

TPS3808-EP

SBVS103D - APRIL 2008-REVISED DECEMBER 2014

TPS3808-EP Low Quiescent Current, Programmable Delay Supervisory Circuit

Features

- Controlled Baseline
 - One Assembly Site
 - One Test Site
 - One Fabrication Site
- **Extended Temperature Performance of** -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- **Enhanced Product-Change Notification**
- Qualification Pedigree (1)
- Power-On Reset Generator With Adjustable Delay Time: 1.25 ms to 10 s
- Very Low Quiescent Current: 2.4 µA Typical
- High Threshold Accuracy: 0.5% Typical
- Fixed Threshold Voltages for Standard Voltage Rails From 0.9 V to 5 V and Adjustable Voltage Down to 0.4 V Are Available
- Manual Reset (MR) Input
- Open-Drain RESET Output
- Temperature Range: -55°C to 125°C
- Small SOT-23 Package
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

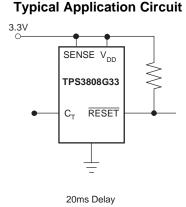
2 Applications

- **DSP** or Microcontroller Applications
- Notebook/Desktop Computers
- PDAs and Hand-Held Products
- Portable and Battery Powered Products
- FPGA and ASIC Applications

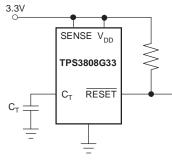
3 Description

The TPS3808xxx family microprocessor supervisory circuits monitors system voltages from 0.4 V to 5.0 V, asserting an open-drain RESET signal when the SENSE voltage drops below a preset threshold or when the manual reset (MR) pin drops to a logic low. The RESET output remains low for the user-adjustable delay time after the SENSE voltage and manual reset (MR) return above the respective thresholds.

The TPS3808 uses a precision reference to achieve 0.5% threshold accuracy for $V_{IT} \le 3.3$ V. The reset delay time can be set to 20 ms by disconnecting the C_T pin, 300 ms by connecting the C_T pin to V_{DD} using a resistor, or can be user-adjusted between 1.25 ms and 10 s by connecting the C_T pin to an external capacitor. The TPS3808 has a very low typical quiescent current of 2.4 µA, so it is well-suited to battery-powered applications. It is available in a small SOT-23 package, and is fully specified over a temperature range of -55°C to +125°C (T_J).


Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
TPS3808-EP	SOT (6)	2.90 mm x 1.60 mm		


(1) For all available packages, see the orderable addendum at the end of the datasheet.

SENSE V_{DD} TPS3808G33 Ст RESET

300ms Delay (a)

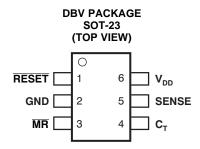
(b)

Delay (s) =
$$C_T (nF) + 0.5 \times 10^{-3}$$
 (s)
175
(c)

Table of Contents

1	Features 1		7.2 Functional Block Diagrams	9
2	Applications 1		7.3 Feature Description	
3	Description 1		7.4 Device Functional Modes	9
4	Revision History2	8	Application and Implementation	10
	Pin Configuration and Functions		8.1 Application Information	10
6	Specifications4		8.2 Typical Application	13
U	6.1 Absolute Maximum Ratings	9	Power Supply Recommendations	15
	6.2 ESD Ratings	10	Layout	15
	6.3 Recommended Operating Conditions		10.1 Layout Guidelines	15
	6.4 Thermal Information		10.2 Layout Example	15
	6.5 Electrical Characteristics	11	Device and Documentation Support	16
	6.6 Switching Characteristics		11.1 Trademarks	16
	6.7 Typical Characteristics		11.2 Electrostatic Discharge Caution	16
7	Detailed Description9		11.3 Glossary	16
-	7.1 Overview	12	Mechanical, Packaging, and Orderable Information	16

