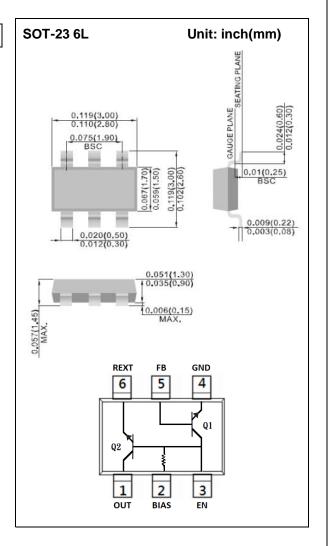


Application Specific Multichip Circuit


Voltage 40V Current 150mA

Features

- Silicon NPN epitaxial type
- Includes one NPN Transistor(Q1) and one NPN Base Accessible Pre-biased Transistor(Q2)
- Through reductions in component count and footprint
- Lead free in comply with EU RoHS 2011/65/EU directives.
- Green molding compound as per IEC61249 Std. (Halogen Free)

Mechanical Data

- Case: SOT-23 6L Package
- Terminals : Solderable per MIL-STD-750, Method 2026
- Approx. Weight: 0.0005 ounces, 0.014 grams
- Marking: C4S

Maximum Ratings (Q1) (T_A=25 °C unless otherwise noted)

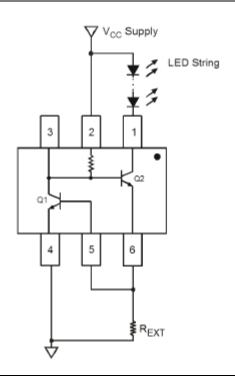
PARAMETER	SYMBOL	LIMIT	UNITS
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	V_{CEO}	40	V
Emitter-Base Voltage	V_{EBO}	6.0	V
Collector Current (DC)	I _C	200	mA

Maximum Ratings (Q2) (T_A=25 °C unless otherwise noted)

PARAMETER	SYMBOL	LIMIT	UNITS
Collector-Base Voltage	V_{CBO}	40	V
Collector-Emitter Voltage	V_{CEO}	40	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current (DC)	I _C	150	mA

Thermal Characteristics (T_A=25 °C unless otherwise noted)

PARAMETER	SYMBOL	LIMIT	UNITS
Collector Power Dissipation (Note)	P _D	1	W
Operating Junction and Storage Temperature Range	T_J, T_{STG}	-55~150	°C
Thermal Resistance from Junction to Ambient (Note)	$R_{\theta JA}$	125	°C/W


Note: Mounted on a 1 inch FR-4 with 2oz. square pad of copper.

Device Schematic

BIAS OUT 2 R1 10K Q2 6 REXT

GND

Applications Circuit

Electrical Characteristics (Q1) (T_A=25 °C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
OFF Characteristics						
Collector-Emitter Breakdown Voltage	BV _{CEO}	I _C = 1mA, I _B = 0A	40	-	-	V
Collector-Base Breakdown Voltage	BV _{CBO}	I _C = 10uA, I _E = 0A	60	-	-	V
Emitter-Base Breakdown Voltage	BV _{EBO}	I _E = 10u A, I _C = 0A	6	-	-	V
Collector Cutoff Current	I _{CEX}	$V_{CE} = 30V, V_{EB} = 3V$	-	-	50	nA
Base Cutoff Current	I _{BL}	$V_{CE} = 30V, V_{EB} = 3V$	-	-	50	nA
ON characteristics						
	h _{FE}	V_{CE} = 1V, I_{C} = 0.1mA	40	-	-	-
		V _{CE} = 1V, I _C = 1mA	70	-	-	
DC Current Gain		V _{CE} = 1V, I _C = 10mA	100		300	
		V_{CE} = 1V, I_{C} = 50mA	60			
		V _{CE} = 1V, I _C = 100mA	30			
Oallandar Freitran Oat wating Walland	V _{CE(SAT)}	I _C = 10mA, I _B = 1mA	-	-	200	mV
Collector-Emitter Saturation Voltage		$I_C = 50 \text{mA}, I_B = 5 \text{mA}$			300	
Base-Emitter Saturation Voltage	V _{BE(SAT)}	$I_C= 10mA$, $I_B= 1mA$	650	-	850	mV
		I_C = 50mA, I_B = 5mA	-	-	950	
Transition Frequency	f⊤	V _{CE} = 20V, I _C = 10mA	300	-	-	MHz
Collector-Base Capacitance	C _{CBO}	V _{CB} = 5V, f= 1MHz	-	-	4	pF
Emitter-Base Capacitance	C _{EBO}	V _{EB} = 0.5V, f= 1MHz	-	-	8	pF

Electrical Characteristics (Q2) (T_A=25 °C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
OFF Characteristics						
Collector-Emitter Breakdown Voltage	BV _{CEO}	I _C = 1mA, I _B = 0A	40	ı	-	V
Collector-Base Breakdown Voltage	BV _{CBO}	I _C = 50uA, I _E = 0A	40	ı	-	V
Emitter-Base Breakdown Voltage	BV _{EBO}	I _E = 50u A, I _C = 0A	5	ı	-	V
Collector Cutoff Current	I _{CBO}	V _{CB} = 30V, I _E = 0A	-	-	0.5	uA
Emitter Cutoff Current	I _{EBO}	V _{EB} = 4V, V _{EB} = 3V	-	-	0.5	uA
ON characteristics						
DC Current Gain	h _{FE}	V _{CE} = 5V, I _C = 150mA	100	-	-	-
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = 10mA, I _B = 1mA	-	-	300	mV
Transition Frequency	f⊤	V_{CE} = 10V, I_{E} = -5mA	-	250	-	MHz
Input Resistance	R1	-	7	10	13	Kohm

