

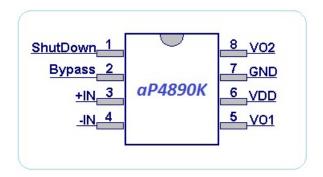
aP4890K --- 1.4 Watt Audio Power Amplifier

• FEATURES:

- 2.5V~5.5V Power supply.
- Thermal shutdown Protection.
- Low current shutdown mode
- No output capacitors and networks or bootstrap
- capacitors required
- Low noise during turn-on and turn-off transitions
- Shutdown pin high active.

• GENERAL DESCRIPTION :

The AP4890K is a 1.4 Watt audio power amplifier. And the AP4890K primarily designed for high Quality application in other portable communication device.

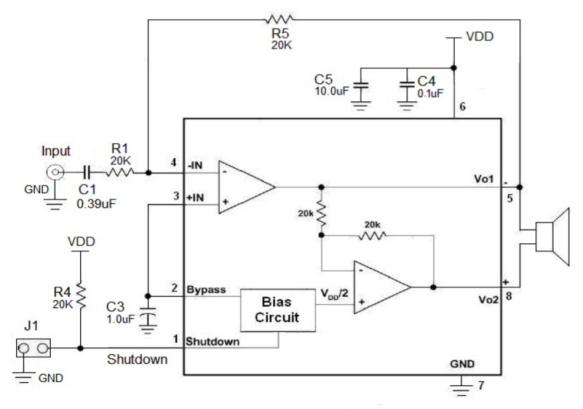

It is capable of driving 8Ω speaker load at a continuous average output of 1.4W / 10% distortion (THD+N) from a 5.0V power supply. A feature of the AP4890K amplifier to switch BTL mode. And the AP4890K audio amplifier features low power consumption shutdown mode. It is achieved by driving the shutdown pin with logic high. Besides the AP4890K has an internal thermal shutdown protection feature.

The AP4890K amplifier was designed specifically to provide high quality output power with a minimal amount of external components. The AP4890K does not require output capacitors, and the AP4890K is ideally suited for other low voltage applications or portable electronic devices where minimal power consumption is a primary requirement.

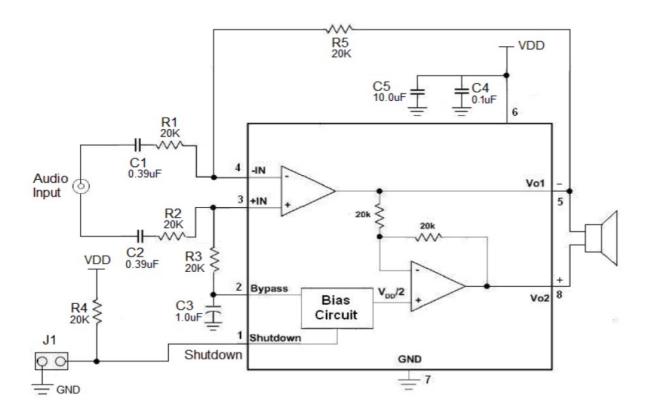
APPLICATION :

- Portable electronic devices
- Mobile Phones
- PDAs

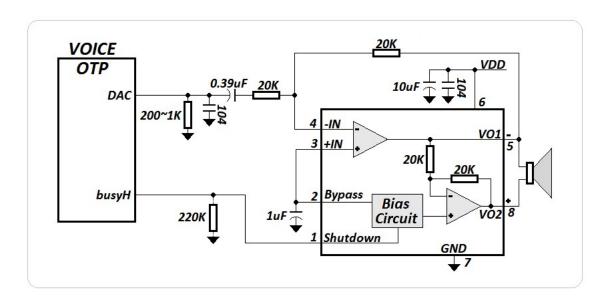
• PIN DESCRIPTION:

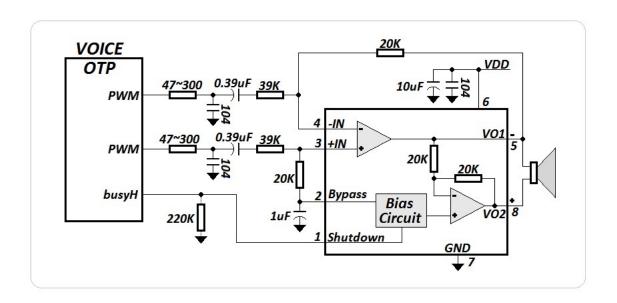

SYMBOL	Pin No	DESCRIPTION			
SHUTDOWN	1	Shutdown the device. (when LOW level is shutdown mode)			
BYPASS	2	Bypass pin			
+IN	3	Positive Input			
-IN	4	Negative Input			
Vo1	5	Negative output			
VDD	6	Power Supply			
GND	7	Ground			
Vo2	8	Positive Output			