4 Revision History


Changes from Revision C (September 2008) to Revision D

Page

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION					
NAME	NO.	1/0	DESCRIPTION					
RESET	1	0	RESET is an open-drain output that is driven to a low impedance state when RESET is asserted (either the SENSE input is lower than the threshold voltage (V_{IT}) or the \overline{MR} pin is set to a logic low). RESET remains low (asserted) for the reset period after both SENSE is above V_{IT} and \overline{MR} is set to a logic high. A pullup resistor from 10 kΩ to 1 MΩ should be used on this pin, and allows the reset pin to attain voltages higher than V_{DD} .					
GND	2	_	Ground					
MR	3	I	Driving the manual reset pin (\overline{MR}) low asserts \overline{RESET} . \overline{MR} is internally tied to V_{DD} by a $90k\Omega$ pullup resistor.					
C _T	4	I	Reset period programming pin. Connecting this pin to V_{DD} through a $40\text{-}k\Omega$ to $200\text{-}k\Omega$ resistor or leaving it open results in fixed delay times (see <i>Switching Characteristics</i>). Connecting this pin to a ground referenced capacitor ≥ 100 pF gives a user-programmable delay time. See the <i>Selecting the Reset Delay Time</i> section for more information.					
SENSE	5	I	This pin is connected to the voltage to be monitored. If the voltage at this terminal drops below the threshold voltage V_{IT} , then \overline{RESET} is asserted.					
V_{DD}	6	I	Supply voltage. It is good analog design practice to place a 0.1-µF ceramic capacitor close to this pin.					

Copyright © 2008–2014, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

Over operating junction temperature range, unless otherwise noted. (1)

	MIN	MAX	UNIT
Input voltage, V _{DD}	-0.3	7.0	
C _T voltage, V _{CT}	-0.3	$V_{DD} + 0.3$	V
Other voltage: V _{RESET} , V _{MR} , V _{SENSE}	-0.3	7	
RESET pin current		5	mA
Operating junction temperature, T _J ⁽²⁾	-55	150	°C
Storage temperature, T _{stg}	-65	150	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	TINU
	V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	±3000	
V _(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{DD}	Input supply range	1.7	6.5	V
Power-up reset voltage	V_{OL} (max) = 0.2 V, I $_{\overline{RESET}}$ = 15 μA		0.8	V

6.4 Thermal Information

		TPS3808-EP	
	THERMAL METRIC ⁽¹⁾	DBV	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	180.9	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	117.8	
$R_{\theta JB}$	Junction-to-board thermal resistance	27.8	°C/W
ψ_{JT}	Junction-to-top characterization parameter	1.12	
ψ_{JB}	Junction-to-board characterization parameter	27.3	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

²⁾ As a result of the low dissipated power in this device, it is assumed that $T_J = T_A$.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

1.7 V \leq V_{DD} \leq 6.5 V, R_{LRESET} = 100 k Ω , C_{LRESET} = 50 pF, over operating temperature range (T_J = -55° C to +125 $^{\circ}$ C), unless otherwise noted. Typical values are at T_J = +25 $^{\circ}$ C.

