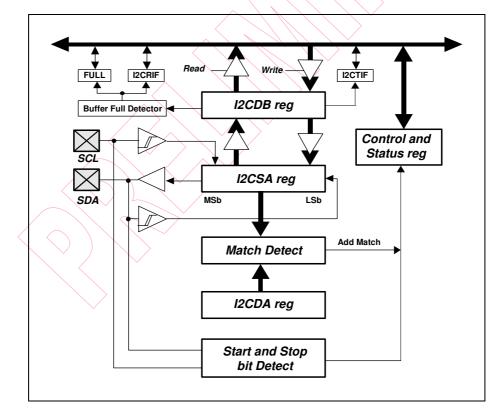


Figure 6-25 fC Block Diagram

The EM88F715N supports a bidirectional, 2-wire bus, 7/10-bit addressing and data transmission protocol. A device that sends data onto the bus is defined as a transmitter, while a device receiving data is defined as a receiver. The bus has to be controlled by a Master device which generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions. Both Master and Slave can operate as transmitter or receiver, but Master device determines which mode is activated.

Both SDA and SCL are bidirectional lines, connected to a positive supply voltage via a pull-up resistor. When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function. Data on the l^2 C-bus can be transferred at the rates of up to 100Kbit/s in Standard mode or up to 400Kbit/s in Fast mode.

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

The I²C Interrupt occurs as described below:

Condition	Master/Slave	Transmit Address	Transmit Data	Stop
Master-transmitter	Master	Transmit interrupt	Transmit interrupt	Stop interrupt
transmits to Slave-receiver	Slave	Receive interrupt	Receive interrupt	Stop interrupt
Master receiver read	Master	Transmit interrupt	Receive interrupt	Stop interrupt
Slave-transmitter	Slave	Transmit interrupt	Transmit interrupt	Stop interrupt

Within the procedure of the I²C bus, there can be unique situations which are defined as START (S) and STOP (P) conditions.

A High to Low transition on the SDA line while SCL is High is one such unique case. This situation indicates a START condition.

A Low to High transition on the SDA line while SCL is High defines a STOP condition.

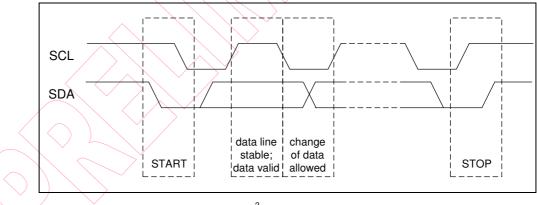


Figure 6-26 l^2C Transfer Condition

7-Bit Slave Address

Master-transmitter transmits to Slave-receiver. The transfer direction does not change.

Master reads Slave immediately after the first byte. At the moment of the first acknowledgement, the Master-transmitter becomes a Master-receiver and the Slave-receiver becomes a Slave-transmitter. This first acknowledgement is still generated by the Slave. The STOP condition is generated by the Master, which has previously sent a not-acknowledge (A). The only difference between a Master transmitter and a Master-receiver is their R//W bits. If the R//W bit is "**0**", the Master device is a Transmitter. Otherwise, the Master device is a Receiver. Master-Transmitter is illustrated in Figure 6-27a *Master-Transmitter transmits to Slave-receiver with 7-Bit Slave Address*, and that of the Master-Receiver is shown in Figure 6-27b *Master-Receiver Reads Slave –Transmitter with 7-Bit Slave Address*.

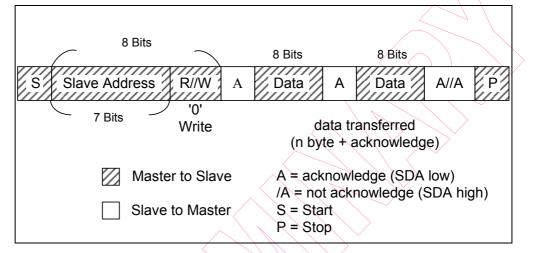


Figure 6-27a Master-Transmitter Transmits to Slave-Receiver with 7-Bit Slave Address

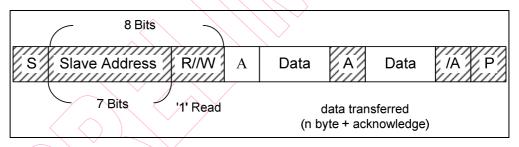


Figure 6-27b Master-Receiver Reads Slave-Transmitter with 7-Bit Slave Address

■ 10-Bit Slave Address

In 10-Bit Slave address mode, using 10 bits to address exploits the reserved combination 11110XX for the first seven bits of the first byte following a START (S) or repeated START (Sr) condition. The first seven bits of the first byte are the combination 11110XX of which the last two bits (XX) are the two most-significant bits of the 10-bit address. If the R//W bit is "0", the second byte after acknowledgement would be the eighth address bits of the10-bit Slave address. Otherwise, the second byte would just be the next transmitted data from a Slave to Master device. The first bytes 11110XX are transmitted using the Slave address register (I²CSA), and the second bytes XXXXXXX are transmitted using the data buffer (I²CDB).

The following explains the possible data transfer formats for 10-bit Slave address mode:

Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address

When the Slave receives the first byte after START bit from Master, each Slave device will compare the seven bits of the first byte (11110XX) with their own addresses and the eighth bit, R/W. If the R/W bit is "0", the Slave will return the Acknowledge (A1). It is possible that more than one Slave devices will return the Acknowledge (A1). Then all Slave devices will continue to compare the second address (XXXXXXX). If a Slave device finds a match, that particular Slave device will be the only one to return an Acknowledge (A2). The matching Slave device will remain addressed by the Master until it receives a STOP condition or a repeated START condition followed by a

different Slave address.

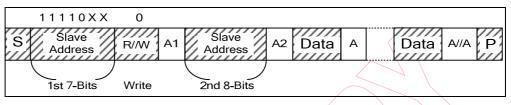


Figure 6-28a Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address

Master-Receiver Reads Slave-Transmitter with a 10-bit Slave Address

Up to and including acknowledge Bit A2, the procedure is the same as that described for Master-transmitter addressing a Slave receiver. After the acknowledge A2, a repeated START condition (Sr) is followed by seven bits Slave address (11110XX) but the eighth bit R//W is "1", therefore, the addressed Slave device will return the acknowledge A3. If the repeated START (Sr) condition and the seven bits of first byte (11110XX) are received by Slave device, all Slave devices would compare with their own addresses and test the eighth R//W. However, none of the Slave devices can return an acknowledgement because R//W=1.

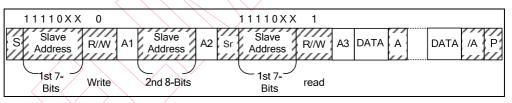


Figure 6-28b Master-Receiver Reads Slave-Transmitter with a 10-bit Slave Address

Master Transmits and Receives Data to and from the Same Slave Device with 10-Bit Addresses

The initial operation of this data transfer format is the same as the one explained earlier in the above paragraph on "Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address." Then the Master device starts to transmit data to Slave device. When the Slave device receives an Acknowledge or None-Acknowledge followed by repeating START (Sr), the same operation under "Master-Receiver Read Slave-Transmitter with a 10-Bit Slave Address" is to be performed repeatedly.

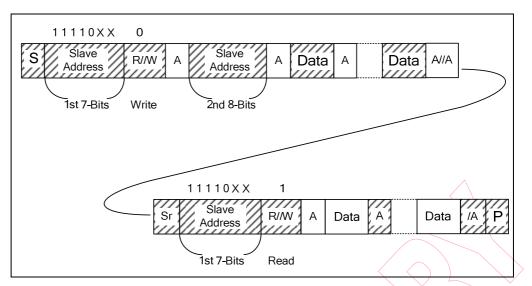
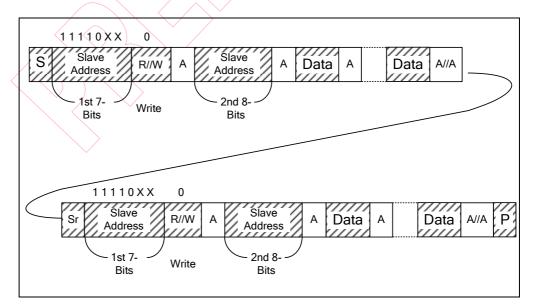
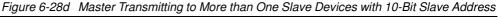




Figure 6-28c Master Addresses a Slave with 10-Bit Addresses Transmits and Receives Data with the Same Slave Device

Master Device Transmits Data to Two or More Slave Devices with 10 and 7 Bits Slave Address

For 10-bit address, the initial operation of this data transfer format is the same as the one explained earlier in the above paragraph on "Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address," which describes how to transmit data to Slave device. After the Master device completes the initial transmittal, and wants to continue transmitting data to another device, the Master needs to address each of the new Slave device by repeating the initial operation mentioned above. If the Master device wants to transmit the data in 7-bit and 10-bit Slave address modes successively, this could be done after the START or repeat START conditions as illustrated in the following figures.

