STM32F101x8 STM32F101xB # Medium-density access line, ARM®-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces Datasheet - production data #### **Features** - Core: ARM[®] 32-bit Cortex[®] -M3 CPU - 36 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access - Single-cycle multiplication and hardware division - Memories - 64 to 128 Kbytes of Flash memory - 10 to 16 Kbytes of SRAM - · Clock, reset and supply management - 2.0 to 3.6 V application supply and I/Os - POR, PDR and programmable voltage detector (PVD) - 4-to-16 MHz crystal oscillator - Internal 8 MHz factory-trimmed RC - Internal 40 kHz RC - PLL for CPU clock - 32 kHz oscillator for RTC with calibration - Low power - Sleep, Stop and Standby modes - V_{BAT} supply for RTC and backup registers - Debug mode - Serial wire debug (SWD) and JTAG interfaces - DMA - 7-channel DMA controller - Peripherals supported: timers, ADC, SPIs, I²Cs and USARTs - 1 × 12-bit, 1 µs A/D converter (up to 16 channels) - Conversion range: 0 to 3.6 V - Temperature sensor - Up to 80 fast I/O ports - 26/37/51/80 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant - Six timers - Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter - 2 watchdog timers (Independent and Window) - SysTick timer: 24-bit downcounter - Up to 7 communication interfaces - Up to 2 x I²C interfaces (SMBus/PMBus) - Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) - Up to 2 SPIs (18 Mbit/s) - CRC calculation unit, 96-bit unique ID - ECOPACK[®] packages Table 1. Device summary | Reference | Part number | |-------------|--| | STM32F101x8 | STM32F101C8,
STM32F101R8
STM32F101V8,
STM32F101T8 | | STM32F101xB | STM32F101RB,
STM32F101VB,
STM32F101CB
STM32F101TB | ## **Contents** | 1 | Intro | duction | | 9 | |---|-------|----------|---|------| | 2 | Desc | cription | | . 10 | | | 2.1 | Device | overview | 11 | | | 2.2 | Full cor | npatibility throughout the family | . 14 | | | 2.3 | | ew | | | | | 2.3.1 | ARM® Cortex® -M3 core with embedded Flash and SRAM | | | | | 2.3.2 | Embedded Flash memory | | | | | 2.3.3 | CRC (cyclic redundancy check) calculation unit | | | | | 2.3.4 | Embedded SRAM | | | | | 2.3.5 | Nested vectored interrupt controller (NVIC) | | | | | 2.3.6 | External interrupt/event controller (EXTI) | | | | | 2.3.7 | Clocks and startup | | | | | 2.3.8 | Boot modes | | | | | 2.3.9 | Power supply schemes | 16 | | | | 2.3.10 | Power supply supervisor | 16 | | | | 2.3.11 | Voltage regulator | 17 | | | | 2.3.12 | Low-power modes | | | | | 2.3.13 | DMA | 18 | | | | 2.3.14 | RTC (real-time clock) and backup registers | 18 | | | | 2.3.15 | Independent watchdog | 18 | | | | 2.3.16 | Window watchdog | 18 | | | | 2.3.17 | SysTick timer | 19 | | | | 2.3.18 | General-purpose timers (TIMx) | 19 | | | | 2.3.19 | l ² C bus | 19 | | | | 2.3.20 | Universal synchronous/asynchronous receiver transmitter (USART) | 19 | | | | 2.3.21 | Serial peripheral interface (SPI) | 19 | | | | 2.3.22 | GPIOs (general-purpose inputs/outputs) | 19 | | | | 2.3.23 | ADC (analog to digital converter) | 20 | | | | 2.3.24 | Temperature sensor | 20 | | | | 2.3.25 | Serial wire JTAG debug port (SWJ-DP) | 20 | | 3 | Pino | outs and | pin description | . 21 | | 4 | Mem | ory ma | pping | 29 | |---|------|-----------|--|----| | 5 | Elec | trical ch | naracteristics | 30 | | | 5.1 | Param | eter conditions | 30 | | | | 5.1.1 | Minimum and maximum values | 30 | | | | 5.1.2 | Typical values | 30 | | | | 5.1.3 | Typical curves | 30 | | | | 5.1.4 | Loading capacitor | 30 | | | | 5.1.5 | Pin input voltage | 30 | | | | 5.1.6 | Power supply scheme | 31 | | | | 5.1.7 | Current consumption measurement | 32 | | | 5.2 | Absolu | te maximum ratings | 32 | | | 5.3 | Operat | ing conditions | 33 | | | | 5.3.1 | General operating conditions | 33 | | | | 5.3.2 | Operating conditions at power-up / power-down | 34 | | | | 5.3.3 | Embedded reset and power control block characteristics | 34 | | | | 5.3.4 | Embedded reference voltage | 36 | | | | 5.3.5 | Supply current characteristics | 36 | | | | 5.3.6 | External clock source characteristics | 44 | | | | 5.3.7 | Internal clock source characteristics | 49 | | | | 5.3.8 | PLL characteristics | 50 | | | | 5.3.9 | Memory characteristics | 51 | | | | 5.3.10 | EMC characteristics | 51 | | | | 5.3.11 | Absolute maximum ratings (electrical sensitivity) | 53 | | | | 5.3.12 | I/O current injection characteristics | 53 | | | | 5.3.13 | I/O port characteristics | 55 | | | | 5.3.14 | NRST pin characteristics | 60 | | | | 5.3.15 | TIM timer characteristics | 62 | | | | 5.3.16 | Communications interfaces | 62 | | | | 5.3.17 | 12-bit ADC characteristics | 68 | | | | 5.3.18 | Temperature sensor characteristics | 72 | | 6 | Pack | kage cha | aracteristics | 73 | | | 6.1 | Packag | ge mechanical data | 73 | | | 6.2 | UFQFF | PN48 package information | 73 | | | 6.3 | | PN36 package information | | | | 6.3 | VFQFF | PN36 package information | | | CT | MOOF. | 1040 | CTMA | 2540 | 4 D | |-----|-------|--------|------|------|-----| | 311 | いうとに | IUTXO. | STM3 | ZFIU | IXD | #### Contents | 8 | Rovis | ion hiet | ory. | 94 | |---|-------|-----------|--|------| | 7 | Orde | ring info | ormation scheme | . 92 | | | | 6.7.2 | Evaluating the maximum junction temperature for an application | . 91 | | | | 6.7.1 | Reference document | . 90 | | | 6.7 | Therma | I characteristics | . 90 | | | 6.6 | LQFP48 | B package information | . 86 | | | 6.5 | LQFP64 | l package information | . 83 | | | 6.4 | LQFP10 | 00 package information | . 80 | | | | | | | ## **List of Tables** | Table 1. | Device summary | 1 | |-----------|---|----| | Table 2. | Device features and peripheral counts (STM32F101xx | | | | medium-density access line) | 11 | | Table 3. | STM32F101xx family | 14 | | Table 4. | Medium-density STM32F101xx pin definitions | 24 | | Table 5. | Voltage characteristics | 32 | | Table 6. | Current characteristics | 33 | | Table 7. | Thermal characteristics | 33 | | Table 8. | General operating conditions | 33 | | Table 9. | Operating conditions at power-up / power-down | 34 | | Table 10. | Embedded reset and power control block characteristics | 35 | | Table 11. | Embedded internal reference voltage | | | Table 12. | Maximum current consumption in Run mode, code with data processing running from Flash | 37 | | Table 13. | Maximum current consumption in Run mode, code with data processing | | | | running from RAM. | 37 | | Table 14. | Maximum current consumption in Sleep mode, code running from Flash | | | | or RAM | 39 | | Table 15. | Typical and maximum current consumptions in Stop and Standby modes | | | Table 16. | Typical current consumption in Run mode, code with data processing | | | | running from Flash | 42 | | Table 17. | Typical current consumption in Sleep mode, code running from Flash or RAM | | | Table 18. | Peripheral current consumption | | | Table 19. | High-speed external user clock characteristics | | | Table 20. | Low-speed external user clock characteristics | | | Table 21. | HSE 4-16 MHz oscillator characteristics | | | Table 22. | LSE oscillator characteristics (f _{LSE} = 32.768 kHz) | 48 | | Table 23. | HSI oscillator characteristics | | | Table 24. | LSI oscillator characteristics | 50 | | Table 25. | Low-power mode wakeup timings | 50 | | Table 26. | PLL characteristics | | | Table 27. | Flash memory characteristics | 51 | | Table 28. | EMS characteristics | | | Table 29. | EMI characteristics | 52 | | Table 30. | ESD absolute maximum ratings | 53 | | Table 31. | Electrical sensitivities | 53 | | Table 32. | I/O current injection susceptibility | 54 | | Table 33. | I/O static characteristics | | | Table 34. | Output voltage characteristics | 58 | | Table 35. | I/O AC characteristics | 59 | | Table 36. | NRST pin characteristics | 60 | | Table 37. | TIMx characteristics | 62 | | Table 38. | I ² C characteristics | | | Table 39. | SCL frequency (f _{PCLK1} = 36 MHz, V _{DD_I2C} = 3.3 V) | | | Table 40. | SPI characteristics | 65 | | Table 41. | ADC characteristics | | | Table 42. | R _{AIN} max for f _{ADC} = 14 MHz | 69 | | Table 43. | ADC accuracy - limited test conditions | | #### **List of Tables** | Table 44.