	PARAMET	ER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V_{DD}	Input supply range			1.7		6.5	V	
	Supply ourrant (ourran	t into \/ nin\	$\frac{V_{DD}}{MR} = 3.3 \text{ V}, \overline{RESET} \text{ not asserted}$ $\overline{MR}, \overline{RESET}, C_T \text{ open}$		2.4	5.0		
I _{DD}	Supply current (curren	t into v _{DD} pin)	$V_{DD} = 6.5 \text{ V}, \overline{\text{RESET}} \text{ not asserted}$ MR, RESET, C _T open		2.7	6.0	μA	
V	Low-level output voltage	70	$1.3 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V}, \text{I}_{OL} = 0.4 \text{ mA}$			0.3		
V_{OL}	Low-level output voltaç	je	$1.8 \text{ V} \le \text{V}_{DD} \le 6.5 \text{ V}, \text{I}_{OL} = 1.0 \text{ mA}$			0.4	V	
	Power-up reset voltage	e ⁽¹⁾	V_{OL} (max) = 0.2 V, I $_{\overline{RESET}}$ = 15 μA			0.8		
		TPS3808G01		-2.0%	±1.0%	+2.0%		
V_{IT}	Negative-going input threshold accuracy	V _{IT} ≤ 3.3 V		-1.7%	±0.5%	+1.7%		
		3.3 V < V _{IT} ≤ 5.0 V		-2.0%	±1.0%	+2.0%		
	I bestavania na V – nia	TPS3808G01			1.5%	3.0%		
V_{HYS}	Hysteresis on V _{IT} pin	Fixed versions			1.0%	2.5%	V_{IT}	
R MR	MR Internal pullup resi	stance		70	90		kΩ	
	Input current at	TPS3808G01	V _{SENSE} = V _{IT}	-25		25	nA	
ISENSE	SENSE pin	Fixed versions	V _{SENSE} = 6.5 V		1.7		μΑ	
I _{OH}	RESET leakage currer	nt	V RESET = 6.5 V, RESET not asserted			300	nA	
0	Input capacitance,	C _T pin	$V_{IN} = 0 V to V_{DD}$		5			
C _{IN}	any pin	Other pins	V _{IN} = 0 V to 6.5 V		5		pF	
V _{IL}	MR logic low input			0		0.3 V _{DD}	V	
V _{IH}	MR logic high input			0.7 V _{DD}		V_{DD}	V	
θ_{JA}	Thermal resistance, junction-to-ambient				290		°C/W	

⁽¹⁾ The lowest supply voltage (V_{DD}) at which \overline{RESET} becomes active. $T_{rise(VDD)} \ge 15 \ \mu s/V$.

6.6 Switching Characteristics

 $1.7~V \le V_{DD} \le 6.5~V,~R_{LRESET} = 100~k\Omega,~C_{LRESET} = 50~pF,~over~operating~temperature~range~(T_J = -55^{\circ}C~to~+125^{\circ}C),~unless~otherwise~noted.~Typical~values~are~at~T_J = +25^{\circ}C.$

	PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _w Input pulse width to RESET	SENSE	$V_{IH} = 1.05 \ V_{IT}, \ V_{IL} = 0.95 \ V_{IT}$		20			
	MR	$V_{IH} = 0.7 \ V_{DD}, \ V_{IL} = 0.3 \ V_{DD}$		0.00		μs	
	C _T = Open			12	20	29	
	RESET delay time	$C_T = V_{DD}$	See Timing Diagram	180	300	440	ms
t _d		C _T = 100 pF	See Timing Diagram	0.75	1.25	1.8	
		C _T = 180 nF			1.2	1.8	S
	Propagation delay	MR to RESET	$V_{IH} = 0.7 V_{DD}, V_{IL} = 0.3 V_{DD}$		150		ns
t _{pHL}	High-to-low level RESET delay	SENSE to RESET	V _{IH} = 1.05 V _{IT} , V _{IL} = 0.95 V _{IT}		20		μs

Product Folder Links: TPS3808-EP

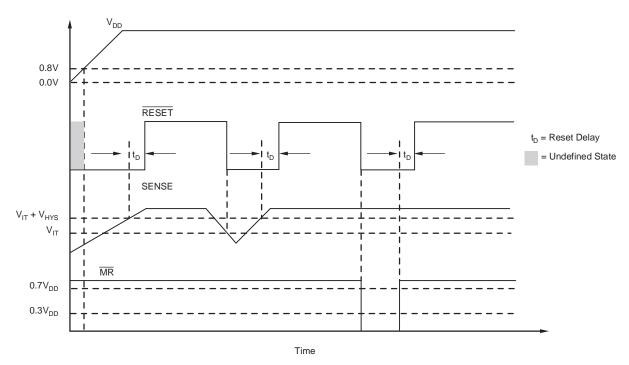


Figure 1. TPS3808 Timing Diagram Showing $\overline{\text{MR}}$ and SENSE Reset Timing

Table 1. Truth Table

MR	SENSE > V _{IT}	RESET
L	0	L
L	1	L
Н	0	L
Н	1	Н

6.7 Typical Characteristics

At T_J = +25°C, V_{DD} = 3.3 V, R_{LRESET} = 100k Ω , and C_{LRESET} = 50pF, unless otherwise noted.