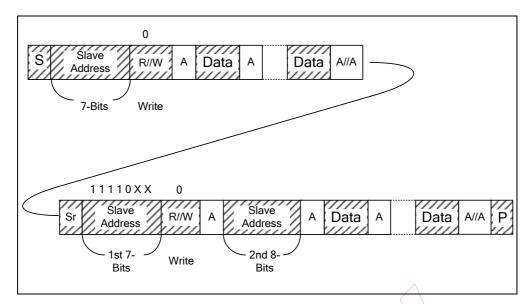


Figure 6-28e Master Successively Transmitting to 7-Bit and 10-Bit Slave Address

6.12.1 Master Mode

In transmitting (receiving) serial data, the I²C operates as follows:

- 1. Set I²CTS1~0 and ISS bits to select I²C transmit clock source.
- 2. Set I^2CEN and IMS bits to enable I^2C Master function.
- 3. Write Slave address into the I²CSA register and IRW bit to select read or write.
- 4. Set strobe bit will start the transmission and then Check I²CTSF (I²CTSF) bit.
- 5. Write 1st data into the I²CDB register, set strobe bit and Check I²CTSF (I²CRSF) bit.
- Write 2nd data into the I²CDB register, set strobe bit and Stop bit, and Check I²CTSF (I²CRSF) bit.

6.12.2 Slave Mode

In receiving (transmitting) serial data, the I²C operates as follows:

- 1. Set I²CTS1~0, I²CCS and ISS bits to select I²C transmit clock source.
- 2. Set I^2CEN and IMS bits to enable I^2C Slave function.
- 3. Write device address into the I²CDA register.
- 4. Check I²CRSF (I²CTSF) bit, read I²CDB register (address) and then clear Pend bit.
- 5. Check I²CRSF (I²CTSF) bit, read I²CDB register (1st data) and then clear Pend bit.
- 6. Check I²CRSF (I²CTSF) bit, read I²CDB register (2nd data) and then clear Pend bit.
- 7. Check I²CSTPSF bit, end transmission.

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
D. I.I.			HLVDEN	IRVSF	VDSB	VDM	HLVDS3	HLVDS2	HLVDS1	HLVDS0
Bank 1	0x49	HLVDCR	R/W	R	R	R/W	R/W	R/W	R/W	R/W
					HLVDSF					
Bank 0	0x14	SFR			R/W					
Damk 0	0w1D				HLVDIE					
Bank 0	0x1B	IMR			R/W					
Danka	010				HLVDWK					
Bank 0	0x10	WUCR1			R/W			<	\square	

6.13 HLVD (High / Low Voltage Detector)

Under unstable power source condition, such as external power noise interference or EMS test condition, a violent power vibration could occur. At the time, VDD could become unstable as it could be operating below working voltage. When the system supply voltage (VDD) falls below operating voltage, IC kernel will automatically keep all register statuses.

The following steps are needed to setup HLVD function:

- 1. Set HLVDEN to "1", then use Bits 3~0 (HLVDS3~HLVDS0) of Register Bank 1 R49 to set HLVD interrupt level
- 2. Wait for HLVD interrupt to occur
- 3. Clear HLVD interrupt flag

The internal HLVD module uses the internal circuit to fit. When user set HLVDEN to enable HLVD module, the current consumption will increase to 70 μ A.

During sleep mode, HLVD module continues to operate. If the device voltage drops slowly and crosses the detect point, HLVDSF bit will be set and the device will not wake up from Sleep mode. Until another wake-up source wakes up EM88F715N, HLVD interrupt flag will remain as the prior status.

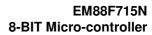

When the system resets, HLVD flag will be cleared.

Figure 6-30 illustrates HLVD module detecting an external voltage.

When VDD drops yet not below V_{LVD}, HLVDSF remains at "0".

When VDD drops below VDB, HLVDSF is set to "1". If global ENI is enabled, HLVDSF will be set to "1" as well, and the next instruction will branch to the interrupt vector. HLVD interrupt flag is cleared to "0" by software.

When VDD drops below V_{RESET} and is less than 10 μ s, the system will keep all register statuses and the system halts but oscillation is active. When VDD drops below VRESET and for more than 40 μ s, system RESET will occur. Refer to Section 6.5.1 *Reset description*.

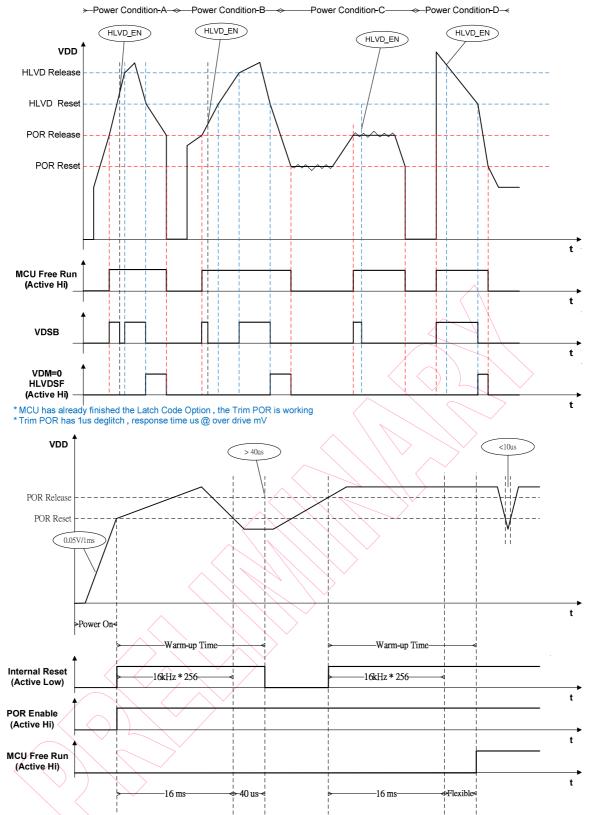


Figure 6-30 HLVD Waveform Characteristics Showing Detection Point in an External Voltage Condition

6.14 Oscillator

6.14.10scillator Modes

The EM88F715N can be operated in two different oscillator modes, including Internal RC oscillator mode (IRC) and XTAL oscillator mode (XT). User need to set the main-oscillator modes by selecting the OSC2~OSC0, and set the sub-oscillator modes by selecting the FSS0 in the Code Option register to complete the overall oscillator mode setting. Tables 6, 7, and 8 depict how these four modes are defined.

The up-limited operating frequency of crystal/resonator on the different VDD is listed in Table 6.

Main-oscillator Mode	OSC2	OSC1	OSC0
IRC (Internal RC oscillator mode) (default) RCOUT (P51) acts as I/O pin	0	0	0
IRC (Internal RC oscillator mode) RCOUT (P51) acts as clock output pin	0	0	1
HXT1 (High XTAL1 oscillator mode) Frequency range: 12~20MHz	0	1	0
HXT2(High XTAL2 oscillator mode) Frequency range: 6~12MHz	0	1	1
XT (XTAL oscillator mode) Frequency range: 1~6MHz	> 1	0	0
LXT1 (Low XTAL1 oscillator mode) Frequency range: 100K~1MHz	1	0	1
Reserve	1	1	Х

Table 6 Main-oscillator modes defined by OSC2 ~ OSC0

Table 9 Summary of Maximum Operating Speed

Conditions	VDD	Fxt max. (MHz)
	2.2	8.0
Two cycles with two clocks	3.3	16.0
	5.0	20.0

6.14.2 Crystal Oscillator/Ceramic Resonators (XTAL)

In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or ceramic resonator to generate oscillation and such circuitry are depicted in the following figures. The same thing applies whether it is in HXT or LXT mode. Table 10 provides the recommended values of C1 and C2. Since each resonator has its own attribute, user should refer to its specification for appropriate values of C1 and C2. The serial resistor, RS, may be necessary for AT strip cut crystal or in low frequency mode.