Table 45. | ADC accuracy | |------------------------|--| | Table 46. | UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data | | Table 47. | VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data | | Table 48. | LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data | | Table 49. | LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data83 | | Table 50. | LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data | | Table 51. | Package thermal characteristics | | Table 52. | Ordering information scheme | | Table 53. | Document revision history | ## **List of Figures** | Figure 1. | STM32F101xx medium-density access line block diagram | 12 | |------------|--|----| | Figure 2. | Clock tree | 13 | | Figure 3. | STM32F101xx medium-density access line LQFP100 pinout | 21 | | Figure 4. | STM32F101xx medium-density access line LQFP64 pinout | 22 | | Figure 5. | STM32F101xx medium-density access line LQFP48 pinout | 22 | | Figure 6. | STM32F101xx medium-density access line UFQPFN48 pinout | 23 | | Figure 7. | STM32F101xx
medium-density access line VFQPFN36 pinout | 23 | | Figure 8. | Memory map | | | Figure 9. | Pin loading conditions | | | Figure 10. | Pin input voltage | | | Figure 11. | Power supply scheme | | | Figure 12. | Current consumption measurement scheme | 32 | | Figure 13. | Typical current consumption in Run mode versus frequency (at 3.6 V) - | | | • | code with data processing running from RAM, peripherals enabled | 38 | | Figure 14. | Typical current consumption in Run mode versus frequency (at 3.6 V) - | | | • | code with data processing running from RAM, peripherals disabled | 38 | | Figure 15. | Typical current consumption on V _{BAT} with RTC on versus temperature at different | | | • | V _{BAT} values | 40 | | Figure 16. | Typical current consumption in Stop mode with regulator in Run mode versus | | | • | temperature at V _{DD} = 3.3 V and 3.6 V | 40 | | Figure 17. | Typical current consumption in Stop mode with regulator in Low-power mode versus | | | • | | 41 | | Figure 18. | Typical current consumption in Standby mode versus temperature at V_{DD} = 3.3 V and | | | J | 3.6 V | 41 | | Figure 19. | High-speed external clock source AC timing diagram | 46 | | Figure 20. | Low-speed external clock source AC timing diagram | | | Figure 21. | Typical application with an 8 MHz crystal | | | Figure 22. | Typical application with a 32.768 kHz crystal | | | Figure 23. | Standard I/O input characteristics - CMOS port | | | Figure 24. | Standard I/O input characteristics - TTL port | | | Figure 25. | 5 V tolerant I/O input characteristics - CMOS port | | | Figure 26. | 5 V tolerant I/O input characteristics - TTL port | | | Figure 27. | I/O AC characteristics definition | | | Figure 28. | Recommended NRST pin protection | 61 | | Figure 29. | I ² C bus AC waveforms and measurement circuit ⁽¹⁾ | | | Figure 30. | SPI timing diagram - slave mode and CPHA = 0 | | | Figure 31. | SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾ | 66 | | Figure 32. | SPI timing diagram - master mode ⁽¹⁾ | | | Figure 33. | ADC accuracy characteristics | | | Figure 34. | Typical connection diagram using the ADC | | | Figure 35. | Power supply and reference decoupling (V _{REF+} not connected to V _{DDA}) | | | Figure 36. | Power supply and reference decoupling (V _{REF+} connected to V _{DDA}) | | | Figure 37. | UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline | | | Figure 38. | UFQFPN48 recommended footprint | | | Figure 39. | UFQFPN48 marking example (package top view) | | | Figure 40. | VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat | | | • | package outline | 76 | | Figure 41. | | | | | package recommended footprint | 78 | |------------|---|----| | Figure 42. | VFQFPN36 marking example (package top view) | | | Figure 43. | LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline | | | Figure 44. | LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat | | | J | recommended footprint | 81 | | Figure 45. | LQFP100 marking example (package top view) | 82 | | Figure 46. | LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline | | | Figure 47. | LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package | | | J | recommended footprint | 84 | | Figure 48. | LQFP64 marking example (package top view) | | | Figure 49. | LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline | | | Figure 50. | LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package | | | J | recommended footprint | 88 | | Figure 51. | | | | • | LQFP64 Pp max vs. T _A | | ### 1 Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F101x8 and STM32F101xB medium-density access line microcontrollers. For more details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2: Full compatibility throughout the family. The medium-density STM32F101xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F10xxx Flash programming manual*. The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*. For information on the Cortex[®] -M3 core please refer to the Cortex[®] -M3 Technical Reference Manual, available from the www.arm.com website. ### 2 Description The STM32F101xB and STM32F101x8 medium-density access line family incorporates the high-performance ARM[®] Cortex[®] -M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory up to 128 Kbytes and SRAM up to 16 Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (two I²Cs, two SPIs, and up to three USARTs), one 12-bit ADC and three general-purpose 16-bit timers. The STM32F101xx medium-density access line family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F101xx medium-density access line family includes devices in four different packages ranging from 36 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the STM32F101xx medium-density access line microcontroller family suitable for a wide range of applications such as application control and user interface, medical and handheld equipment, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, Video intercoms, and HVACs. 477 ### 2.1 Device overview Figure 1 shows the general block diagram of the device family. Table 2. Device features and peripheral counts (STM32F101xx medium-density access line) | F | Peripheral | | F101Tx | STM32F101Cx | | STM32F101Rx | | STM32F101Vx | | | |---------------|-------------------------------|---|--------|---------------------|-----|--------------|-----|--------------|-----|--| | Flash - Kl | bytes | 64 | 128 | 64 | 128 | 64 | 128 | 64 | 128 | | | SRAM - K | 10 | 16 | 10 | 16 | 10 | 16 | 10 | 16 | | | | Timers | General -purpose | | 3 | | 3 | | 3 | | 3 | | | | SPI | , | 1 | 2 | 2 | | 2 | 2 | | | | ation | I ² C | 1 | | 2 | | 2 | | 2 | | | | Communication | USART | 2 | | 3 | | 3 | | 3 | | | | _ | nchronized ADC
of channels | 110 channels | | 110 channels | | 116 channels | | 116 channels | | | | GPIOs | | 26 | | 37 | | 51 | | 80 | | | | CPU freq | uency | 36 MHz | | | | | | | | | | Operating | g voltage | 2.0 to 3.6 V | | | | | | | | | | Operating | g temperatures | Ambient temperature: -40 to +85 °C (see <i>Table 8</i>) Junction temperature: -40 to +105 °C (see <i>Table 8</i>) | | | | | | | | | | Packages | 3 | VFQF | PN36 | LQFP48,