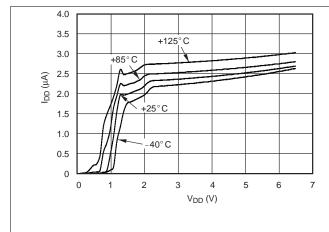


Figure 2. Supply Current vs Supply Voltage

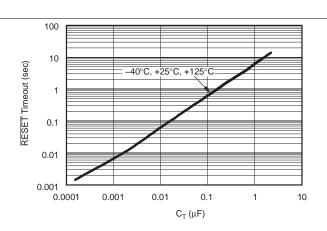


Figure 3. RESET Timeout Period vs C_T

Figure 4. Normalized RESET Timeout Period vs Temperature

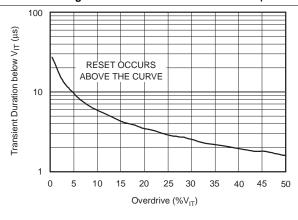
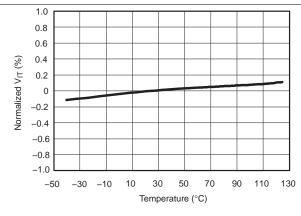
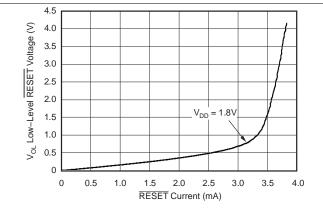
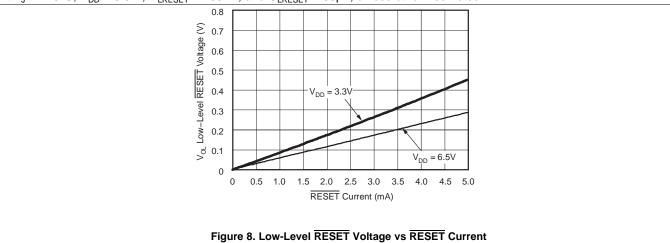



Figure 5. Maximum Transient Duration at Sense vs Sense
Threshold Overdrive Voltage

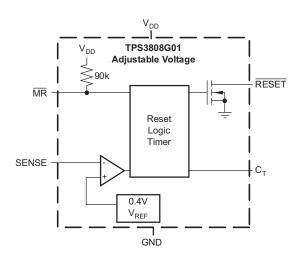


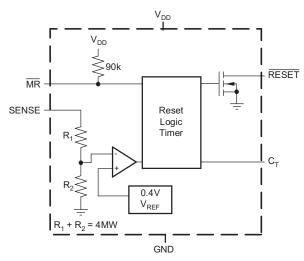

Figure 7. Low-Level $\overline{\text{RESET}}$ Voltage vs $\overline{\text{RESET}}$ Current

Copyright © 2008–2014, Texas Instruments Incorporated

Typical Characteristics (continued)

At T_J = +25°C, V_{DD} = 3.3 V, R_{LRESET} = 100k Ω , and C_{LRESET} = 50pF, unless otherwise noted.




7 Detailed Description

7.1 Overview

The TPS3808 microprocessor supervisory product family is designed to assert a \overline{RESET} signal when either the SENSE pin voltage drops below V_{IT} or the manual reset (\overline{MR}) is driven low. The \overline{RESET} output remains asserted for a user-adjustable time after both the manual reset (\overline{MR}) and SENSE voltages return above the respective thresholds.