Figure 6-31 Crystal/Resonator Circuits

Oscillator Type	Frequency Mode	Frequency	C1 (pF)	C2 (pF)
		100kHz	60pF	60pF
	LXT	200kHz	60pF	60pF
	(100K~1 MHz)	455kHz	40pF	40pF
Main-oscillator (Ceramic Resonators)		1.0 MHz	30pF	30pF
		1.0 MHz	30pF	OpF
	HXT2 (1M~6 MHz)	2.0 MHz	30pF	30pF
	(111 0 111 12)	4.0 MHz	20pF	20pF
		100kHz	60pF	60pF
	LXT (100K~1 MHz)	200kHz	60pF	60pF
		455kHz	40pF	40pF
		1.0 MHz	30pF	30pF
		1.0 MHz	30pF	30pF
	TX	2.0 MHz	30pF	30pF
Main-oscillator (Crystal Oscillator)	(1M~6 MHz)	4.0 MHz	20pF	20pF
(oryotal ocollatory		6.0 MH	0F	30pF
\sim		6.0 MHz	30pF	30pF
	HXT2 (6M~12 MHz)	8.0 MHz	20pF	20pF
		12.0 MHz	30pF	30pF
	HX1	12.0 MHz	30pF	30pF
) (12M~16 MHz)	16.0 MHz	20pF	20pF

Table 10 Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonator

6.14.3 Internal RC Oscillator Mode

EM88F715N offer a versatile internal RC mode with default frequency value of 4MHz. The Internal RC oscillator mode has other frequencies (20MHz, 16MHz, 12MHz, 10MHz, 8MHz, 4MHz, and 1 MHz) that can be set by Code Options RCM1 and RCM0. All these four main frequencies can be calibrated by programming the Code Option bits C6~C0. The table below describes a typical instance of the calibration.

		Drift Rate			
Internal RC Frequency	Temperature (-40℃~+85℃)	Voltage (2.2V~5.5V)	Process	Total	
1 MHz	±2%	±1%	±1%	±4%	
4 MHz	±2%	±1%	±1%	±4%	
8 MHz	±2%	±1%	±1%	±4%	
10 MHz	±2%	±1%	±1%	±4%	
12 MHz	±2%	±1%	±1%	±4%	
16 MHz	±2%	±1%	±1%	±4%	
20 MHz	±2%	±1%	±1%	±4%	

Internal RC Drift Rate (Ta=25°C, VDD=5V, VSS=0V)

Note: These are theoretical values provided for reference only. Actual values may vary depending on the actual process.

6.15 Power-on Considerations

No microcontroller is guaranteed to operate properly before the power supply stabilizes to a steady state. The EM88F715N is equipped with a built-in Power-On Voltage Detector (POVD) with a detect level of 2.0V. It will work well if VDD rises fast enough (0.05V/ms or less). However, in many critical applications, extra devices are still required to assist in solving power-up problems.

6.16 External Power-on Reset Circuit

The circuits shown in Figure 6-32 implement an external RC to generate a reset pulse. The pulse width (time constant) should be kept long enough for VDD to reach the minimum operating voltage. Apply this circuit when the power supply has a slow rising time. Since the current leakage from the /RESET pin is about $\pm 5 \ \mu$ A, it is recommended that R should not be greater than 40 K Ω in order for the /RESET pin voltage to remain below 0.2V. The diode (D) acts as a short circuit at the moment of power-down. The capacitor (C) will discharge rapidly and fully. The current-limited resistor (Rin) will prevent high current or ESD (electrostatic discharge) from flowing to Rin /RESET.

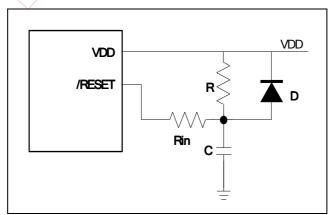


Figure 6-32 External Power-up Reset Circuit

6.17 Residue-Voltage Protection

When the battery is replaced, device power (VDD) is taken off but residue-voltage remains. The residue-voltage may trip below VDD minimum, but not to zero. This condition may cause a poor power-on reset. Figures 6-33a and 6-33b show how to build and accomplish a proper residue-voltage protection circuit.

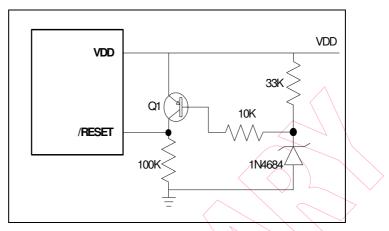
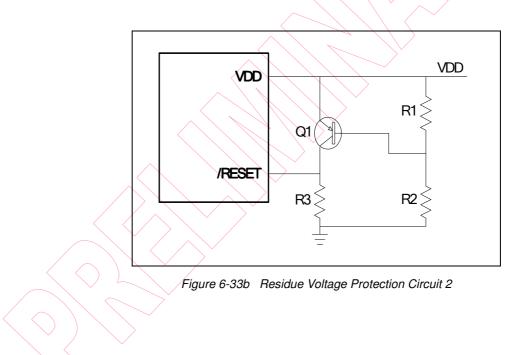



Figure 6-33a Residue Voltage Protection Circuit 1

6.18 Code Option

			Wo	rd 0				
	Bit 15	Bit 14	Bit 13	Bit 12	Bit11	Bit10	Bit9	Bit8
Mnemonic	-	-	-	IODG1	IODG0	HLFS	HLP	LVR1
1	High	High	High	High	High	Green	Low PWR	High
0	Low	Low	Low	Low	Low	Normal	High PWR	Low
Default	0	0	0	0	0	0	0	0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	LVR0	RESETEN	ENWDT	NRHL	NRE	-	-	-
1	High	/RST	Enable	8/fc	Disable		High	
0	Low	P81	Disable	32/fc	Enable		Low	
Default	0	0	0	0	0		0 L	

6.18.1 Code Option Register (Word 0)

Bits 15~13: Not used, set to "0" all the time.

Bits 12~11 (IODG1~IODG0): I2C/SPI/UART pin deglitch time select bits.

IODG1~0	UART pin deglitch time	SPI pin deglitch time	I2C pin deglitch time
00	50ns@5v, Typical (default)	Typical delay = 8ns	50ns@5v, Typical (default)
01	200ns@5v, Typical	Typical delay = 15ns	100ns@5v, Typical
10	400ns@5v, Typical	Typical delay = 25ns	150ns@5v, Typical
11	no deglitch	no deglitch	no deglitch

Bit 10 (HLFS): Reset to Normal or Green Mode Select Bit

1: CPU is selected as Green mode when a reset occurs.

0: CPU is selected as Normal mode when a reset occurs. (default)

Bit 9 (HLP): Power Consumption Selection

1: Low power consumption, apply to working frequency at 1MHz or below 1MHz

0: High power consumption, apply to working frequency above 1MHz

Bits 8~7 (LVR1~LVR0): Low Voltage Reset enable bit.

LVR1, LVR0	*VDD Reset Level	VDD Release Level	
00	NA (Power on	n reset) (default)	
01	2.5V	2.7V	
10	3.5V	3.7V	
11	4.0V	4.2V	

Note: If VDD < 2.7V and remains for about 5us, IC will be reset.

If VDD < 3.7V and remains for about 5us, IC will be reset.

If VDD < 4.2V and remains for about 5us, IC will be reset.

Bit 6 (RESETEN): P81/RESET pin selection bit

1: Enable, P81 as RESET pin.

0: Disable, P81 as I/O pin (default)

Bit 5 (ENWDT): WDT enable bit

1: Enable

0: Disable (default)

Bit 4 (NRHL): Noise rejection high/low pulse define bit.

1: pulses equal to 8/Fc [s] is regarded as signal

0: pulses equal to 32/Fc [s] is regarded as signal (default)

<Note> In Low XTAL oscillator (LXT) mode the noise rejection high/low pulses always 8/Fm.

