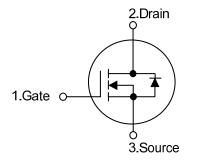


4N65K-TC 4.0A, 650V N-CHANNEL POWER MOSFET

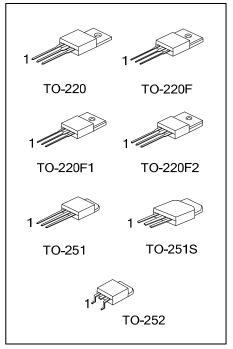

DESCRIPTION

The UTC **4N65K-TC** is a high voltage power MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristic. This power MOSFET is usually used in high speed switching applications including power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

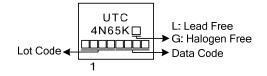
FEATURES

- * $R_{DS(ON)}$ < 2.5 Ω @ V_{GS} = 10 V, I_D = 2.0 A
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness

SYMBOL


ORDERING INFORMATION

Ordering Number		Deekege	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
4N65KL-TA3-T	4N65KG-TA3-T	TO-220	G	D	S	Tube	
4N65KL-TF1-T	4N65KG-TF1-T	TO-220F1	G	D	S	Tube	
4N65KL-TF2-T	4N65KG-TF2-T	TO-220F2	G	D	S	Tube	
4N65KL-TF3-T	4N65KG-TF3-T	TO-220F	G	D	S	Tube	
4N65KL-TM3-T	4N65KG-TM3-T	TO-251	G	D	S	Tube	
4N65KL-TMS-T	4N65KG-TMS-T	TO-251S	G	D	S	Tube	
4N65KL-TN3-R	4N65KG-TN3-R	TO-252	G	D	S	Tape Reel	


Note: Pin Assignment: G: Gate D: Drain S: Source

4N65K <u>L</u> - <u>TA3</u> - <u>T</u>		(1) T: Tube, R: Tape Reel
	(1)Packing Type	(2) TA3: TO-220, TF3: TO-220F, TF1: TO-220F1,
	(2)Package Type	TF2: TO-220F2, TM3: TO-251, TMS: TO-251S
	(3)Green Package	TN3: TO-252
		(3) L: Lead Free, G: Halogen Free and Lead Free

Power MOSFET

MARKING

PARA	AMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	650	V
Gate-Source Voltage		V _{GSS}	±30	V
Drain Current	Continuous	I _D	4.0	А
	Pulsed (Note2)	I _{DM}	16	А
Avalanche Energy	Single Pulsed (Note3)	E _{AS}	113	mJ
Peak Diode Recovery d	v/dt (Note4)	dv/dt	3.79	V/ns
	TO-220		106	W
Power Dissipation	TO-220F/TO-220F1		20	W
	TO-220F2		30	VV
	TO-251/TO-251S		$\frac{1000}{100} \frac{1000}{100} 1$	w
	TO-252	D _	50	vv
	TO-220	FD	0.84	W/°C
Derate above 25°C	TO-220F/TO-220F1 TO-220F2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.29	W/°C
Derate above 25 C	TO-251/TO-251S TO-252		0.40	W/°C
Junction Temperature	•	TJ +150		°C
Operating Temperature		T _{OPR}	-55 ~ +150	°C
Storage Temperature			-55 ~ +150	°C

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

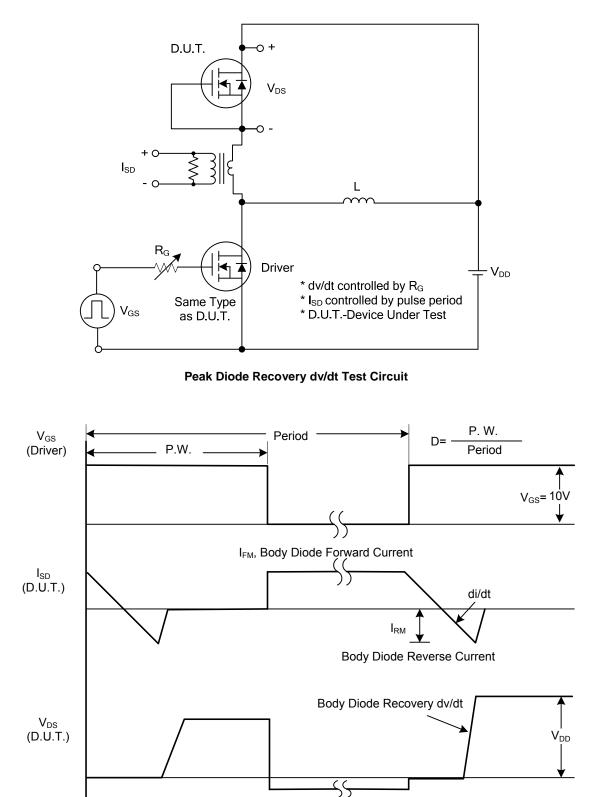
2. Repetitive Rating : Pulse width limited by maximum junction temperature