7.2 Functional Block Diagrams

Adjustable Voltage Version

Fixed Voltage Version

7.3 Feature Description

A broad range of voltage threshold and reset delay time adjustments are available for the TPS3808 device, allowing these devices to be used in a wide array of applications. Reset threshold voltages can be factory-set from 0.82 V to 3.3 V or from 4.4 V to 5.0 V, while the TPS3808G01 can be set to any voltage above 0.405 V using an external resistor divider. Two preset delay times are also user-selectable: connecting the C_T pin to V_{DD} results in a 300 ms reset delay, while leaving the C_T pin open yields a 20-ms reset delay. In addition, connecting a capacitor between C_T and GND allows the designer to select any reset delay period from 1.25 ms to 10 s.

7.4 Device Functional Modes

The TPS3808 has two functional modes:

- MR high: in this mode, RESET is high or low depending on the value of the SENSE pin relative to V_{IT}.
- MR low: in this mode, RESET is held low regardless of the value of the SENSE pin.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The following sections describe in detail how to properly use this device depending on the requirements of the final application.

8.1.1 SENSE Input

The SENSE input provides a terminal at which any system voltage can be monitored. If the voltage on this pin drops below V_{IT} , then RESET is asserted. The comparator has a built-in hysteresis to ensure smooth RESET assertions and de-assertions. It is good analog design practice to put a 1-nF to 10-nF bypass capacitor on the SENSE input to reduce sensitivity to transients and layout parasitics.

The TPS3808 device is relatively immune to short negative transients on the SENSE pin. Sensitivity to transients is dependent on threshold overdrive, as shown in the *Maximum Transient Duration at Sense vs Sense Threshold Overdrive Voltage* graph (Figure 5) in *Typical Characteristics*.

The TPS3808G01 can be used to monitor any voltage rail down to 0.405 V using the circuit shown in Figure 9.

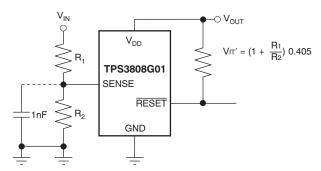


Figure 9. Using the TPS3808G01 to Monitor a User-Defined Threshold Voltage

8.1.2 Selecting the RESET Delay Time

The TPS3808 has three options for setting the \overline{RESET} delay time as shown in Figure 10. Figure 10a shows the configuration for a fixed 300-ms typical delay time by tying C_T to V_{DD} ; a resistor from 40 k Ω to 200 k Ω must be used. Supply current is not affected by the choice of resistor. Figure 10b shows a fixed 20-ms delay time by leaving the C_T pin open. Figure 10c shows a ground referenced capacitor connected to C_T for a user-defined program time between 1.25 ms and 10 s.

Application Information (continued)

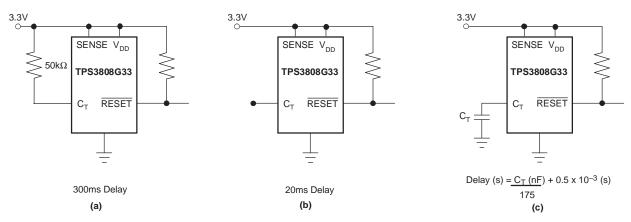


Figure 10. Configuration Used to Set the RESET Delay Time

The capacitor C_T should be ≥ 100 pF nominal value in order for the TPS3808xxx to recognize that the capacitor is present. The capacitor value for a given delay time can be calculated using Equation 1.

$$C_T (nF) = [t_D (s) - 0.5 \times 10^{-3} (s)] \times 175$$
 (1)

The reset delay time is determined by the time it takes an on-chip precision 220-nA current source to charge the external capacitor to 1.23 V. When a RESET is asserted the capacitor is discharged. When the RESET conditions are cleared, the internal current source is enabled and begins to charge the external capacitor. When the voltage on this capacitor reaches 1.23 V, RESET is deasserted. Note that a low-leakage type capacitor such as a ceramic should be used, and that stray capacitance around this pin may cause errors in the reset delay time.