Bit 3 (NRE): Noise rejection enable bit

1: Disable.

0: Enable (default). **But in Green, Idle, and Sleep modes, the noise rejection circuit is always disabled.**

Bits 2~0: Not used, set to "0" all the time.

6.18.2 Code Option Register (Word 1)

			V	Vord 1				
	Bit 15	Bit 14	Bit 13	Bit 12	Bit11	Bit10	Bit9	Bit8
Mnemonic	-	-	FSS	-	-	-	-	-
1	High	High	High	High	High	High	High	High
0	Low	Low	Low	Low	Low	Low	Low	Low
Default	0	0	0	0	0	0	0	0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	-	RCM2	RCM1	RCM0	OSC2	OSC1	OSC0	-
1	High	High	High	High	High	High	High	High
0	Low	Low	Low	Low	Low	Low	Low	Low
Default	0	0	0	0	0	0	0	0

Bits 15~14: Not used, set to "0" all the time.

Bit 13 (FSS): Sub-oscillator mode selection bits

0: 16kHz (WDT frequency)

1: 128kHz.

Bit 7~12: Not used, set to "0" all the time.

Bits 6~4 (RCM2~RCM0): IRC frequency selection.

	. ×			
*	,			
~ (,orre	sponding	WITH CO	ntroi register	BANKU RE RUM2~RUMU
00110	opon any g		nii or rogiotor	Bank0 RE RCM2~RCM0

	Conesponding with control register bankon the new 2 memory									
	RCM2	RCM2 RCM1		Frequency (MHz)						
\searrow	0	0	0	4(default)						
$\langle \rangle$	0	0	1	1						
) _	0	1	0	8						
$\langle \langle \rangle$	0	1	1	10						
\searrow	1	0	0	12						
	1	0	1	16						
	1	1	0	20						
	1	1	1	Reserve						

Bits 3~1 (OSC2~OSC0): Main-oscillator mode selection bits.
--

Main-oscillator mode	OSC2	OSC1	OSC0
IRC (Internal RC oscillator mode) (default) RCOUT (P51) acts as I/O pin	0	0	0
IRC (Internal RC oscillator mode) RCOUT (P51) acts as clock output pin	0	0	1
HXT1 (High XTAL1 oscillator mode) Frequency range: 12~20MHz	0	1	0
HXT2(High XTAL2 oscillator mode) Frequency range: 6~12MHz	0	1	1
XT (XTAL oscillator mode) Frequency range: 1~6MHz	1	0	0
LXT1 (Low XTAL1 oscillator mode) Frequency range: 100K~1MHz	1	0	
Reserve	1	1	X

Bit 0: Not used, set to "0" all the time.

6.18.3 Code Option Register (Word 2)

			Wo	rd 2				
	Bit 15	Bit 14	Bit 13	Bit 12	Bit11	Bit10	Bit9	Bit8
Mnemonic	-	SHEN	SHCLK1	SHCLK0				
1	High	Disable	High	High		$\langle \rangle$		
0	Low	Enable	Low	Low				
Default	0	0	0	0	0	0	0	0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	IRCPSS	-	-		-	-	-	
1	VDD	-	- \		<u> </u>	-	-	
0	Int. Vref	- <			 - 	-	-	-
Default	0	0	0		0	0	0	0

Bit 15: Not used, set to "0" all the time.

Bit 14 (SHEN): System hold enable bit.

1: Disable

0: Enable

Bits 13~12 (SHCLK1~SHCLK0): System hold clock selection bits (extra 128 kHz source)

SHCLK1~0	System hold clock
00	8 clock (default)
01	4 clock
10	16 clock
11	32 clock

Bits 11~8: Not used, set to "0" all the time.

Bit 7 (IRCPSS): IRC Power Source Selection

```
1: VDD
```

0: Internal reference (default)

Bits 6~0: Not used, set to "0" all the time.

			\	Vord 3				
	Bit 15	Bit 14	Bit 13	Bit 12	Bit11	Bit10	Bit9	Bit8
Mnemonic	-	EFTIM	-	-	ADFM	-	-	IRCOMS
1	High	Heavy	High	High	High	High	High	Slowdow n
0	Low	Light	Low	Low	Low	Low	Low	Speedup
Default	0	0	0	0	0	0	0	0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	RLEN		ID5	ID4	ID3	ID2	ID1	ID0
1	Reload	High						
0	No Reload	Low	Customer ID					
Default	0	0						

6.18.4 Code Option Register (Word 3)

Bit 15: Not used, set to "0" all the time.

Bit 14 (EFTIM): Low Pass Filter (0: heavy, 1: light)

1: Pass ~ 10MHz (heavy LPS)

0: Pass ~ 25MHz (light LPS) (default)

Bits 13~12: Not used, set to "0" all the time.

Bit 11 (ADFM): This bit controls the format of AD data buffer (ADDH & ADDL), Refer to the following table.

	ADF	Μ	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	0	ADDH			$\langle \rangle$		ADD11	ADD10	ADD9	ADD8
12 bits	0	ADDL	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
	4	ADDH	ADD11	ADD10	ADD9	ADD8	ADD7	ADD6	ADD5	ADD4
	I	ADDL					ADD3	ADD2	ADD1	ADD0

Note: Do not use if the hardware bits are set to "0".

If ADFM=0, ADDH<7:4> = 0000.

Bits 10~9: Not used, set to "0" all the time.

Bit 8 (IRCOMS): IRC Oscillation Mode Select bit (Not for Customer).

1: IRC oscillation frequency is slow down to the set value.

0: IRC oscillation frequency is speed up to the set value. (Default)

Bit 7 (RLEN): Reload Enable

1: Program code reloaded

0: No reload function

Bit 6: Not used, set to "0" all the time.

Bits 5~0 (ID5~ID0): Customer's ID Code

	Word D							
Bit 15 Bit 14 Bit 13 Bit 12 Bit11 Bit10								Bit8
Mnemonic			SC5	SC4	SC3	SC2	SC1	SC0
1	High	High	High	High	High	High	High	High
0	Low	Low	Low	Low	Low	Low	Low	Low
Default	0	0	0	0	0	0	0	0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic		C6	C5	C4	C3	C2	C1	C0
1	High	High	High	High	High	High	High	High
0	Low	Low	Low	Low	Low	Low	Low	Low
Default	0	0	0	0	0	0	0	0

6.18.5 Code Option Register (Word D)

Bits 15~14: Not used, set to "0" all the time.

Bits 13~8 (SC5~SC0): Trim bits of sub frequency IRC. These are automatically set by writer and eUIDE II.

Bit 7: Not used, set to "0" all the time.

Bits 6~0 (C6~C0): IRC trim bits. These are automatically set by writer and eUIDE II.

6.19 Instruction Set

Each instruction in the instruction set is a 15-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of 2 oscillator periods), unless the program counter is changed by instruction "MOV R2,A", "ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g. "SUB R2,A", "BS(C) R2,6", "CLR R2", etc.). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try modifying the instruction as follows:

The conditional skip ("JBS", "JBC", "JZ", "JZA", "DJZ", "DJZA") commands which were tested to be true, are executed within two instruction cycles. The instructions that are written to the program counter also take two instruction cycles.

In addition, the instruction set has the following features:

- (1) Every bit of any register can be set, cleared, or tested directly (except read-only)
- (2) The I/O register can be regarded as general register. That is, the same instruction can operate on I/O register.

Instruction Set Convention:

- **R** = Register designator that specifies which one of the registers (including operation and general-purpose registers) is to be utilized by the instruction.
- **b** = Bit field designator that selects the value for the bit located in the register R and affects the operation.