UFQFPN48 | | LQFP64 | | LQFP100 | | | Figure 1. STM32F101xx medium-density access line block diagram - 1. AF = alternate function on I/O port pin. - 2. $T_A = -40$ °C to +85 °C (junction temperature up to 105 °C). 57/ Figure 2. Clock tree - When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz. - 2. To have an ADC conversion time of 1 μ s, APB2 must be at 14 MHz or 28 MHz. ### 2.2 Full compatibility throughout the family The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are referred to as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are referred to as high-density devices. Low- and high-density devices are an extension of the STM32F101x8/B devices, they are specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities and a timer less. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like FSMC and DAC, while remaining fully compatible with the other members of the STM32F101xx family. The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE are a drop-in replacement for the STM32F101x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle. Moreover, the STM32F101xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices. | | Memory size | | | | | | | | | |--------|--|------------|-----------------------------|--------------|----------------------|--|-----------------|--|--| | | Low-densi | ty devices | Medium-der | sity devices | High-density devices | | | | | | Pinout | 16 KB 32 KB
Flash Flash ⁽¹⁾ | | 64 KB 128 KB
Flash Flash | | 256 KB
Flash | 384 KB
Flash | 512 KB
Flash | | | | | 4 KB RAM | 6 KB RAM | 10 KB RAM | 16 KB RAM | 32 KB
RAM | 48 KB
RAM | 48 KB
RAM | | | | 144 | - | - | - | - | 5 × USARTs | | | | | | 100 | - | - | 3 × USARTs | | | imers, 2 × basic timers
2 × I ² Cs, 1 × ADC, | | | | | 64 | 2 × USARTs | | 3 × 16-bit tim | ers | , | SMC (100 ar | , | | | | 48 | 2 × 16-bit timers
1 × SPI, 1 × I ² C | | 2 × SPIs, 2 ×
1 × ADC | I2Cs, | - | - | - | | | | 36 | 1 × ADC | | I * ADC | | - | - | - | | | Table 3. STM32F101xx family For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the
STM32F101x8/B medium-density devices. #### 2.3 Overview ### 2.3.1 ARM® Cortex® -M3 core with embedded Flash and SRAM The ARM® Cortex® -M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM® Cortex® -M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F101xx medium-density access line family having an embedded ARM core, is therefore compatible with all ARM tools and software. #### 2.3.2 Embedded Flash memory 64 or 128 Kbytes of embedded Flash is available for storing programs and data. #### 2.3.3 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. #### 2.3.4 Embedded SRAM Up to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. #### 2.3.5 Nested vectored interrupt controller (NVIC) The STM32F101xx medium-density access line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®] -M3) and 16 priority levels. - Closely coupled NVIC gives low latency interrupt processing - Interrupt entry vector table address passed directly to the core - Closely coupled NVIC core interface - Allows early processing of interrupts - Processing of late arriving higher priority interrupts - Support for tail-chaining - Processor state automatically saved - Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. #### 2.3.6 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines. #### 2.3.7 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 36 MHz. See *Figure 2* for details on the clock tree. #### 2.3.8 Boot modes At startup, boot pins are used to select one of three boot options: - Boot from User Flash - Boot from System Memory - Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606. #### 2.3.9 Power supply schemes - V_{DD} = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins. - V_{SSA}, V_{DDA} = 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively. - V_{BAT} = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present. For more details on how to connect power pins, refer to Figure 11: Power supply scheme. #### 2.3.10 Power supply supervisor The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 10: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} . #### 2.3.11 Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. - MR is used in the nominal regulation mode (Run) - LPR is used in the Stop mode - Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output. #### 2.3.12 Low-power modes The STM32F101xx medium-density access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: #### • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. #### Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm. #### Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. #### 2.3.13 **DMA** The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I²C, USART, general purpose timers TIMx and ADC. #### 2.3.14 RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. #### 2.3.15 Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. #### 2.3.16 Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the
device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. #### 2.3.17 SysTick timer This timer is dedicated for OS, but could also be used as a standard down counter. It features: - A 24-bit down counter - Autoreload capability - Maskable system interrupt generation when the counter reaches 0. - Programmable clock source ### 2.3.18 General-purpose timers (TIMx) There are three synchronizable general-purpose timers embedded in the STM32F101xx medium-density access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture, output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages. The general-purpose timers can work together via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. ### 2.3.19 I²C bus Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. #### 2.3.20 Universal synchronous/asynchronous receiver transmitter (USART) The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. #### 2.3.21 Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. Both SPIs can be served by the DMA controller. #### 2.3.22 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. #### 2.3.23 ADC (analog to digital converter) The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. #### 2.3.24 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. #### 2.3.25 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 577 ### 3 Pinouts and pin description Figure 3. STM32F101xx medium-density access line LQFP100 pinout Figure 4. STM32F101xx medium-density access line LQFP64 pinout Figure 6. STM32F101xx medium-density access line UFQPFN48 pinout Table 4. Medium-density STM32F101xx pin definitions | | Pin | ıs | | Table 4. Medit | | | | Alternate functions ⁽³⁾⁽⁴⁾ | | | | |---------------------|--------|---------|----------|------------------------------------|---------------------|----------------------------|--|---|--------------------|--|--| | LQFP48/
UFQFPN48 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | | | - | - | 1 | - | PE2 | I/O | FT | PE2 | TRACECLK | - | | | | - | - | 2 | - | PE3 | I/O | FT | PE3 | TRACED0 | - | | | | - | - | 3 | - | PE4 | I/O | FT | PE4 | TRACED1 | - | | | | - | - | 4 | - | PE5 | I/O | FT | PE5 | TRACED2 | - | | | | - | - | 5 | - | PE6 | I/O | FT | PE6 | TRACED3 | - | | | | 1 | 1 | 6 | - | V _{BAT} | S | - | V_{BAT} | - | - | | | | 2 | 2 | 7 | - | PC13-TAMPER-
RTC ⁽⁵⁾ | I/O | - | PC13 ⁽⁶⁾ | TAMPER-RTC | - | | | | 3 | 3 | 8 | - | PC14-
OSC32_IN ⁽⁵⁾ | I/O | - | PC14 ⁽⁶⁾ | OSC32_IN | - | | | | 4 | 4 | 9 | - | PC15-
OSC32_OUT ⁽⁵⁾ | I/O | - | PC15 ⁽⁶⁾ | OSC32_OUT | - | | | | - | - | 10 | - | V _{SS_5} | S | - | V _{SS_5} | - | - | | | | - | 1 | 11 | - | V _{DD_5} | S | - | V_{DD_5} | - | - | | | | 5 | 5 | 12 | 2 | OSC_IN | I | - | OSC_IN | - | PD0 ⁽⁷⁾ | | | | 6 | 6 | 13 | 3 | OSC_OUT | 0 | - | OSC_OUT | - | PD1 ⁽⁷⁾ | | | | 7 | 7 | 14 | 4 | NRST | I/O | - | NRST | - | - | | | | - | 8 | 15 | - | PC0 | I/O | - | PC0 | ADC_IN10 | - | | | | - | 9 | 16 | - | PC1 | I/O | - | PC1 | ADC_IN11 | - | | | | - | 10 | 17 | - | PC2 | I/O | ı | PC2 | ADC_IN12 | - | | | | - | 11 | 18 | - | PC3 | I/O | - | PC3 | ADC_IN13 | - | | | | 8 | 12 | 19 | 5 | V _{SSA} | S | - | V _{SSA} | - | - | | | | _ | - | 20 | - | V _{REF-} | S | - | V _{REF-} | - | - | | | | _ | - | 21 | - | V _{REF+} | S | - | V _{REF+} | - | - | | | | 9 | 13 | 22 | 6 | V_{DDA} | S | - | V_{DDA} | - | - | | | | 10 | 14 | 23 | 7 | PA0-WKUP | I/O | - | PA0 | WKUP/USART2_CTS ⁽⁸⁾ /
ADC_IN0/
TIM2_CH1_ETR ⁽⁸⁾ | - | | | | 11 | 15 | 24 | 8 | PA1 | I/O | - | PA1 | USART2_RTS ⁽⁸⁾ /