ABSOLUTE MAXIMUM RATINGS :


PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	VDD	6.0	V
Operating Temperature	TA	-40 to 85(I grade)	$\mathbb{O}_{\!\!\!\circ}$
Input Voltage	Vı	-0.3V to VDD +0.3V	٧
Storage Temperature	Тѕтс	-65 to 150	$^{\circ}$ C
Power Dissipation	PD	Internally Limited	W
ESD Susceptibility	VESD	2000	V
Junction Temperature	TJMAX	150	$^{\circ}\!\mathbb{C}$
Soldering Temperature (under 10 sec)	TSOLDER	260	$^{\circ}\!\mathbb{C}$

APPLICATION CIRCUIT :

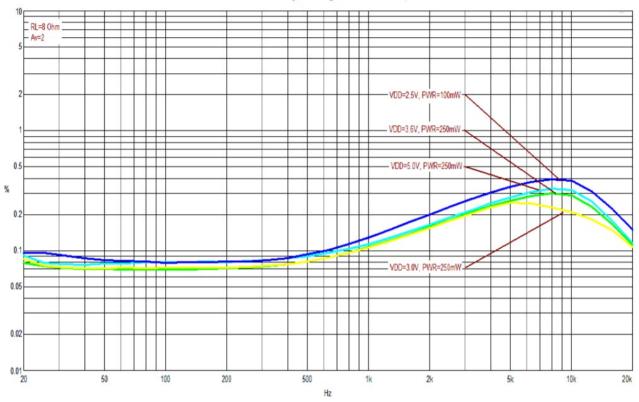

application schematic with single -ended input


application schematic with differential input

■ VOICE OTP [DAC] + AP4890K APPLICATION :

■ VOICE OTP [PWM] + AP4890K APPLICATION :

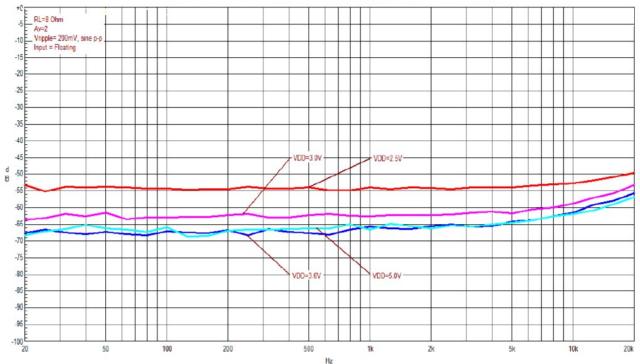
• DC ELECTRICAL CHARACTERISTICS (TA=25 $^{\circ}$ C):


PARAMETER	SYMBOL	TEST CONDITION		MIN	ТҮР	MAX	UNIT		
Dower Summly Commont	Inn	VIN = 0V, IO =	VDD =5V	-	6.0	18.0	mA		
Power Supply Current	IDD	0A,8Ω Load	VDD =3V	-	5.0	15.0	mA		
Shutdown Current	ISD	VSHUTDOWN =	VDD	-	0.1	2.0	μΑ		
Output Offset Voltage	Vos			-	7.0	50.0	mV		
Resistor Output to GND	ROUT-GND			-	9.5	-	kΩ		
		THD = 10%, f=1kHz,RL=8Ω	VDD	-	1.4	-	W		
	Ро	THD = 1%, f=1kHz ,RL=8Ω	=5V	-	1.1	-			
Output Power		THD = 10%, f=1kHz,RL=8Ω	VDD	-	480	-	mW		
		THD = 1%, f=1kHz,RL=8Ω	=3V	-	375	-			
Total Harmonic	TUD.N	Po=780 mWrms; f = 1kHz	VDD =5V	-	0.1	-	%		
Distortion+ Noise	THD+N	ППОТІЙ	1110114	Po=265 mWrms; VI	VDD =3V	-	0.12	-	%
Davies Comple Daio etico Datio	DCDD	Vripple= 200mV	VDD =5V	-	66 (Ps1)		dB		
Power Supply Rejection Ratio	PSRR		PSRR sine p-p, Input = Floating	VDD =3V	-	62 (Ps2)	-	dB	
Wales and the s	T	Bypass	VDD =5V	-	145	-	Ms		
Wake-up time	Twu	Cap.=1.0uF	VDD =3V	-	82	-	ms		
Thermal Shutdown Temperature	TsD			150	170	190	$^{\circ}\! \mathbb{C}$		
Shut Down Time	Tsdt	8 Ω load		-	1.0	-	ms		

ps1: 66 dB(217Hz) / 66 dB(1KHz) ps2: 62 dB(217Hz) / 62 dB(1KHz)

TYPICAL PERFORMANCE CHARACTERISTICS :


THD+N vs Frequency at RL=8Ω, AV=2



THD+N vs Power Out at RL=8Ω, f=1kHz, Av=2

APPLICATION INFORMATION :

BRIDGED CONFIGURATION EXPLANATION

As shown in Figure 1, the AP4890K has two operational amplifiers internally, allowing for a few Different amplifier configurations. The first amplifier's gain is externally configurable, while the second amplifier is internally fixed in a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rf to RIN while the second amplifier's gain is fixed by the two internal $20k\Omega$ resistors.