Mnemonic	Operation	Status Affected
NOP	No Operation	None
DAA	Decimal Adjust A	С
SLEP	$0 \rightarrow WDT$, Stop oscillator	T,P
WDTC	$0 \rightarrow WDT$	T,P
ENI	Enable Interrupt	None
DISI	Disable Interrupt	None
RET	[Top of Stack] \rightarrow PC	None
RETI	[Top of Stack] \rightarrow PC, Enable Interrupt	None
		ALL Registers
RESET	Software Device Reset	= Reset Value
	Soliware Device Reset	Flags*
\vee \sim \sim		= Reset Value
TBWR	Table Writer Start instruction	None
INTK	$PC+1 \rightarrow [SP], k^{*}2 \rightarrow PC$	None
BTG R,b	Bit Toggle R ;/(R)->R	None
DIG R,D	*Range R0~RF	None
MOV R,A	$A \rightarrow R$	None
CLRA	$0 \rightarrow A$	Z
CLR R	$0 \rightarrow R$	Z
SUB A,R	$R-A \rightarrow A$	Z, C, DC

k = 8 or 12-bit constant or literal value

Mnemonic	Operation	Status Affected
SUB R,A	$R-A \rightarrow R$	Z, C, DC
DECAR	$R-1 \rightarrow A$	Z
DECR	$B-1 \rightarrow B$	Z
ORA,R	$A \lor R \rightarrow A$	Z
OR R,A	$A \lor R \rightarrow R$	Z
AND A,R	$A \& R \rightarrow A$	Z
AND R,A	A&R→R	Z
XOR A,R	$A \oplus B \rightarrow A$	Z
XOR R.A	$A \oplus R \rightarrow R$	Z
ADD A,R	$A + R \rightarrow A$	Z, C, DC
ADD R,A	$A + R \rightarrow R$	Z, C, DC
MOV A,R	$B \rightarrow A$	Z
MOV R,R	$R \rightarrow R$	Z
COMAR	$/R \rightarrow A$	Z
COMR	$/R \rightarrow R$	Z
INCAR	$R+1 \rightarrow A$	ź
INC R	$R+1 \rightarrow R$	
DJZAR	$R-1 \rightarrow A$, skip if zero	None
DJZ R	$R-1 \rightarrow R$, skip if zero	None
	$R(n) \rightarrow A(n-1),$	
RRCA R	$R(0) \to C, C \to A(7)$	C C
RRC R	$ \begin{array}{c} R(n) \rightarrow R(n\text{-}1), \\ R(0) \rightarrow C, C \rightarrow R(7) \end{array} $	C
RLCA R	$ \begin{array}{c} R(n) \to A(n+1), \\ R(7) \to C, C \to A(0) \end{array} $	С
RLC R	$\begin{array}{c} R(n) \to R(n+1), \\ R(7) \to C, C \to R(0) \end{array}$	С
SWAPA R		None
SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
JZA R	$R+1 \rightarrow A$, skip if zero	None
JZR	$R+1 \rightarrow R$, skip if zero	None
BC R,b	$0 \rightarrow R(b)$	None
BS R,b	$1 \rightarrow R(b)$	None
JBC R,b	if R(b)=0, skip	None
JBS R,b	if R(b)=1, skip	None
CALLK	PC+1 → [SP], (Page, k) → PC	None
JMP_k	$(Page,k)\toPC$	None
MOV A,k	$k \rightarrow A$	None
JER	Compare R with ACC, Skip =	None
JGE R	Compare R with ACC, Skip >	None
	Compare R with ACC Skip <	None
OR A,k	$A \lor k \rightarrow A$	Z
JEk	Compare K with ACC, Skip =	None
TBRDA R	$ROM[(TABPTR)] \rightarrow R, A$ A \leftarrow program code (low byte);	None
	$R \leftarrow program code (high byte)$	7
AND A,k	$A \& k \rightarrow A$	Z
SJC k	Jump to K if Carry *Range [Address <u>+</u> 128]	None
SJNC k	Jump to K if Not Carry *Range [Address <u>+</u> 128]	None

Mnemonic	Operation	Status Affected
SJZ k	Jump to K if Zero	None
002 K	*Range [Address <u>+</u> 128]	NONE
XOR A,k	$A \oplus k \to A$	Z
SJNZ k	Jump to K if Not Zero	None
	*Range [Address <u>+</u> 128]	NONE
RRA R	$R(n) \rightarrow A(n-1), R(0) \rightarrow A(7)$	N
RR R	$R(n) \to R(n-1), R(0) \to R(7)$	Ν
RETLk	$k \rightarrow A$, [Top of Stack] $\rightarrow PC$	None
XCH R	$R \leftrightarrow A$	None
RLA R	$R(n) \rightarrow A(n+1), R(7) \rightarrow A(0)$	N
RL R	$R(n) \rightarrow R(n+1), R(7) \rightarrow R(0)$	N
SUB A,k	$k-A \rightarrow A$	Z, C, DC
SUBB A,R	$R-A-/C \rightarrow A$	Z, C, DC, OV, N
SUBB R,A	$R-A-/C \rightarrow R$	Z, C, DC, OV, N
SBANK k	K->R1(4)	None
GBANK k	K->R1(0)	None
LCALL k	Next instruction : k kkkk kkkk kkkk PC+1 \rightarrow [SP], k \rightarrow PC	None
LJMP k	Next instruction : k kkkk kkkk kkkk kkkk K \rightarrow PC	None
TBRD R	$ROM[(TABPTR)] \to R$	None
ADD A,k	$k+A \rightarrow A$	Z, C, DC
NEG R	2's complement, $/R + 1 \rightarrow R$	Z,C,DC,OV,N
ADC A,R	A+R+C→A	Z,C,DC,OV,N
ADC R,A	$A+R+C \rightarrow R$	Z,C,DC,OV,N

7 Absolute Maximum Ratings

Items		Rating	
Temperature under bias	-40°C	to	85°C
Storage temperature	-65°C	to	150°C
Input voltage	VSS-0.3V	to	VDD+0.5V
Output voltage	VSS-0.3V	to	VDD+0.5V
Operating Voltage	2.2V	to	5.5V
Operating Frequency	DC	to	20 MHz

8 DC Electrical Characteristics

VDD=5.0V, VSS=0V, Ta=25°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	XTAL: VDD to 3V	Two cycles with two clocks	DC	8	_	MHz
Fxt	XTAL: VDD to 5V		DC	16	_	MHz
	IRC: VDD to 5V	4 MHz, 1 MHz, 8kHz, 10MHz, 12MHz, 16 MHz, 20MHz,	_	F	_	Hz
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μA
IRCE	Internal RC oscillator error per stage	_	_	±1		%
IRC1	IRC:VDD to 5V	RCM2~RCM1=000		4		MHz
IRC2	IRC:VDD to 5V	RCM2~RCM1=001		1	\sim	MHz
IRC3	IRC:VDD to 5V	RCM2~RCM1=010		6		MHz
IRC4	IRC:VDD to 5V	RCM2~RCM1=011		8		MHz
IRC5	IRC:VDD to 5V	RCM2~RCM1=100	~	12		MHz
IRC6	IRC:VDD to 5V	RCM2~RCM1=101		16		MHz
IRC7	IRC:VDD to 5V	RCM2~RCM1=110		20	$\langle \rangle \rangle$	MHz
VIH1	Input High Voltage (Schmitt Trigger)	Ports 5, 6, 7, 8	0.7VDD	~	VDD+0.3V	V
VIL1	Input Low Voltage (Schmitt Trigger)	Ports 5, 6, 7, 8	-0.3V		0.3VDD	V
VIHT1	Input High Threshold Voltage (Schmitt Trigger)	/RESET	0.7VDD	\searrow	VDD+0.3V	v
VILT1	Input Low Threshold Voltage (Schmitt Trigger)	/RESET	-0.3V	-	0.3VDD	v
VIHT2	Input High Threshold Voltage (Schmitt Trigger)	TCC, INT	0.7VDD	-	VDD+0.3V	v
VILT2	Input Low Threshold Voltage (Schmitt Trigger)	TCC, INT	-0.3V	_	0.3VDD	v
VIHX1	Clock Input High Voltage	OSCI in crystal mode	2.9	3.0	3.1	V
VILX1	Clock Input Low Voltage	OSCI in crystal mode	1.7	1.8	1.9	V
IOH1	High Drive Current 1 (Ports 5~8)	VOH = VDD-0.1VDD	-2.7	-4.5	_	mA
IOH2	High Drive Current 2 (Ports 5~8)	VOH = VDD-0.1VDD	-4.8	-8	_	mA
IOL1	Low Sink Current 1 (Ports 5~8)	VOL = GND+0.1VDD	8.4	14	-	mA
IOL2	Low Sink Current 2 (Ports 5~8)	VOL = GND+0.1VDD	16.8	28	-	mA
IPH	Pull-high current	Pull-high active, input pin @ VSS	47	-72	97	μΑ
IPL	Pull-low current	Pull-low active, input pin @ VDD	27	52	77	μA