ADC_IN1/TIM2_CH2 ⁽⁸⁾ | - | | | Table 4. Medium-density STM32F101xx pin definitions (continued) | | Pin | ıs | | | | | - | Alternate functions ⁽³⁾⁽⁴⁾ | | | |---------------------|--------|---------|----------|-------------------|---------------------|----------------------------|--|--|----------|--| | LQFP48/
UFQFPN48 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | | 12 | 16 | 25 | 9 | PA2 | I/O | - | PA2 | USART2_TX ⁽⁸⁾ /
ADC_IN2/TIM2_CH3 ⁽⁸⁾ | - | | | 13 | 17 | 26 | 10 | PA3 | I/O | - | PA3 | USART2_RX ⁽⁸⁾ /
ADC_IN3/TIM2_CH4 ⁽⁸⁾ | - | | | - | 18 | 27 | - | V _{SS_4} | S | ı | V _{SS_4} | - | - | | | - | 19 | 28 | - | V _{DD_4} | S | - | V _{DD_4} | - | - | | | 14 | 20 | 29 | 11 | PA4 | I/O | - | PA4 | SPI1_NSS ⁽⁸⁾ /ADC_IN4
USART2_CK ⁽⁸⁾ / | - | | | 15 | 21 | 30 | 12 | PA5 | I/O | - | PA5 | SPI1_SCK ⁽⁸⁾ /ADC_IN5 | - | | | 16 | 22 | 31 | 13 | PA6 | I/O | - | PA6 | SPI1_MISO ⁽⁸⁾ /ADC_IN6
TIM3_CH1 ⁽⁸⁾ | - | | | 17 | 23 | 32 | 14 | PA7 | I/O | - | PA7 | SPI1_MOSI ⁽⁸⁾ /ADC_IN7
TIM3_CH2 ⁽⁸⁾ | - | | | - | 24 | 33 | - | PC4 | I/O | - | PC4 | ADC_IN14 | - | | | - | 25 | 34 | - | PC5 | I/O | - | PC5 | ADC_IN15 | - | | | 18 | 26 | 35 | 15 | PB0 | I/O | - | PB0 | ADC_IN8/TIM3_CH3 ⁽⁸⁾ | - | | | 19 | 27 | 36 | 16 | PB1 | I/O | - | PB1 | ADC_IN9/TIM3_CH4 ⁽⁸⁾ | - | | | 20 | 28 | 37 | 17 | PB2 | I/O | FT | PB2/BOOT1 | - | - | | | - | - | 38 | - | PE7 | I/O | FT | PE7 | - | - | | | - | - | 39 | - | PE8 | I/O | FT | PE8 | - | - | | | - | - | 40 | - | PE9 | I/O | FT | PE9 | - | - | | | - | - | 41 | - | PE10 | I/O | FT | PE10 | - | - | | | - | - | 42 | - | PE11 | I/O | FT | PE11 | - | - | | | _ | - | 43 | - | PE12 | I/O | FT | PE12 | - | - | | | - | - | 44 | - | PE13 | I/O | FT | PE13 | - | - | | | - | - | 45 | - | PE14 | I/O | FT | PE14 | - | - | | | - | - | 46 | - | PE15 | I/O | FT | PE15 | - | - | | | 21 | 29 | 47 | - | PB10 | I/O | FT | PB10 | I2C2_SCL/
USART3_TX ⁽⁸⁾ | TIM2_CH3 | | | 22 | 30 | 48 | - | PB11 | I/O | FT | PB11 | I2C2_SDA/
USART3_RX ⁽⁸⁾ | TIM2_CH4 | | Table 4. Medium-density STM32F101xx pin definitions (continued) | | Pin | ıs | | | | | ZI TOTAX PIII | Alternate functions ⁽³⁾⁽⁴⁾ | | | |---------------------|--------|---------|----------|-------------------|---------------------|----------------------------|--|--|--------------------------|--| | LQFP48/
UFQFPN48 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | | 23 | 31 | 49 | 18 | V _{SS_1} | S | - | V _{SS_1} | - | - | | | 24 | 32 | 50 | 19 | V _{DD_1} | S | - | V _{DD_1} | - | - | | | 25 | 33 | 51 | 1 | PB12 | I/O | FT | PB12 | SPI2_NSS / I2C2_SMBA
/ USART3_CK ⁽⁸⁾ | - | | | 26 | 34 | 52 | 1 | PB13 | I/O | FT | PB13 | SPI2_SCK/
USART3_CTS ⁽⁸⁾ | - | | | 27 | 35 | 53 | - | PB14 | I/O | FT | PB14 | SPI2_MISO/
USART3_RTS ⁽⁸⁾ | - | | | 28 | 36 | 54 | - | PB15 | I/O | FT | PB15 | SPI2_MOSI | - | | | - | 1 | 55 | 1 | PD8 | I/O | FT | PD8 | - | USART3_TX | | | - | - | 56 | - | PD9 | I/O | FT | PD9 | - | USART3_RX | | | - | - | 57 | 1 | PD10 | I/O | FT | PD10 | - | USART3_CK | | | - | 1 | 58 | 1 | PD11 | I/O | FT | PD11 | - | USART3_CTS | | | - | , | 59 | 1 | PD12 | I/O | FT | PD12 | - | TIM4_CH1 /
USART3_RTS | | | - | - | 60 | - |
PD13 | I/O | FT | PD13 | - | TIM4_CH2 | | | - | - | 61 | - | PD14 | I/O | FT | PD14 | - | TIM4_CH3 | | | - | - | 62 | 1 | PD15 | I/O | FT | PD15 | - | TIM4_CH4 | | | - | 37 | 63 | - | PC6 | I/O | FT | PC6 | - | TIM3_CH1 | | | - | 38 | 64 | - | PC7 | I/O | FT | PC7 | - | TIM3_CH2 | | | = | 39 | 65 | 1 | PC8 | I/O | FT | PC8 | - | TIM3_CH3 | | | - | 40 | 66 | - | PC9 | I/O | FT | PC9 | - | TIM3_CH4 | | | 29 | 41 | 67 | 20 | PA8 | I/O | FT | PA8 | USART1_CK/MCO | - | | | 30 | 42 | 68 | 21 | PA9 | I/O | FT | PA9 | USART1_TX ⁽⁸⁾ | - | | | 31 | 43 | 69 | 22 | PA10 | I/O | FT | PA10 | USART1_RX ⁽⁸⁾ | - | | | 32 | 44 | 70 | 23 | PA11 | I/O | FT | PA11 | USART1_CTS | - | | | 33 | 45 | 71 | 24 | PA12 | I/O | FT | PA12 | USART1_RTS | - | | | 34 | 46 | 72 | 25 | PA13 | I/O | FT | JTMS-
SWDIO | - | PA13 | | | - | - | 73 | - | | | No | ot connected | | - | | Table 4. Medium-density STM32F101xx pin definitions (continued) | | Pir | าร | | | | | | Alternate functions ⁽³⁾⁽⁴⁾ | | |---------------------|--------|---------|----------|-------------------|---------------------|----------------------------|--|--|--| | LQFP48/
UFQFPN48 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | 35 | 47 | 74 | 26 | V _{SS_2} | S | - | V _{SS_2} | - | - | | 36 | 48 | 75 | 27 | V _{DD_2} | S | ı | V _{DD_2} | - | - | | 37 | 49 | 76 | 28 | PA14 | I/O | FT | JTCK/SWCL
K | - | PA14 | | 38 | 50 | 77 | 29 | PA15 | I/O | FT | JTDI | - | TIM2_CH1_ETR
/ PA15/
SPI1_NSS | | - | 51 | 78 | - | PC10 | I/O | FT | PC10 | - | USART3_TX | | - | 52 | 79 | 1 | PC11 | I/O | FT | PC11 | - | USART3_RX | | - | 53 | 80 | - | PC12 | I/O | FT | PC12 | - | USART3_CK | | - | - | 81 | 2 | PD0 | I/O | FT | PD0 | - | - | | - | | 82 | 3 | PD1 | I/O | FT | PD1 | - | - | | - | 54 | 83 | - | PD2 | I/O | FT | PD2 | TIM3_ETR | - | | - | | 84 | - | PD3 | I/O | FT | PD3 | - | USART2_CTS | | - | | 85 | - | PD4 | I/O | FT | PD4 | - | USART2_RTS | | - | - | 86 | - | PD5 | I/O | FT | PD5 | - | USART2_TX | | - | - | 87 | - | PD6 | I/O | FT | PD6 | - | USART2_RX | | - | - | 88 | - | PD7 | I/O | FT | PD7 | - | USART2_CK | | 39 | 55 | 89 | 30 | PB3 | I/O | FT | JTDO | | TIM2_CH2 / PB3
TRACESWO
SPI1_SCK | | 40 | 56 | 90 | 31 | PB4 | I/O | FT | JNTRST | - | PB4 / TIM3_CH1
SPI1_MISO | | 41 | 57 | 91 | 32 | PB5 | I/O | i | PB5 | I2C1_SMBAI | TIM3_CH2 /
SPI1_MOSI | | 42 | 58 | 92 | 33 | PB6 | I/O | FT | PB6 | I2C1_SCL ⁽⁸⁾ /
TIM4_CH1 ⁽⁸⁾ | USART1_TX | | 43 | 59 | 93 | 34 | PB7 | I/O | FT | PB7 | I2C1_SDA ⁽⁸⁾ /
TIM4_CH2 ⁽⁸⁾ | USART1_RX | | 44 | 60 | 94 | 35 | BOOT0 | I | ı | воото | - | - | | 45 | 61 | 95 | - | PB8 | I/O | FT | PB8 | TIM4_CH3 ⁽⁸⁾ | I2C1_SCL | Alternate functions(3)(4) **Pins** O level⁽²⁾ Type⁽¹⁾ LQFP48/ JFQFPN48 Main VFQFPN36 LQFP100 function⁽³⁾ LQFP64 Pin name (after reset) Default Remap TIM4 CH4 (8) PB9 I/O FT PB9 I2C1_SDA 46 62 96 97 PE0 I/O FT PE0 TIM4 ETR _ PE1 I/O _ _ 98 _ FT PE1 S 47 63 99 36 V_{SS} 3 V_{SS} 3 48 64 100 1 V_{DD_3} S V_{DD_3} _ Table 4. Medium-density STM32F101xx pin definitions (continued) - 1. I = input, O = output, S = supply, HiZ= high impedance. - FT= 5 V tolerant. - 3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be called SPI1, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 11. - 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register). - PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED). - 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. - 7. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48, UFQFPN48 and LQFP64 packages are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode. - 8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. ## 4 Memory mapping The memory map is shown in Figure 8. Figure 8. Memory map APB memory space 0xFFFF FFF reserved 0xE010 0000 reserved 0x6000 0000 0x4002 3400 0x4002 3000 1K 0xFFFF FFF reserved 0x4002 2400 Flash interface 0x4002 2000 0x4002 1400 reserved RCC 0xE010 0000 0x4002 1000 зк reserved 0xE000 0000 0x4002 0400 DMA 0x4002 0000 6 0x4001 3C00 USART1 0x4001 3800 1K 0x0000 0000 reserved 0x4001 3400 1K 0x4001 3000 reserved 1K 0x4001 2C00 5 reserved 0x4001 2800 0x4001 2400 0xA000 0000 0x4001 1C00 Port E 0x4001 1800 0x1FFF FFF reserved 0x4001 1400 Port D 0x1FFF F80I Port C 0x4001 1000 0x8000 0000 Option Bytes 1K Port B 0x1FFF F800 0x4001 0C00 1K 0x4001 0800 Port A 3 System memory EXTI 1K 0x4001 0400 0x4001 0000 0x1FFF F000 0x6000 0000 reserved 35K 0x4000 7400 PWR 1K 0x4000 7000 2 1K 0x4000 6C00 reserved reserved 0x4000 6800 Peripherals 0x4000 0000 1K 0x4000 6400 1K 0x4000 6000 reserved 1K 0x4000 5C00 1 I2C2 0x4000 5800 I2C1 1K 0x4000 5400 SRAM 0x2000 0000 2K 0x4000 4C00 USART3 1K Flash memory 0 USART2 1K 0x4000 4400 0x0800 000 reserved 0x0000 0000 2K Aliased to Flash or 0x4000 3C0 SPI2 1K ding on 0x4000 3800 0x0000 00000 BOOT pins 0x4000 3400 reserved reserved IWDG 1K 0x4000 3000 WWDG 0x4000 2C00 1K 0x4000 2800 RTC 0x4000 0C00 TIM4 1K 0x4000 0800 1K 0x4000 0400 TIM3 TIM2 ai14379e #### 5 Electrical characteristics #### 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to V_{SS}. #### 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3 σ). #### 5.1.2 Typical values Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 2 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$). #### 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. #### 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in *Figure 9*. #### 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in *Figure 10*. 