Figure 1 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase by 180°. Consequently, the differential gain for the IC is

By driving the load differentially through outputs Vo1 and Vo2, an amplifier configuration commonly referred to as "bridged mode" is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of the load is connected to ground.

A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it Provides differential drive to the load, thus doubling output swing for a specified supply voltage. Four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier's closed-loop gain without causing excessive clipping, please refer to the Audio Power Amplifier Design section.

A bridge configuration, such as the one used in the AP4890K, also creates a second advantage over Single -ended amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor, the half-supply bias across the load would result in both increased internal IC power dissipation and also possible loudspeaker damage.

• INPUT CAPACITORS (Ci):

The AP4890K input capacitors and input resistors form a high-pass filter with the corner frequency, fc, determined in equation Equation 2.

$TC = (1/2\pi RiCi)$	$1/2\pi RiCi$)	2)
----------------------	-----------------	----

Equation 3 is reconfigured to solve for the input coupling capacitance.

$$Ci = (1/2\pi Rifc)$$
(3)

For example

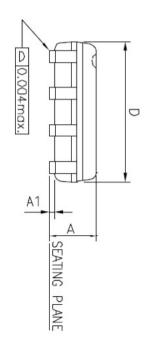
In the table 1 shows the external components. Rin in connect with Cin to create a high-pass filter.

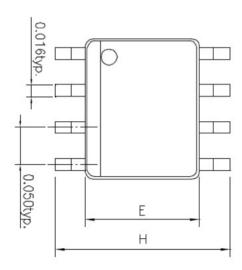
Table 1. Typical Component Values

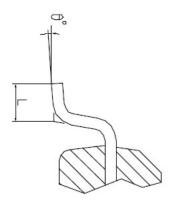
Reference	Description	Not		
Ri	20ΚΩ	1% tolerance resistors		
Ci	0.39uF	80%/–20%		

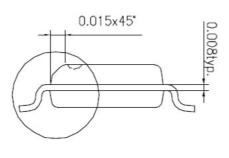
 $Ci = 1 / (2\pi Rifc)$

Ci = 1 / (2
$$\pi$$
 x 20K Ω x 20Hz) = 0.397uF Use 0.39uF


POWER SUPPLY BYPASSING

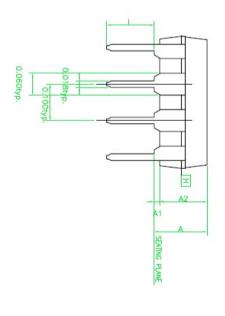

As with any amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection.

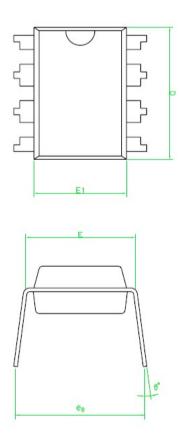

The capacitor location on both the bypass and power supply pins should be as close to the device as possible.



SOP8 : (150 mil)

				7
ъ	Þπ	-	2	ō
茧	Zž	₹		\exists
N	00		Ξ	17
3	50 Z	2	0	···
	P. C	=	^	


3.DIMENSIONS "E" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS, INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED .25mm (.010in) PER SIDE. NONS "D" DOES NOT INCLUDE MOLD FLASH, USIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS ATE BURRS SHALL NOT EXCEED .15mm (.006in) QUTILINE : MS-012 AA


UNIT : INCH

∂°	L	Т	Е	D	A1	А	SYMBOLS
0	0.016	0.228	0.150	0.189	0.004	0.053	NIN.
8		0.244	0.157	0.196	0.010	0.069	MAX.

DIP8: (300 mil)

5.DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM. 6.DATUM PLANE [H] COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.	4.POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.	3.eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.	2."D","E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH.	I.JEUEC OUILINE : MS-OUI BA
--	---	--	--	-----------------------------

Ф	еВ	_	Εi	ш	D	A2	A1	A	SYMBOLS
0	0.335	0.115	0.245		0.355	0.125	0.015	1	MIN.
7	0.355	0.130	0.250	0.300 BSC.	0.365	0.130	1	1	NOR.
15	0.375	0.150	0.255		0.400	0.135	Į.	0.210	MAX.