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
LVR1	Low voltage reset	Ta = 25°C	2.41	2.7	2.99	V
LVNI	Level 1 (2.7V)	Ta = -40°C ~ 85°C	2.14	2.7	3.25	V
LVR2	Low voltage reset	Ta = 25°C	3.1	3.5	3.92	V
LVNZ	Level 2 (3.5V)	Ta = -40°C ~ 85°C	2.73	3.5	4.25	V
LVR3	Low voltage reset	Ta = 25°C	3.56	4.0	4.43	V
LVIII	Level 3 (4.0V)	Ta = -40°C ~ 85°C	3.16	4.0	4.81	V
ISB1	Power down current	Ta=25°C, /RESET= 'High', Fm & Fs off All input and I/O pins at VDD, Output pin floating, WDT disabled	-	1	2	μΑ
	(Sleep mode)	Ta=85°C, /RESET= 'High', Fm & Fs off All input and I/O pins at VDD, Output pin floating, WDT disabled	-	2	2.5	μA
ISB2	Power down current (Sleep mode)	/RESET= 'High', Fm & Fs off All input and I/O pins at VDD, output pin floating, WDT enabled	-	4.2	-	μA
ISB3	Power down current (Idle mode)	/RESET= 'High', Fm off, Fs=16KHz (IRC type), output pin floating, WDT enabled, PERCS=0	Ι	5.6	-	μΑ
ISB4	Power down current (Idle mode)	/RESET= 'High', Fm off, Fs=128KHz (IRC type), output pin floating, WDT enabled, PERCS=0		19	-	μΑ
ISB5	Power down current (Idle mode)	/RESET= 'High', Fm off, Fs=16KHz (IRC type), output pin floating, WDT enabled, PERCS=1		22		μA
ICC1	Operating supply current (Green mode)	/RESET= 'High', Fm off, Fs=16kHz (IRC type), output pin floating, WDT enabled	\bigcirc	12.8		μA
ICC2	Operating supply current (Green mode)	/RESET= 'High', Fm off, Fs=128kHz (IRC type), Output pin floating, WDT enabled	-	17.6	> _	μA
ICC4	Operating supply current (Normal mode)	/RESET= 'High', Fm=4 MHz (Crystal type), Fs on, output pin floating, WDT enabled		1.6	-	mA
ICC5	Operating supply current (Normal mode)	/RESET= 'High', Fm=4 MHz (IRC type), Fs on, output pin floating, WDT enabled		1.5	-	mA
ICC6	Operating supply current (Normal mode)	/RESET= 'High', Fm=10 MHz (Crystal type), Fs on, output pin floating, WDT enabled	_	3.6	_	mA
ICC7	Operating supply current (Normal mode)	on, output pin floating, WDT enabled	-	4.6	-	mA
ICC8	Operating supply current (Normal mode)	/RESET= 'High', Fm=16 MHz (Crystal type), Fs on, output pin floating, WDT enabled	-	5.7	_	mA

* These parameters are characterized but not tested.

** Data in the Minimum, Typical, and Maximum ("Min.", "Typ.", "Max.") columns are based on characterization results at 25°C. These data are for design reference only and have not been tested.

8.1 AD Converter Characteristics

VDD=5V, VSS=0V, Ta=25°C

Syn	nbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VA	REF	Analog reference	V_{ABEF} - $V_{ASS} \ge 2.5V$	2.5	—	VDD	V
V,	ASS	voltage	$VAREF VASS \leq 2.3V$	VSS	—	VSS	V
V	Al	Analog input voltage	_	V _{ASS}	—	V_{AREF}	V
IAI1	lvdd	Analog supply current	$V_{AREF} = VDD = 5.5V$ $V_{ASS} = VSS = 0V$ FS=100kHz, FIN=1kHz	_	-	1000	μA
	lvref		(VREF is internal VDD)	-	-	10	μA
IAI2	lvdd	Analog supply current	$V_{AREF} = VDD = 5.5V$ $V_{ASS} = VSS = 0V$ FS=100kHz, FIN=1kHz	_	-	600	μA
	lvref		(VREF is external VREF pin)	-		400	μA
11	۱L	Integral nonlinearity	$V_{AREF} = VDD = 5V$ $V_{ASS} = VSS = 0V$ FS=100kHz, FIN=1kHz	_	- <	±4	LSB
D	NL	Differential nonlinear	$V_{AREF} = VDD = 5V$ $V_{ASS} = VSS = 0V$ FS=100kHz, FIN=1kHz	_		E C	LSB
F	SE	Full scale error	V _{AREF} = VDD = 5V V _{ASS} = VSS = 0V, Fs=100kHz			±8	LSB
С)E	Offset error	V _{AREF} = VDD = 5V V _{ASS} = VSS = 0V, Fs=100kHz	1-1		±4	LSB
Z	'AI	Recommended impedance of analog voltage source	-			10	kΩ
т	AD	A/D clock duration	VDD = 3V~5.5V V _{ASS} = VSS = 0V, FIN=1kHz	0.5	-	-	μs
L	AD	A/D CIOCK duration	VDD = 2.5V~3V V _{ASS} = VSS = 0V, FIN=1kHz	2	-	Ι	μs
		Comple and Hold time	VDD = 3V~5.5V V _{ASS} = VSS = 0V	4	-	Ι	μs
	SH	Sample and Hold time	VDD = 2.5V~3V V _{ASS} = VSS = 0V	16	-	-	μs
Т	CN	A/D conversion time	VDD = 2.5V~5V V _{ASS} = VSS = 0V	-	Tsh+12TAD	-	TAD
A _{1/2}	2VDD	Accuracy for 1/2VDD	× /	-	±2	_	%

Notes:

- 1. FS is Sample Rate or conversion rate. FIN is freq. of input test sine wave
- 2. The parameters are theoretical values and have not been tested. Such parameters are for design reference only.
- 3. There is no current consumption when ADC is off other than minor leakage current.
- 4. AD conversion result will not decrease when the input voltage is increased, and there is no missing code.
- 5. These parameters are subject to change without further notice.
- * These parameters are characterized but not tested.
- * Data in the Minimum, Typical, Maximum("Min", "Typ", "Max") column are based on characterization results at 25°C. These data are for design guidance only and have not been tested.

8.2 OP Characteristics

VDD=5V, VSS=0V, Ta=25°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{OS}	Input offset voltage	Vip=0.1V, after trimmed	0	±1	±2	mV
SR	Slew rate	RL=1Meg, CL=20p, V _I (_{pp})=3V, Av=1	2	2.5		V/us
IVR [*]	Input voltage range [*]		0		3.6	V
	Low-level output voltage	Vip=0V, I _L =100uA, Av=1		10	40	mV
VOL		Vip=0V, I _L =1mA, Av=1		50	200	mV
VOL		Vip=2.5V, IL=100uA, Av=2	4.920	4.980		V
VOH	High-level output voltage	Vip=2.5V, IL=1mA, Av=2	4.600	4.850		V
ISC_L	Output sink current (short circuit current)		5	10		mA
ISC_H	Output source current (short circuit current)		5	10		mA
I _{DD}	Supply current	No load, Vic=0.1V, Av=1	\searrow	200	250	uA
GBP	Gain bandwidth product	RL=1Meg, CL=20p,	1.2	1.9		MHz

* IVR: Max= Vdda-1.4V

* These parameters are characterized but not tested.

* Data in the Minimum, Typical, Maximum("Min", "Typ", "Max") column are based on characterization results at 25°C. These data are for design guidance only and have not been tested.

8.3 Comparator Characteristics

VDD=5V, VSS=0V, Ta=25°C

	Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	V _{OS}	Input offset voltage	Vip=0.1V, after trimmed	0	±1	±2	mV
	IVR [*]	Input voltage range		0		3.6	V
	I _{DD}	Supply current			100	120	uA
<	TRS	Response time	Vin=0.1V, (Note ¹)		0.5	1	us
	TLRS	Large signal response time	Vin=1.8V, (Note ²)		50	100	ns

* IVR: Max= Vdda-1.4V

Note¹: The response time specified is a 100mV input step with 10mV overdrive. Note²: The response time specified is a 0V~3.6V input step with 1.8V overdrive.