8.1.3 Manual RESET(MR) Input

The manual reset (MR) input allows a processor or other logic circuits to initiate a reset. A logic low (0.3 V_{DD}) on MR causes RESET to assert. After MR returns to a logic high and SENSE is above its reset threshold, RESET is de-asserted after the user defined reset delay expires. Note that \overline{MR} is internally tied to V_{DD} using a 90-k Ω resistor so this pin can be left unconnected if MR will not be used.

See Figure 11 for how MR can be used to monitor multiple system voltages. Note that if the logic signal driving $\overline{\rm MR}$ does not go fully to $V_{\rm DD}$, there will be some additional current draw into $V_{\rm DD}$ as a result of the internal pullup resistor on MR. To minimize current draw, a logic-level FET can be used as illustrated in Figure 12.

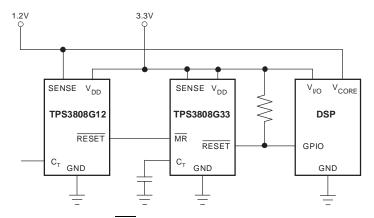


Figure 11. Using MR to Monitor Multiple System Voltages

Copyright © 2008-2014, Texas Instruments Incorporated Submit Documentation Feedback

Application Information (continued)

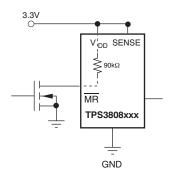


Figure 12. Using an External MOSFET to Minimize I_{DD} When MR Signal Does Not Go to V_{DD}

8.1.4 RESET Output

RESET remains high (unasserted) as long as <u>SENSE</u> is above <u>its threshold</u> (V_{IT}) and the manual reset (\overline{MR}) is logic high. If either SENSE falls below V_{IT} or \overline{MR} is driven low, RESET is asserted, driving the RESET pin to a low impedance.

Once $\overline{\text{MR}}$ is again logic high and SENSE is above V_{IT} + V_{HYS} (the threshold hysteresis), a delay circuit is enabled which holds $\overline{\text{RESET}}$ low for a specified reset delay period. Once the reset delay has expired, the $\overline{\text{RESET}}$ pin goes to a high impedance state. The pullup resistor from the open-drain $\overline{\text{RESET}}$ to the supply line can be used to allow the reset signal for the microprocessor to have a voltage higher than V_{DD} (up to 6.5 V). The pullup resistor should be no smaller than 10 k Ω as a result of the finite impedance of the $\overline{\text{RESET}}$ line.

8.2 Typical Application

A typical application of the TPS3808G33 used with a 3.3 V processor is shown in Figure 13. The open-drain RESET output is typically connected to the RESET input of a microprocessor. A pullup resistor must be used to hold this line high when RESET is not asserted. The RESET output is undefined for voltage below 0.8 V, but this is normally not a problem since most microprocessors do not function below this voltage.