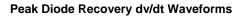
- 3. L=25mH, I_{AS}=3.0A, V_{DD}=50V, R_G=25 Ω , Starting T_J = 25°C
- 4. $I_{SD}\leq4.0A$, di/dt $\leq200A/\mu s$, $V_{DD}\leq BV_{DSS}$, Starting T_{J} = 25°C

THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction-to-Ambient	TO-220/TO-220F TO-220F1/TO-220F2	0	62.5	°C/W	
	TO-251/TO-251S TO-252	θ_{JA}	83	°C/W	
Junction-to-Case	TO-220		1.18	°C/W	
	TO-220F/TO-220F1		3.4	°C/W	
	TO-220F2	θ _{JC}	3.57	°C/W	
	TO-251/TO-251S TO-252		2.5	°C/W	

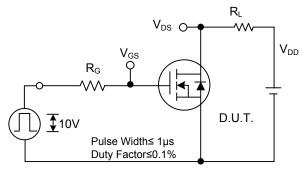
PARAMETER	SYM	BOI	TEST CONDITIONS	MIN	TVP	MAX	
	311	BUL	TEST CONDITIONS	IVIIIN		IVIAA	UNIT
Drain-Source Breakdown Voltage	BV	DSS	V _{GS} = 0 V, I _D = 250µA	650			V
Drain-Source Breakdown Voltage Drain-Source Leakage Current			$V_{\rm GS} = 650 \text{ V}, V_{\rm GS} = 0 \text{ V}$	030		10	ν μΑ
	vard .	SS	$V_{\rm DS} = 0.00 \text{ V}, V_{\rm GS} = 0 \text{ V}$ $V_{\rm GS} = 30 \text{ V}, V_{\rm DS} = 0 \text{ V}$			100	nA
Gate-Source Leakage Current	verse l _G	GSS	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
Breakdown Voltage Temperature Coeffic		ss/∆TJ	$I_D=250\mu$ A, Referenced to 25°C		0.6	100	V/°C
ON CHARACTERISTICS						1	
Gate Threshold Voltage		S(TH)	V _{DS} = V _{GS} , I _D = 250µA	2.0		4.0	V
Static Drain-Source On-State Resistar			$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2.0 \text{ A}$			2.5	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance	CI	SS			490		pF
Output Capacitance		DSS	$V_{DS} = 25 V, V_{GS} = 0V,$		54		pF
Reverse Transfer Capacitance		RSS	f = 1MHz		5.8		pF
SWITCHING CHARACTERISTICS							
Total Gate Charge		G			32		nC
Gate-Source Charge		GS	V_{DS} =50V, V_{GS} =10V, I_{D} =1.3A		4.2		nC
Gate-Drain Charge		GD	I _G = 100μΑ (Note1, 2)		5.6		nC
Turn-On Delay Time		ON)			44		ns
Turn-On Rise Time		R	V _{DS} =30V, V _{GS} =10V, I _D =0.5A,		28		ns
Turn-Off Delay Time	t _{D(C}	OFF)	R _G =25Ω (Note1, 2)		116		ns
Turn-Off Fall Time	t				33		ns
SOURCE- DRAIN DIODE RATINGS	AND CHARA	CTERIS	STICS				_
Maximum Continuous Drain-Source Di	iode ,					4.0	^
Forward Current	I:	Is				4.0	A
Maximum Pulsed Drain-Source Diode	num Pulsed Drain-Source Diode					16	А
Forward Current		I _{SM}				10	A
Drain-Source Diode Forward Voltage	Vs	SD	V _{GS} = 0 V, I _S = 4.0A			1.4	V
Reverse Recovery Time	tr	r	$V_{GS} = 0V, I_{S} = 4.0A,$		360		nS
Reverse Recovery Charge		rr	dI _F / dt =100A/µs (Note 1)		1.42		μC