5// #### 5.1.6 Power supply scheme V_{BAT} Backup circuitry (OSC32K,RTC, 1.8-3.6V Wake-up logic Backup registers) Ю GP I/Os Logic Kernel logic (CPU, Digital & Memories) V_{DD} 1/2/3/4/5 Regulator 5 × 100 nF V_{SS} + 1 \times 4.7 μ F 1/2/3/4/5 V_{DDA} V_{REF+} Analog: V_{REF} ADC RCs, PLL ai14125d Figure 11. Power supply scheme In Figure 11, the 4.7 μF capacitor must be connected to V_{DD3} . Caution: ### 5.1.7 Current consumption measurement iDD_VBAT VBAT VBAT VDDA Figure 12. Current consumption measurement scheme ### 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in *Table 5: Voltage characteristics*, *Table 6: Current characteristics*, and *Table 7: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. | Symbol | Ratings | Min | Max | Unit | | |------------------------------------|---|---|-----------------------|------|--| | V _{DD} - V _{SS} |
External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾ | -0.3 | 4.0 | | | | V _{IN} ⁽²⁾ | Input voltage on five volt tolerant pin | V _{SS} – 0.3 | V _{DD} + 4.0 | V | | | VIN. | Input voltage on any other pin | main supply voltage (including V_{DD}) ⁽¹⁾ age on five volt tolerant pin $V_{SS} = 0.3$ age on any other pin $V_{SS} = 0.3$ between different V_{DD} power pins $V_{SS} = 0.3$ between all the different ground $V_{SS} = 0.3$ catic discharge voltage (human body $V_{SS} = 0.3$ | 4.0 | | | | ∆V _{DDx} | Variations between different V _{DD} power pins | - | 50 | | | | V _{SSX} - V _{SS} | Variations between all the different ground pins | - | 50 | mV | | | V _{ESD(HBM)} | Electrostatic discharge voltage (human body model) | bltage (human body see Section 5.3.11: Absolute maximum ratings (electrical sensitivity) | | - | | Table 5. Voltage characteristics All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. V_{IN} maximum must always be respected. Refer to Table 6: Current characteristics for the maximum allowed injected current values. **Symbol** Ratings Max. Unit Total current into V_{DD}/V_{DDA} power lines (source)⁽¹⁾ 150 I_{VDD} Total current out of V_{SS} ground lines (sink)⁽¹⁾ 150 I_{VSS} Output current sunk by any I/O and control pin I_{10} Output current source by any I/Os and control pin mΑ -25Injected current on five volt tolerant pins(3) -5/+0 $I_{\mathsf{INJ}(\mathsf{PIN})}^{}(2)}$ Injected current on any other pin⁽⁴⁾ ± 5 Total injected current (sum of all I/O and control pins)(5) ± 25 $\Sigma I_{INJ(PIN)}$ **Table 6. Current characteristics** - All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. - 2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC characteristics - Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 5: Voltage characteristics* for the maximum allowed input voltage values. - 4. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 5: Voltage characteristics* for the maximum allowed input voltage values. - When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). **Table 7. Thermal characteristics** | Symbol | Ratings | Value | Unit | |------------------|------------------------------|-------------|------| | T _{STG} | Storage temperature range | -65 to +150 | °C | | T _J | Maximum junction temperature | 150 | °C | ### 5.3 Operating conditions #### 5.3.1 General operating conditions Table 8. General operating conditions | Symbol | Parameter | Conditions | Min | Max | Unit | |---------------------------------|---|-----------------------------------|------------------------|-----------------------|------| | f _{HCLK} | Internal AHB clock frequency | - | 0 | 36 | | | f _{PCLK1} | Internal APB1 clock frequency | - | 0 | 36 | MHz | | f _{PCLK2} | Internal APB2 clock frequency | - | 0 | 36 | | | V_{DD} | Standard operating voltage | - | 2 | 3.6 | | | V _{DDA} ⁽¹⁾ | Analog operating voltage (ADC not used) | Must be the same potential | 0 36
2 3.6
2 3.6 | V | | | VDDA`′ | Analog operating voltage (ADC used) | as V _{DD} ⁽²⁾ | 2.4 | 36
36
36
3.6 | | | V_{BAT} | Backup operating voltage | - | 1.8 | 3.6 | | **Symbol Parameter Conditions** Min Max Unit Standard IO -0.3 $V_{DD} + 0.3$ $2 \text{ V} < \text{V}_{DD} \le 3.6 \text{ V}$ -0.35.5 FT IO⁽³⁾ V_{IN} I/O input voltage ٧ $V_{DD} = 2 V$ -0.35.2 BOOT0 0 5.5 LQFP100 434 LQFP64 444 Power dissipation at T_A = 85 °C P_{D} LQFP48 363 mW UFQFPN48 624 1000 VFQFPN36 -40 Maximum power dissipation 85 TA Ambient temperature Low power dissipation⁽⁵⁾ 105 °C -40TJ Junction temperature range -40 105 Table 8. General operating conditions (continued) #### 5.3.2 Operating conditions at power-up / power-down Subject to general operating conditions for T_A. Table 9. Operating conditions at power-up / power-down | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-----------------------------------|------------|-----|-----|-------| | | V _{DD} rise time rate | - | 0 | 8 | μs/V | | Ţ _{VDD} | V _{DD} fall time
rate | | 20 | 8 | μ5/ ν | #### 5.3.3 Embedded reset and power control block characteristics The parameters given in *Table 10* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. ^{1.} When the ADC is used, refer to Table 41: ADC characteristics. ^{2.} It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation. ^{3.} To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled. ^{4.} If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see *Table 6.7: Thermal characteristics on page 90*). In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Table 6.7: Thermal characteristics on page 90). Table 10. Embedded reset and power control block characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | | | |--------------------------------------|---|-----------------------------|--------------------|------|------|------|--|--|--| | | | PLS[2:0]=000 (rising edge) | 2.1 | 2.18 | 2.26 | | | | | | | | PLS[2:0]=000 (falling edge) | 2 | 2.08 | 2.16 | | | | | | | | PLS[2:0]=001 (rising edge) | 2.19 | 2.28 | 2.37 | | | | | | | | PLS[2:0]=001 (falling edge) | 2.09 | 2.18 | 2.27 | | | | | | | | PLS[2:0]=010 (rising edge) | 2.28 | 2.38 | 2.48 | | | | | | | | PLS[2:0]=010 (falling edge) | 2.18 | 2.28 | 2.38 | | | | | | | | PLS[2:0]=011 (rising edge) | 2.38 | 2.48 | 2.58 | | | | | | V | Programmable voltage detector level selection | PLS[2:0]=011 (falling edge) | 2.28 | 2.38 | 2.48 | V | | | | | V_{PVD} | | PLS[2:0]=100 (rising edge) | 2.47 | 2.58 | 2.69 | | | | | | | | PLS[2:0]=100 (falling edge) | 2.37 | 2.48 | 2.59 | | | | | | | | PLS[2:0]=101 (rising edge) | 2.57 | 2.68 | 2.79 | | | | | | | | PLS[2:0]=101 (falling edge) | 2.47 | 2.58 | 2.69 | | | | | | | | PLS[2:0]=110 (rising edge) | 2.66 | 2.78 | 2.9 | | | | | | | | PLS[2:0]=110 (falling edge) | 2.56 | 2.68 | 2.8 | | | | | | | | PLS[2:0]=111 (rising edge) | 2.76 | 2.88 | 3 | | | | | | | | PLS[2:0]=111 (falling edge) | 2.66 | 2.78 | 2.9 | | | | | | V _{PVDhyst} ⁽²⁾ | PVD hysteresis | - | - | 100 | - | mV | | | | | V | Power on/power down | Falling edge | 1.8 ⁽¹⁾ | 1.88 | 1.96 | V | | | | | V _{POR/PDR} | reset threshold | Rising edge | 1.84 | 1.92 | 2.0 | v | | | | | V _{PDRhyst} ⁽²⁾ | PDR hysteresis | - | - | 40 | - | mV | | | | | t _{RSTTEMPO} ⁽²⁾ | Reset temporization | - | 1.5 | 2.5 | 4.5 | ms | | | | ^{1.} The product behavior is guaranteed by design down to the minimum $V_{\mbox{\footnotesize{POR/PDR}}}$ value. ^{2.} Guaranteed by design, not tested in production. #### 5.3.4 Embedded reference voltage The parameters given in *Table 11* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------------------------|---|----------------------------------|------|------|---------------------|------------| | V _{REFINT} | Internal reference voltage | -40 °C < T _A < +85 °C | 1.16 | 1.20 | 1.24 | V | | T _{S_vrefint} (1) | ADC sampling time when reading the internal reference voltage | - | - | 5.1 | 17.1 ⁽²⁾ | μs | | V _{RERINT} ⁽²⁾ | Internal reference voltage spread over the temperature range | V _{DD} = 3 V ±10 mV | - | - | 10 | mV | | T _{Coeff} ⁽²⁾ | Temperature coefficient | - | - | - | 100 | ppm/