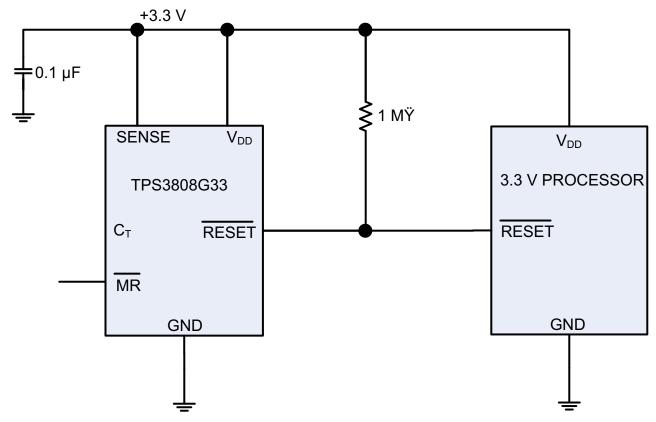


Figure 13. Typical Application of the TPS3808 with a 3.3 V Processor

8.2.1 Design Requirements

The TPS3808 is intended to drive the \overline{RESET} input of a microprocessor. The \overline{RESET} pin is pulled high with a 1 M Ω resistor and the reset delay time is controlled by C_T depending on the reset requirement times of the microprocessor. In this case, C_T is left open for a typical reset delay time of 20 ms.

8.2.2 Detailed Design Procedure

The main constraint for this application is the reset delay time. In this case, since C_T is open, it is set to 20 ms. A 0.1 μF de<u>coupling</u> capacitor is connected to the V_{DD} pin and a 1 M Ω resistor is used to pull-up the RESET pin high. The \overline{MR} pin can be connected to an external signal if desired.

Typical Application (continued)

8.2.3 Application Curve

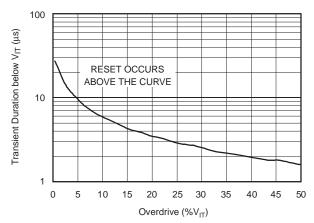
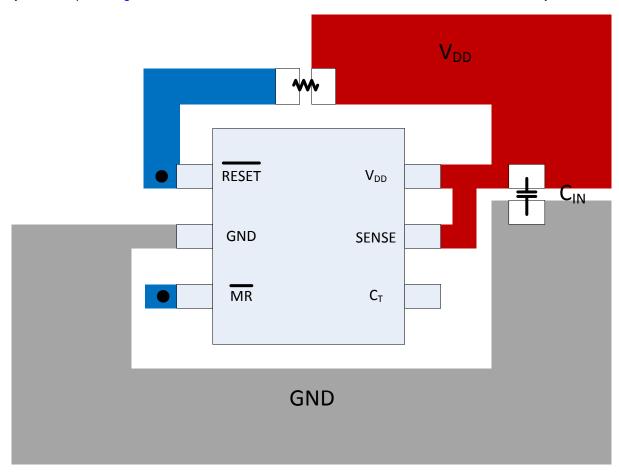


Figure 14. Maximum Transient Duration at Sense vs Sense Threshold Overdrive Voltage

9 Power Supply Recommendations

These devices are designed to operate from an input supply with a voltage range between 1.7 and 6.5 V. Use a low-impedance power supply to eliminate inaccuracies caused by the current during the voltage reference refresh.


10 Layout

10.1 Layout Guidelines

Make sure the connection to the V_{DD} pin is low impedance. Place a 0.1- μ F ceramic capacitor near the V_{DD} pin.

10.2 Layout Example

The layout example in Figure 15 shows how the TPS3808 is laid out on a PCB for a 20 ms delay.

VIAS USED TO CONNECT PINS FOR APPLICATION SPECIFIC CONNECTIONS

Figure 15. Layout Example for a 20 ms Delay

11 Device and Documentation Support

11.1 Trademarks

All trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

21-Oct-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS3808G01MDBVTEP	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	NXS	Samples
TPS3808G33MDBVREP	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	СНК	Samples
V62/08607-01XE	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	NXS	Samples
V62/08607-09XE	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	СНК	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

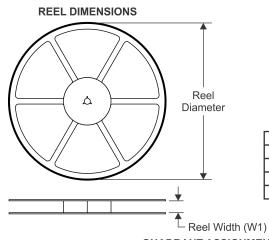
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

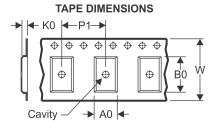
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