* These parameters are characterized but not tested.

* Data in the Minimum, Typical, Maximum("Min", "Typ", "Max") column are based on characterization results at 25° C. These data are for design guidance only and have not been tested.

8.4 HLVD Characteristics

VDD=5V, VSS=0V, Ta=25°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
IHLVD	HLVD Operation current	HLVD Enable, VDD=5V		9.2	11	μA
ΔV	Detect level variation			±0.15	\land	V
VHYST	Hysteresis		50	100	150	mV
TVREF	VREF stable time	HLVD Enable, VDD=5V		30	60	μs

* These parameters are characterized but not tested.

 * Data in the Minimum, Typical, Maximum("Min", "Typ", "Max") column are based on characterization results at 25°C. These data are for design guidance only and have not been tested.

8.5 1/2VDD Characteristics

VDD=5V, VSS=0V, Ta=25°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VDD	power supply		2.4	5	5.5	V
Ivdda	DC supply current	VDDA=5V	>	34.72	42	uA
lpd	power down current			0.001	< 0.1	uA
warn up time for ADC sample	time ready for voltage reference (VREF1_2VDD)	CL=12.8PF (ADC sample loading)		2.8**	4	us
warn up time for TE testing	time ready for voltage reference to TE testing (VREF1_2VDD_PAD)	CL=100PF (TE testing loading)		18**	25	us
VREF1_2VDD	1/2 VDD voltage output		Тур 1%	(1/2)V DD	Typ. +1%	V

* These parameters are characterized but not tested.

* Data in the Minimum, Typical, Maximum("Min", "Typ", "Max") column are based on characterization results at 25°C. These data are for design guidance only and have not been tested.

8.6 VREF Characteristics

VDD=5V, VSS=0V, Ta=25°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VDD	power supply		2.2		5.5	V
lvdd	DC supply current	BG_PD=0		250	400	uA
ivuu		VREF_PD=0		200	400	uA
Tresponse	Response time	Trim bit and VREF		10**	20	
rresponse		select setting time		10	20	us
warn up time	time ready for voltage	EN_LPF=0		10	20	us
wann up time	reference	EN_LPF=1		1**	1.5	ms
			2.02752	2.048	2.06848	
Vref	Valtaga rafaranga autaut		2.53404	2.560	2.58560	V
Viei	Voltage reference output		3.04128	3.072	3.10272	v
			4.05504	4.096	4.13696	
Vdd_min	Minimum power supply		Vref+0.1	Vref+0.2		V

*Vdd_min: can work at (Vref+0.1V), but has a poor PSRR.

* These parameters are characterized but not tested. * Data in the Minimum, Typical, Maximum("Min", "Typ", "Max") column are based on characterization results at 25°C. These data are for design guidance only and have not been tested.

Notes:

- 1. The parameters are theoretical values and have not been tested. Such parameters are for design reference only.
- 2. These parameters are subject to change without prior notice.

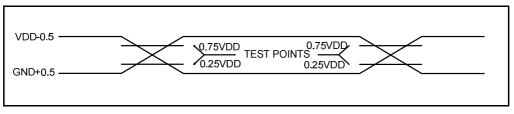
9 AC Electrical Characteristics

Ta=25°C, VDD=5V ± 5%, VSS=0V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Dclk	Input CLK duty cycle	_	45	50	55	%
Tiree	Instruction Quelo Time	Crystal type	125	_	DC	ns
Tins	Instruction Cycle Time	IRC type	125	_	DC	ns
Ttcx	TCX Input Period	_	Tins		1	ns
Tpor	Delay time after Power-on-Reset release	16kHz	_	16±3%		ms
		Crystal type, HLFS=1	_	WSTO+510/Fm		
Tratul	Delay time after /RESET,	IRC type, HLFS=1	_	WSTO+8/Fm		_
Trstrl	WDT and LVR release	Crystal type, HLFS=0	$\overline{\langle}$	WSTO+510/Fs	\searrow	_
		IRC type, HLFS=0		WSTO+8/Fs	-	_
Trsth	Hold time after /RESET and LVR reset	-			_	μs
Twdt	Watchdog timer period	16kHz		16±3%	-	ms
Tset	Input pin setup time			О	Ι	ns
Thold	Input pin hold time		15	20	25	ns
Tdelay	Output pin delay time	Cload=20pF Rload=1M	> _	20	-	ns

Note: * *Tpor* and *Twdt* are 16+/- 10% ms at Ta = -40° ~ 85°C, and VDD = 2.1~5.5V

** WSTO: Waiting time of Start-to-Oscillation


1. These parameters are hypothetical (not tested) and are provided for design reference only.

2. Data under Minimum, Typical and Maximum (Min., Typ. and Max.) columns are based on hypothetical results at 25 °C. These data are for design reference only and have not been tested or verified.

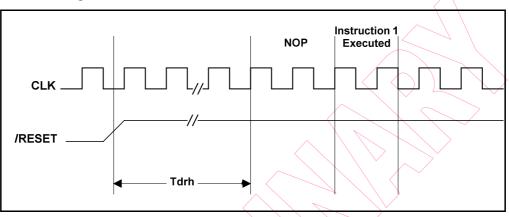
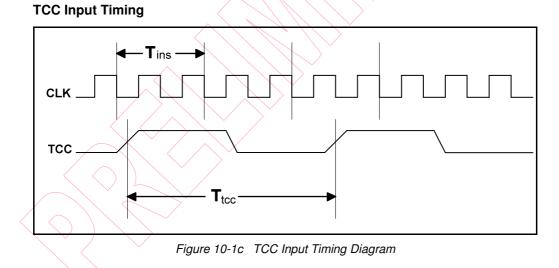
10 Timing Diagrams

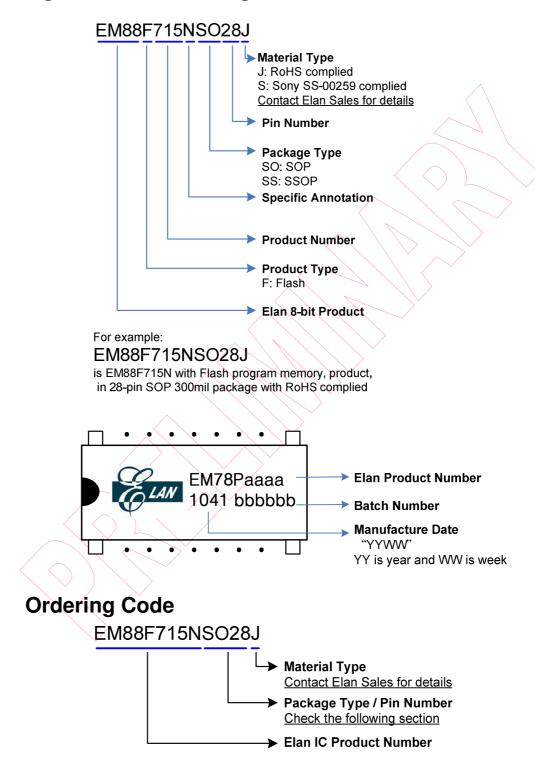
AC Test Input / Output Waveform

Note: AC Testing: Input are driven at VDD-0.5V for logic "1," and VSS+0.5V for logic "0" Timing measurements are made at 0.75VDD for logic "1," and 0.25VDD for logic "0"

Figure 10-1a AC Test Input / Output Waveform Timing Diagram

Reset Timing


Figure 10-1b Reset Timing Diagram

APPENDIX

A Ordering and Manufacturing Information

B Package Type

OTP MCU	Package Type	Pin Count	Package Size
EM88F715NSO20	SOP	20	300 mil
EM88F715NSS20	SSOP	20	209 mil
EM88F715NSO24	SOP	24	300 mil
EM88F715NSS24	SSOP	24	209 mil
EM88F715NSO28	SOP	28	300 mil
EM88F715NSS28	SSOP	28	209 mil

These are Green products which do not contain hazardous substances and comply with the third edition of Sony SS-00259 standards.

Pb content is less than 100ppm and complies with Sony specifications.