°C | Table 11. Embedded internal reference voltage #### 5.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 12: Current consumption measurement scheme*. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code. #### **Maximum current consumption** The MCU is placed under the following conditions: - All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load) - All peripherals are disabled except if it is explicitly mentioned - The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) - Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling) - When the peripherals are enabled f_{PCLK1} = f_{HCLK/2}, f_{PCLK2} = f_{HCLK} The parameters given in *Table 12* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. 7/ ^{1.} Shortest sampling time can be determined in the application by multiple iterations. ^{2.} Guaranteed by design, not tested in production. Table 12. Maximum current consumption in Run mode, code with data processing running from Flash | Symbol | Parameter | Conditions | | Max ⁽¹⁾ | Unit | |-----------------|----------------
-------------------------------------|-------------------|------------------------|-------| | Symbol | Parameter | Conditions | f _{HCLK} | T _A = 85 °C | Offic | | | | | 36 MHz | 28.6 | | | | | External clock ⁽²⁾ , all | 24 MHz | 19.9 | | | | | peripherals enabled | 16 MHz | 14.7 | | | | Supply current | | 8 MHz | 8.6 | mA | | I _{DD} | in Run mode | | 36 MHz | 19.8 | IIIA | | | | External clock ⁽²⁾ , all | 24 MHz | 13.9 | | | | | peripherals Disabled | 16 MHz | 10.7 | | | | | | 8 MHz | 6.8 | | - 1. Based on characterization, not tested in production. - 2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. Table 13. Maximum current consumption in Run mode, code with data processing running from RAM | Symbol | Parameter | Conditions | | Max ⁽¹⁾ | Unit | |-----------------|-------------------|-------------------------------------|-------------------|------------------------|-------| | Cymbol | Farameter | Conditions | f _{HCLK} | T _A = 85 °C | Ollit | | | | | 36 MHz | 24 | | | | | External clock ⁽²⁾ , all | 24 MHz | 17.5 | | | | | peripherals enabled | 16 MHz | 12.5 | | | | Supply current in | | 8 MHz | 7.5 | mΛ | | I _{DD} | Run mode | | 36 MHz | 16 | mA | | | | External clock ⁽²⁾ all | 24 MHz | 11.5 | | | | | peripherals disabled | 16 MHz | 8.5 | | | | | | 8 MHz | 5.5 | | - 1. Based on characterization, tested in production at V_{DD} max, f_{HCLK} max. - 2. External clock is 8 MHz and PLL is on when $f_{\mbox{\scriptsize HCLK}}$ > 8 MHz. Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled Table 14. Maximum current consumption in Sleep mode, code running from Flash or RAM | Cumbal | ol Parameter Conditions f _{HCLK} | | £ | Max ⁽¹⁾ | Unit | |-----------------|---|-------------------------------------|--------|------------------------|-------| | Symbol | Parameter | Conditions | HCLK | T _A = 85 °C | Offic | | | | | 36 MHz | 15.5 | | | | | External clock ⁽²⁾ all | 24 MHz | 11.5 | | | | | peripherals enabled | 16 MHz | 8.5 | | | | Supply current in | | 8 MHz | 5.5 | mΛ | | I _{DD} | Sleep mode | | 36 MHz | 5 | mA | | | | External clock ⁽²⁾ , all | 24 MHz | 4.5 | | | | peripherals disabled | 16 MHz | 4 | | | | | | | 8 MHz | 3 | | - 1. Based on characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled. - 2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. Table 15. Typical and maximum current consumptions in Stop and Standby modes | | | | | Typ ⁽¹⁾ | | Max | | |---------------------|--|--|---|--|--|---------------------------------------|------| | Symbol Parameter | | Conditions | V_{DD}/V_{B} $= AT$ $= 2.0 \text{ V}$ | V _{DD} /
V _{BAT} =
2.4 V | V_{DD}/V_{B} $= \overset{AT}{3.3} V$ | T _A = 85 °C ⁽²⁾ | Unit | | | Supply current | Regulator in Run mode,
Low-speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog) | - | 23.5 | 24 | 200 | | | in Stop mode | Regulator in Low-Power mode,
Low-speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog) | - | 13.5 | 14 | 180 | | | | I _{DD} | | Low-speed internal RC oscillator and independent watchdog ON | - | 2.6 | 3.4 | - | μΑ | | | Supply current in Standby | Low-speed internal RC oscillator ON, independent watchdog OFF | - | 2.4 | 3.2 | - | | | mode | Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF | - | 1.7 | 2 | 4 | | | | I _{DD_VBA} | Backup
domain supply
current | Low-speed oscillator and RTC ON | 0.9 | 1.1 | 1.4 | 1.9 | | ^{1.} Typical values are measured at T_A = 25 °C. ^{2.} Based on characterization, not rested in production. Figure 15. Typical current consumption on V_{BAT} with RTC on versus temperature at different V_{BAT} values Figure 16. Typical current consumption in Stop mode with regulator in Run mode versus temperature at V_{DD} = 3.3 V and 3.6 V Figure 17. Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at V_{DD} = 3.3 V and 3.6 V Figure 18. Typical current consumption in Standby mode versus temperature at V_{DD} = 3.3 V and 3.6 V ## Typical current consumption The MCU is placed under the following conditions: - All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load) - All peripherals are disabled except if it is explicitly mentioned - The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) - Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling) - When the peripherals are enabled f_{PCLK1} = f_{HCLK/4}, f_{PCLK2} = f_{HCLK/2}, f_{ADCCLK} = f_{PCLK2}/4 The parameters given in *Table 16* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. Table 16. Typical current consumption in Run mode, code with data processing running from Flash | | | | | Typ ⁽¹⁾ | Typ ⁽¹⁾ | | |-----------------|-----------|------------------------------------|-------------------|--|--------------------------|------| | Symbol | Parameter | Conditions | f _{HCLK} | All peripherals enabled ⁽²⁾ | All peripherals disabled | Unit | | | | 36 MHz 19 14.8 | 14.8 | | | | | | | | 24 MHz | 12.9 | 10.1 | | | | | | 16 MHz | 9.3 | 7.4 | | | | | | 8 MHz | 5.5 | 4.6 | | | | | External clock ⁽³⁾ | 4 MHz | 3.3 | 2.8 | | | | | G.GG.X | 2 MHz | 2.2 | 1.9 | | | | | | 1 MHz | 1.6 | 1.45 | | | | | | 500 kHz | 1.3 | 1.25 | | | | Supply | | 1.06 | mA | | | | I _{DD} | Run mode | current in Run mode | 36 MHz | 18.3 | 14.1 | IIIA | | | | | 24 MHz | 12.2 | 9.5 | | | | | Running on
high speed | 16 MHz | 8.5 | 6.8 | | | | | internal RC | 8 MHz | 4.9 | 4 | | | | | (HSI), AHB prescaler | 4 MHz | 2.7 | 2.2 | | | | | used to
reduce the