TYPICAL CHARACTERISTIC CURVES

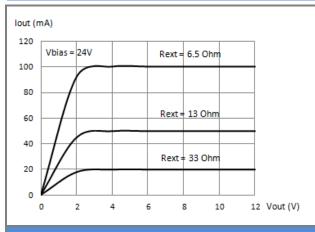


Fig.1 Out Current VS. Vout

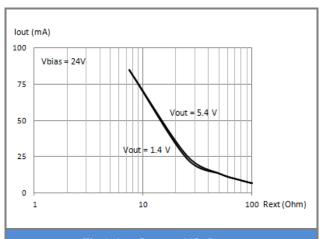


Fig.2 Out Current VS. Rext

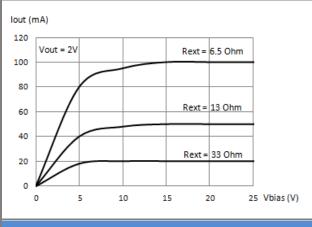


Fig.3 Out Current VS. Vbias

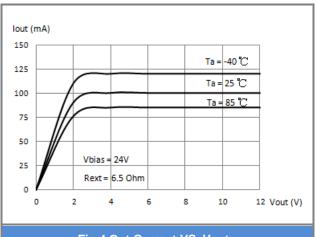
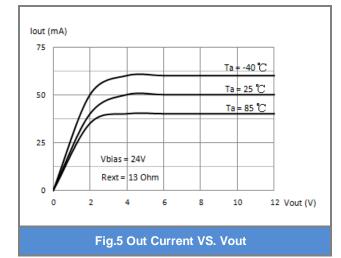
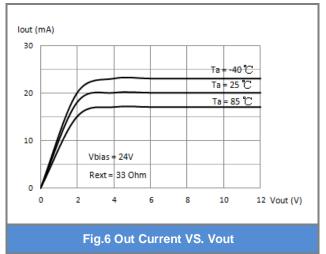




Fig.4 Out Current VS. Vout

Application Information

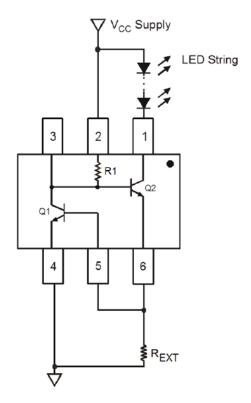


Fig. 7 Typical Application Circuit for Linear Mode Current Sink LED Driver

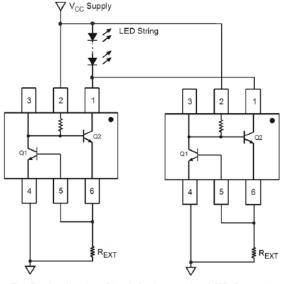


Fig. 8 Application Circuit for Increasing LED Current

The 2SC164S has been designed for driving low current LEDs with typical LED current of 20mA to 100mA. It provides a cost effective way for driving low current LEDs compared with more complex switching regulator solutions. Furthermore, it reduces the PCB board area of the solution as there is no need for external components like inductors, capacitors and switching diodes.

Figure 7 shows a typical application circuit diagram for driving an LED or string of LEDs. The NPN transistor Q1 measures the LED current by sensing the voltage across an external resistor $R_{\text{EXT}}.$ Q1 uses its V_{BE} as reference to set the voltage across R_{EXT} and controls the base current into Q2. Q2 operates in linear mode to regulate the LED current. The LED current is

$$I_{LED} = V_{BE(Q1)} / R_{EXT}$$

From this, for any required LED current the necessary external resistor R_{EXT} can be calculated from

$$R_{EXT} = V_{BE(Q1)} / I_{LED}$$

Two or more 2SC164S can be connected in parallel to construct higher current LED strings as shown in Figure 8

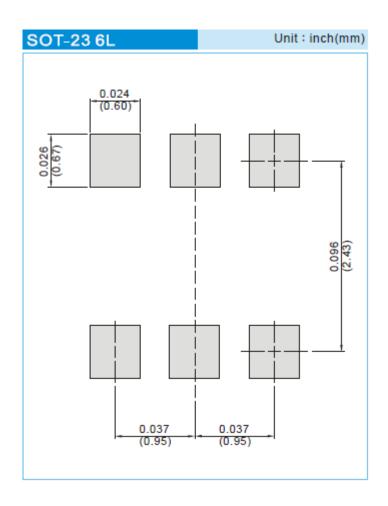
Consideration of the expected linear mode power dissipation must be factored into the design, with respect to the 2SC164S's thermal resistance. The maximum voltage across the device can be calculated by taking the maximum supply voltage less the voltage across the LED string.

$$V_{CE(Q2)} = V_{CC} - V_{LED} - V_{BE(Q1)}$$

$$P_D = V_{CE(Q2)} * I_{LED} + (V_{CC} - V_{BE(Q2)} - V_{BE(Q1)})^2 / R_1$$

As the output current of 2sc164s increases, it is necessary to provide appropriate thermal relief to the device. The power dissipation supported by the device is dependent upon the PCB board material, the copper area and the ambient temperature. The maximum dissipation the device can handle is given by:

$$P_D = (T_{J(MAX)} - T_A) / R_{\theta JA}$$



PART NO PACKING CODE VERSION

Part No Packing Code	Package Type	Packing type	Marking	Version
2SC164S_S1_00001	SOT-23 6L	3K pcs / 7" reel	C4S	Halogen free
2SC164S _S2_00001	SOT-23 6L	10K pcs / 13" reel	C4S	Halogen free

MOUNTING PAD LAYOUT

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing or
 modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.