■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

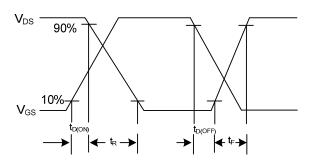

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

2. Essentially independent of operating temperature.

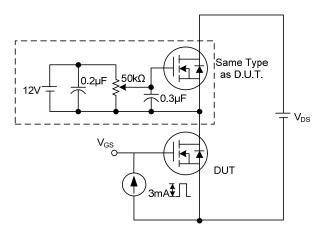
TEST CIRCUITS AND WAVEFORMS

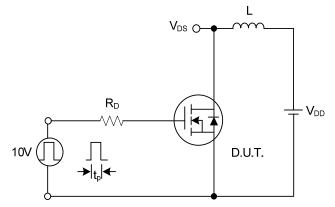

Body Diode

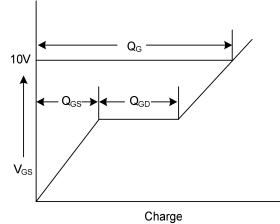
Forward Voltage Drop

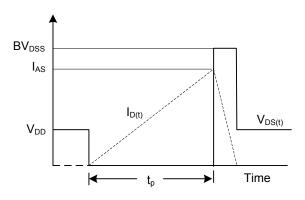


Power MOSFET


■ TEST CIRCUITS AND WAVEFORMS (Cont.)

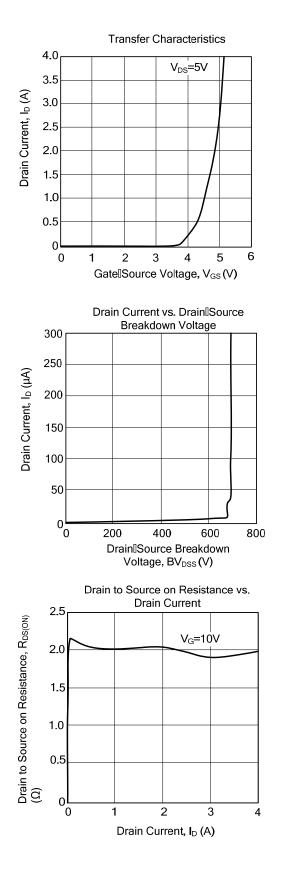

Switching Test Circuit

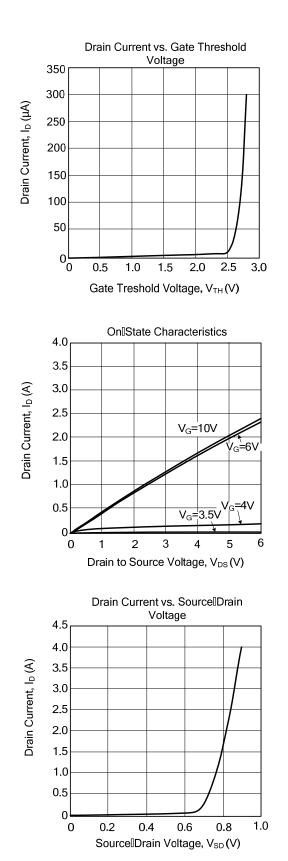

Switching Waveforms


Gate Charge Test Circuit

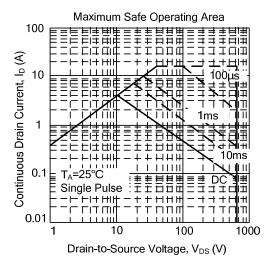
Unclamped Inductive Switching Test Circuit

Gate Charge Waveform




Unclamped Inductive Switching Waveforms

Power MOSFET


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