frequency | 2 MHz | 1.6 | 1.4 | | | | | | 1 MHz | 1.02 | 0.9 | | | | | | 500 kHz | 0.73 | 0.67 | | | | | | 125 kHz | 0.5 | 0.48 | | ^{1.} Typical values are measures at $T_A = 25$ °C, $V_{DD} = 3.3$ V. 577 ^{2.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). ^{3.} External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. Table 17. Typical current consumption in Sleep mode, code running from Flash or RAM | IVAIN | | | | | | | | |-----------------|-------------------|---|-------------------|--|--------------------------|------|--| | | | | | Typ ⁽¹⁾ | Typ ⁽¹⁾ | | | | Symbol | Parameter | Conditions | f _{HCLK} | All peripherals enabled ⁽²⁾ | All peripherals disabled | Unit | | | | | | | 36 MHz | 7.6 | 3.1 | | | | | | 24 MHz | 5.3 | 2.3 | | | | | | | 16 MHz | 3.8 | 1.8 | | | | | | | 8 MHz | 2.1 | 1.2 | | | | | | External clock ⁽³⁾ | 4 MHz | 1.6 | 1.1 | | | | | | | 2 MHz | 1.3 | 1 | | | | | | | 1 MHz | 1.11 | 0.98 | | | | | | | 500 kHz | 1.04 | 0.96 | | | | | Supply current in | | 125 kHz | 0.98 | 0.95 | mA | | | I _{DD} | Sleep mode | | 36 MHz | 7 | 2.5 | IIIA | | | | | | 24 MHz | 4.8 | 1.8 | | | | | | Running on High | 16 MHz | 3.2 | 1.2 | | | | | | Speed Internal RC | 8 MHz | 1.6 | 0.6 | | | | | | (HSI), AHB prescaler used to reduce the frequency | 4 MHz | 1 | 0.5 | | | | | | | 2 MHz | 0.72 | 0.47 | | | | | | | 1 MHz | 0.56 | 0.44 | | | | | | | 500 kHz | 0.49 | 0.42 | | | | | | | 125 kHz | 0.43 | 0.41 | | | ^{1.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V. ### On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in *Table 18*. The MCU is placed under the following conditions: - all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load) - all peripherals are disabled unless otherwise mentioned - the given value is calculated by measuring the current consumption - with all peripherals clocked off - with only one peripheral clocked on - ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 5. ^{2.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). ^{3.} External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. Typical consumption at 25 °C⁽¹⁾ **Peripheral** Unit DMA1 16.53 AHB (up to 36 MHz) BusMatrix(2) 8.33 APB1-Bridge 10.28 TIM2 32.50 TIM3 31.39 TIM4 31.94 SPI2 4.17 **USART2** 12.22 APB1 (up to **USART3** 12.22 18 MHz) I2C1 10.00 12C2 10.00 **WWDG** 2.50 µA/MHz **PWR** 1.67 BKP 2.50 **IWDG** 11.67 3.75 APB2-Bridge 6.67 6.53 6.53 6.53 6.39 17.50 4.72 11.94 Table 18. Peripheral current consumption #### 5.3.6 External clock source characteristics **GPIO A** **GPIO B** GPIO C **GPIO D** **GPIO E** ADC1⁽³⁾ **USART1** SPI1 APB2 (up to 36 MHz) ## High-speed external user clock generated from an external source The characteristics given in *Table 19* result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 8*. ^{1.} $f_{HCLK} = 36$ MHz, $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, default prescaler value for each peripheral. ^{2.} The BusMatrix is automatically active when at least one master is ON. Specific conditions for ADC: f_{HCLK} = 28 MHz,
f_{APB1} = f_{HCLK}/2, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2}/2. When ADON bit in the ADC_CR2 register is set to 1, the consumption added is equal to 0.65 mA. When the ADC is enabled, a current consumption is added equal to 0.05 mA. **Conditions** Unit **Symbol Parameter** Min Тур Max User external clock source 1 8 25 MHz f_{HSE_ext} frequency⁽¹⁾ $0.7V_{DD}$ OSC IN input pin high level voltage V_{HSEH} V_{DD} ٧ V_{HSEL} OSC IN input pin low level voltage V_{SS} $0.3V_{DD}$ $t_{w(HSE)}$ OSC IN high or low time⁽¹⁾ 5 t_{w(HSE)} ns t_{r(HSE)} OSC IN rise or fall time(1) 20 t_{f(HSE)} OSC IN input capacitance⁽¹⁾ C_{in(HSE)} 5 pF % DuCy(HSE) Duty cycle 45 55 OSC_IN Input leakage current $V_{SS} \le V_{IN} \le V_{DD}$ μΑ I_{L} Table 19. High-speed external user clock characteristics ### Low-speed external user clock generated from an external source The characteristics given in *Table 20* result from tests performed using an low-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 8*. Table 20. Low-speed external user clock characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--|---|--------------------------------|--------------------|--------|--------------------|------| | f _{LSE_ext} | User external clock source frequency ⁽¹⁾ | | - | 32.768 | 1000 | kHz | | V _{LSEH} | OSC32_IN input pin high level voltage | | 0.7V _{DD} | - | V _{DD} | V | | V _{LSEL} | OSC32_IN input pin low level voltage | - | V _{SS} | - | 0.3V _{DD} | V | | $t_{w(LSE)}$ $t_{w(LSE)}$ | OSC32_IN high or low time ⁽¹⁾ | | 450 | - | - | ns | | $\begin{matrix} t_{r(LSE)} \\ t_{f(LSE)} \end{matrix}$ | OSC32_IN rise or fall time ⁽¹⁾ | | - | - | 50 | 113 | | C _{in(LSE)} | OSC32_IN input capacitance ⁽¹⁾ | - | - | 5 | - | pF | | DuCy _(LSE) | Duty cycle | - | 30 | - | 70 | % | | ΙL | OSC32_IN Input leakage current | $V_{SS} \le V_{IN} \le V_{DD}$ | - | - | ±1 | μΑ | ^{1.} Guaranteed by design, not tested in production. ^{1.} Guaranteed by design, not tested in production. Figure 19. High-speed external clock source AC timing diagram ### High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 21*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------------------------|--|---|-----|-----|-----|------| | f _{OSC_IN} | Oscillator frequency | - | 4 | 8 | 16 | MHz | | R_{F} | Feedback resistor | - | - | 200 | - | kΩ | | С | Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) ⁽³⁾ | R _S = 30 Ω | · | 30 | ı | pF | | i ₂ | HSE driving current | V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load | - | - | 1 | mA | | 9 _m | Oscillator transconductance | Startup | 25 | _ | - | mA/V | | t _{SU(HSE)} ⁽⁴⁾ | Startup time | V _{DD} is stabilized | - | 2 | | ms | Table 21. HSE 4-16 MHz oscillator characteristics⁽¹⁾⁽²⁾ - 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. - 2. Based on characterization, not tested in production. - The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. - t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 21*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*. Figure 21. Typical application with an 8 MHz crystal 1. R_{EXT} value depends on the crystal characteristics. # Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization 60 time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). | Symbol | Parameter | Conditions | - | Min | Тур | Max | Unit | |-------------------------------------|---|---|-------------------------|-----|-----|-----|------| | R _F | Feedback resistor | - | - | - | 5 | - | ΜΩ | | С | Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) | R _S = 30 KΩ | - | - | - | 15 | pF | | l ₂ | LSE driving current | $V_{DD} = 3.3 \text{ V}$
$V_{IN} = V_{SS}$ | - | - | - | 1.4 | μA | | 9 _m | Oscillator transconductance | - | - | 5 | - | - | μA/V | | | | | T _A = 50 °C | - | 1.5 | - | | | | | | T _A = 25 °C | - | 2.5 | - | | | | | | T _A = 10 °C | - | 4 | - | | | t _{SU(LSE)} ⁽³⁾ | Charles time a | V _{DD} is | T _A = 0 °C | - | 6 | - | | | | Startup time | stabilized | T _A = -10 °C | - | 10 | - | S | | | | | T _A = -20 °C | - | 17 | - | | | | | | T _A = -30 °C | - | 32 | - | | Table 22. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)⁽¹⁾ (2) Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. T_A = -40 °C Load capacitance CL has the following formula: $CL = CL1 \times CL2 / (CL1 + CL2) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL \leq 7 pF. Never use a resonator with a load capacitance of 12.5 pF. **Example:** if resonator with a load capacitance of CL = 6 pF, and C_{stray} = 2 pF is chosen, then CL1 = CL2 = 8 pF. ^{1.} Based on characterization, not tested in production. ^{2.} Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers" t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Resonator with integrated capacitors CL1 OSC32_N Bias controlled gain STM32F10xxx ai14129b Figure 22. Typical application with a 32.768 kHz crystal ### 5.3.7 Internal clock source characteristics The parameters given in *Table 23* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. ## High-speed internal (HSI) RC oscillator Table 23. HSI oscillator characteristics⁽¹⁾ | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |-------------------------------------|----------------------------------|--------------------------------------|--|------|-----|------------------|------| | f _{HSI} | Frequency | - | | - | 8 | - | MHz | | DuCy _(HSI) | Duty cycle | | - | 45 | - | 55 | % | | | | User-trimmed register ⁽²⁾ | d with the RCC_CR | - | - | 1 ⁽³⁾ | % | | | Accuracy of the HSI | | $T_A = -40 \text{ to } 105 ^{\circ}\text{C}$ | -2 | - | 2.5 | % | | ACC _{HSI} | oscillator | Factory-