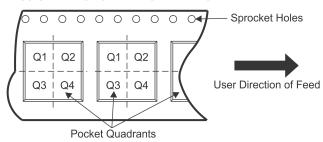
21-Oct-2014


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

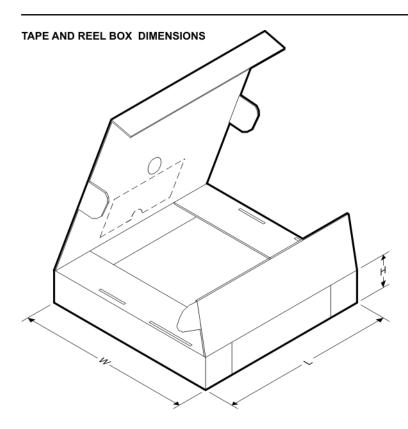

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

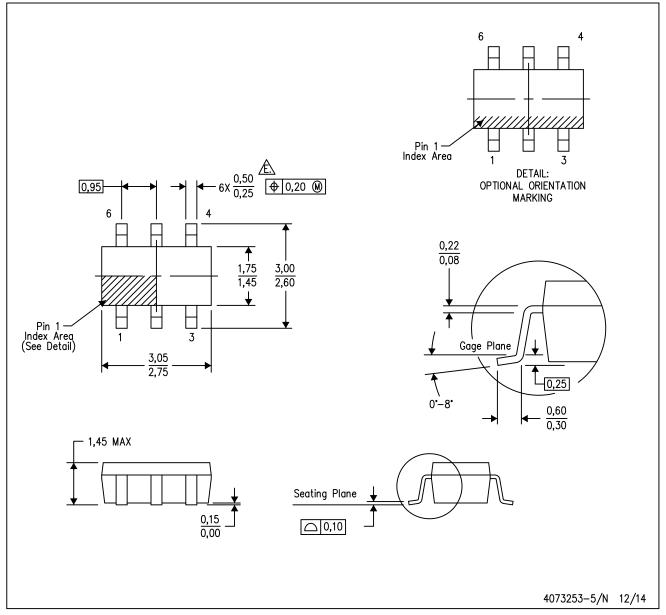
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3808G01MDBVTEP	SOT-23	DBV	6	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3808G33MDBVREP	SOT-23	DBV	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

www.ti.com 3-Aug-2017

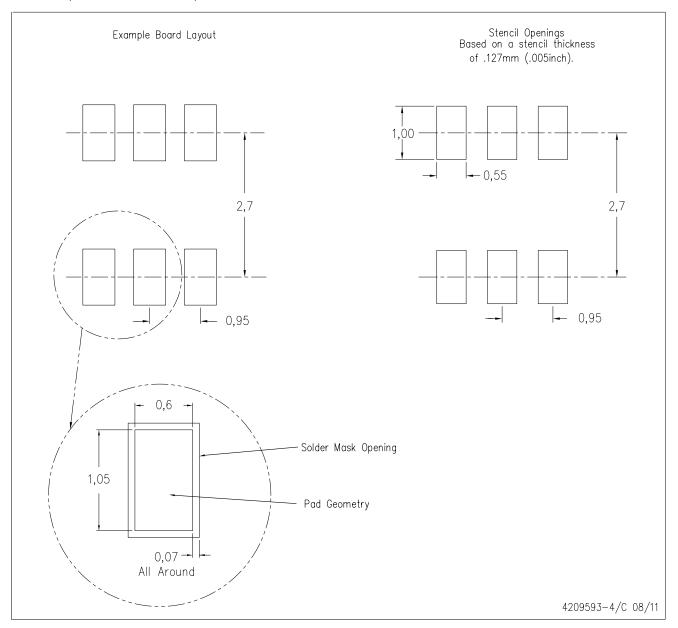


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS3808G01MDBVTEP	SOT-23	DBV	6	250	203.0	203.0	35.0	
TPS3808G33MDBVREP	SOT-23	DBV	6	3000	203.0	203.0	35.0	

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DBV (R-PDSO-G6)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.