Part No.	EM88F715NxJ / xS
Electroplate type	Pure Tin
Ingredient (%)	Sn:100%
Melting point (°C)	232°C
Electrical resistivity ($\mu\Omega$ -cm)	11.4
Hardness (hv)	8~10
Elongation (%)	>50%

C Package Information

C.1 EM88F715NSO28

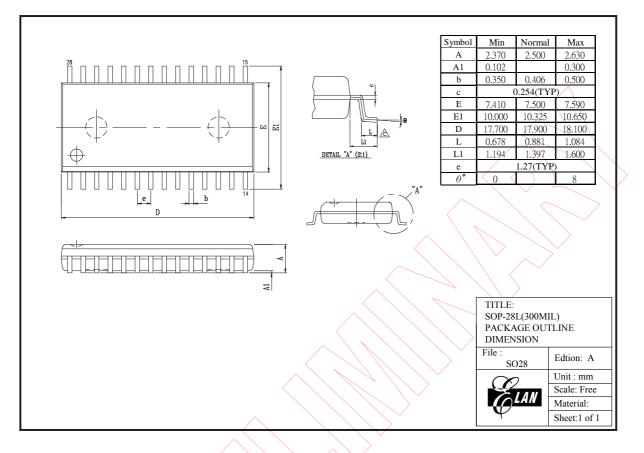


Figure C-1 EM88F715N 28-pin SOP Package Type

C.2 EM88F715NSS28

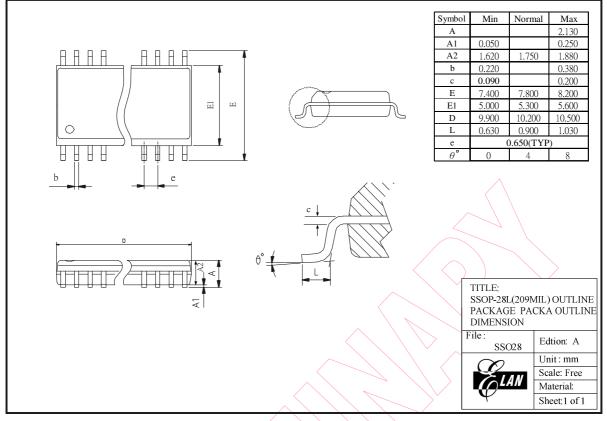


Figure C-2 EM88F715N 28-pin SSOP Package Type

C.3 EM88F715NSO24

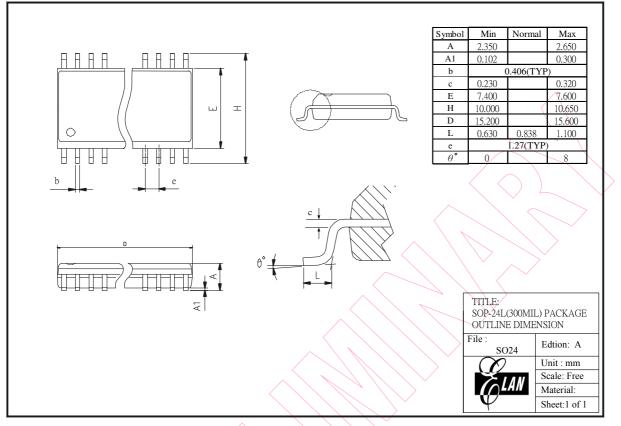


Figure C-3 EM88F715N 24-pin SO Package Type

C.4 EM88F715NSS24

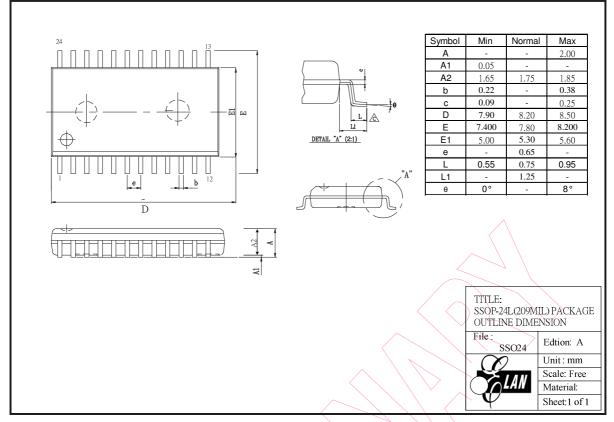


Figure C-4 EM88F715N 24-pin SSO Package Type

C.5 EM88F715NSO20

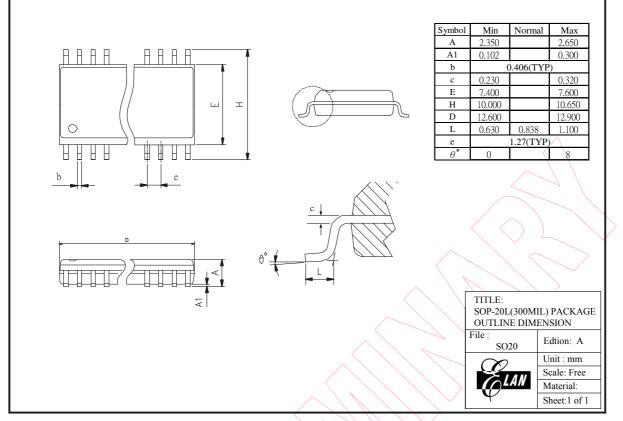



Figure C-5 EM88F715N 20-pin SO Package Type

C.6 EM88F715NSS20

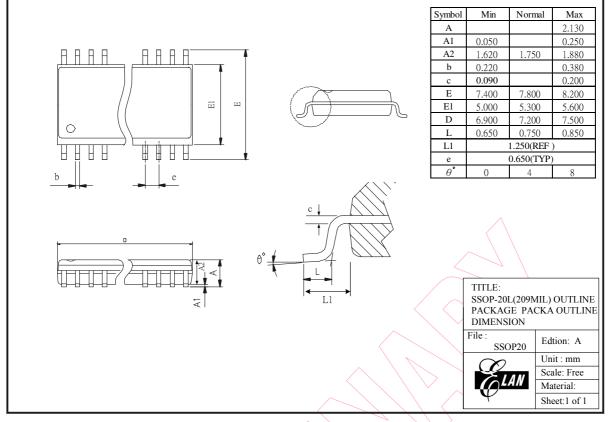


Figure C-6 EM88F715N 20-pin SSO Package Type

D Quality Assurance and Reliability

Test Category	Test Conditions	Remarks		
Solderability	Solder temperature = 245 ± 5 °C, for 5 seconds up to the stopper using a rosin-type flux			
	Step 1: TCT, 65°C (15 min)~150°C (15 min), 10 cycles			
	Step 2: Bake at 125°C, TD (endurance)=24 hrs			
	Step 3: Soak at 30°C/60% , TD (endurance)=192 hrs	\wedge		
Pre-condition	Step 4: IR flow 3 cycles (Pkg thickness \geq 2.5mm or Pkg volume \geq 350 mm ³ 225±5°C) (Pkg thickness \leq 2.5 mm or Pkg volume \leq 350 mm ³ 240±5°C)For SMD IC (such SOP, QFP, SOJ, OF, SOP, SOP, SOP, SOP, SOP, SOP, SOP, SOP			
Temperature cycle test	-65°C (15mins)~150°C (15min), 200 cycles			
Pressure cooker test	TA =121°C, RH=100%, pressure = 2 atm, TD (endurance)= 96 hrs			
High temperature / High humidity test	TA=85°C , RH=85% , TD (endurance)=168 , 500 hrs			
High-temperature storage life	TA=150°C, TD (endurance)=500, 1000 hrs			
High-temperature operating life	TA=125°C, VDD=Max. operating voltage, TD (endurance) =168, 500, 1000 hrs			
Latch-up	TA=25°C, VDD=Max. operating voltage, 800mA/40V			
		IP_ND,OP_ND,IO_ND		
ESD (HBM)	TA=25°C, ≥ ± 4KV	IP_NS,OP_NS,IO_NS		
		IP_PD,OP_PD,IO_PD,		
ESD (MM)	TA=25°C, ≥1 ± 400V1	IP_PS,OP_PS,IO_PS, VDD-VSS(+),VDD_VSS (-) mode		

D.1 Address Trap Detect

An address trap detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is automatically started. If a noise-caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.