calibrated | T _A = -10 to 85 °C | -1.5 | - | 2.2 | % | | | | (4) (5) | T _A = 0 to 70 °C | -1.3 | - | 2 | % | | | | | T _A = 25 °C | -1.1 | - | 1.8 | % | | t _{su(HSI)} ⁽⁴⁾ | HSI oscillator startup time | - | | 1 | - | 2 | μs | | I _{DD(HSI)} ⁽⁴⁾ | HSI oscillator power consumption | | - | - | 80 | 100 | μA | ^{1.} V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified. - 3. Guaranteed by design, not tested in production. - 4. Based on characterization, not tested in production. - The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified range. ^{2.} Refer to application note AN2868
"STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com. ## Low-speed internal (LSI) RC oscillator Table 24. LSI oscillator characteristics (1) | Symbol | Parameter | Min | Тур | Max | Unit | |-------------------------------------|----------------------------------|-----|------|-----|------| | f _{LSI} ⁽²⁾ | Frequency | 30 | 40 | 60 | kHz | | t _{su(LSI)} (3) | LSI oscillator startup time | - | - | 85 | μs | | I _{DD(LSI)} ⁽³⁾ | LSI oscillator power consumption | - | 0.65 | 1.2 | μA | - 1. V_{DD} = 3 V, T_A = -40 to 85 °C unless otherwise specified. - 2. Based on characterization, not tested in production. - 3. Guaranteed by design, not tested in production. ### Wakeup time from low-power mode The wakeup times given in *Table 25* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: - Stop or Standby mode: the clock source is the RC oscillator - Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. Table 25. Low-power mode wakeup timings | Symbol | Parameter | Тур | Unit | |--------------------------|---|-----|------| | t _{WUSLEEP} (1) | Wakeup from Sleep mode | 1.8 | μs | | + (1) | Wakeup from Stop mode (regulator in run mode) | 3.6 | lie. | | t _{WUSTOP} (1) | Wakeup from Stop mode (regulator in low-power mode) | 5.4 | μs | | t _{WUSTDBY} (1) | Wakeup from Standby mode | 50 | μs | The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction. ### 5.3.8 PLL characteristics The parameters given in *Table 26* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. Table 26. PLL characteristics | Symbol | Doromotor | | Unit | | | |----------------------|--------------------------------|--------------------|------|--------------------|------| | Symbol | Parameter | Min ⁽¹⁾ | Тур | Max ⁽¹⁾ | Unit | | f _{PLL_IN} | PLL input clock ⁽²⁾ | 1 | 8.0 | 25 | MHz | | | PLL input clock duty cycle | 40 | - | 60 | % | | f _{PLL_OUT} | PLL multiplier output clock | 16 | - | 36 | MHz | | Symbol | Parameter | | Value | | | | |-------------------|-----------------------|--------------------|-------|--------------------|------|--| | Symbol | Parameter | Min ⁽¹⁾ | Тур | Max ⁽¹⁾ | Unit | | | t _{LOCK} | PLL lock time | - | - | 200 | μs | | | Jitter | Cycle-to-cycle jitter | - | - | 300 | ps | | Table 26. PLL characteristics (continued) ## 5.3.9 Memory characteristics ## Flash memory The characteristics are given at $T_A = -40$ to 85 °C unless otherwise specified. Min⁽¹⁾ Max⁽¹⁾ Unit **Symbol Parameter Conditions** Typ 16-bit programming time $T_{\Delta} = -40$ to +85 °C 40 52.5 70 μs tprog Page (1 KB) erase time $T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$ 20 40 ms t_{ERASE} $T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$ Mass erase time 20 40 ms t_{ME} Read mode f_{HCLK} = 36 MHz with 1 wait 20 mΑ state, V_{DD} = 3.3 V Supply current Write / Erase modes I_{DD} 5 mΑ f_{HCLK} = 36 MHz, V_{DD} = 3.3 V Power-down mode / Halt, 50 μΑ $V_{DD} = 3.0 \text{ to } 3.6 \text{ V}$ 2 ٧ Programming voltage 3.6 V_{proq} Table 27. Flash memory characteristics ## 5.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. #### Functional EMS (Electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: - **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. - FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. ^{1.} Based on device characterization, not tested in production. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL OUT}. ^{1.} Guaranteed by design, not tested in production. The test results are given in *Table 28*. They are based on the EMS levels and classes defined in application note AN1709. Symbol Level/Class **Parameter Conditions** $V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ }^{\circ}\text{C},$ Voltage limits to be applied on any I/O pin to f_{HCLK}= 36 MHz V_{FESD} 2B induce a functional disturbance conforms to IEC 61000-4-2 Fast transient voltage burst limits to be $V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ $f_{HCLK} = 36 \ MHz$ applied through 100 pF on V_{DD} and V_{SS} pins 4A V_{EFTB} to induce a functional disturbance conforms to IEC 61000-4-4 Table 28. EMS characteristics #### Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: - Corrupted program counter - Unexpected reset - Critical Data corruption (control registers...) #### **Prequalification trials** Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). #### **Electromagnetic Interference (EMI)** The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC61967-2 standard which specifies the test board and the pin loading. Max vs. [f_{HSE}/f_{HCLK}] **Monitored Symbol Parameter Conditions** Unit frequency band 8/36 MHz 0.1 MHz to 30 MHz 7 $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ }^{\circ}\text{C},$ 30 MHz to 130 MHz 8 $dB\mu V$ LQFP100 package S_{EMI} Peak level compliant with 130 MHz to 1GHz 13 IEC 61967-2 3.5 SAE EMI Level Table 29. EMI characteristics ## 5.3.11 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. ### Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 30. ESD absolute maximum ratings | Symbol | Ratings | Conditions | Class | Maximum
value ⁽¹⁾ | Unit | |-----------------------|---|---|-------|---------------------------------|------| | V _{ESD(HBM)} | Electrostatic discharge voltage (human body model) | T _A = +25 °C conforming to JESD22-A114 | 2 | 2000 | | | V _{ESD(CDM)} | Electrostatic discharge voltage (charge device model) | T _A = +25 °C
conforming to
ANSI/ESD STM5.3.1 | Ш | 500 | V | ^{1.} Based on characterization results, not tested in production. ### Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: - A supply overvoltage is applied to each power supply pin - A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78 IC latch-up standard. Table 31. Electrical sensitivities | Symbol | Parameter | Conditions | Class | |--------|-----------------------|---|------------| | LU | Static latch-up class | T _A = +85 °C conforming to JESD78A | II level A | ## 5.3.12 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. ## Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 32 Table 32. I/O current injection susceptibility | | | Functional s | | | |------------------
--|--------------------|--------------------|------| | Symbol | Description | Negative injection | Positive injection | Unit | | | Injected current on OSC_IN32,
OSC_OUT32, PA4, PA5, PC13 | -0 | +0 | | | I _{INJ} | Injected current on all FT pins | -5 | +0 | mA | | | Injected current on any other pin | -5 | +5 | | # 5.3.13 I/O port characteristics # General input/output characteristics Unless otherwise specified, the parameters given in *Table 33* are derived from tests performed under the conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant. Table 33. I/O static characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------------------|---|---|---|-------|---|-------| | Low level in a st | | Standard IO
input low level
voltage | - | - | 0.28*(V _{DD} -2 V)+0.8 V ⁽¹⁾ | | | V_{IL} | Low level input voltage | IO FT ⁽³⁾ input low level voltage | - | - | 0.32*(V _{DD} -2 V)+0.75 V ⁽¹⁾ | | | | | All I/Os except
BOOT0 | - | - | 0.35V _{DD} ⁽²⁾ | v | | | | Standard IO
input high level
voltage | 0.41*(V _{DD} -2 V)+1.3
V ⁽¹⁾ | - | - | V | | V _{IH} High lev voltage | High level input voltage | IO FT ⁽³⁾ input high level voltage | 0.42*(V _{DD} -2 V)+1 V ⁽¹⁾ | - | - | | | | | All I/Os except
BOOT0 | 0.65V _{DD} ⁽²⁾ | - | - | | | V_{hys} | Standard IO Schmitt
trigger voltage
hysteresis ⁽⁴⁾ | - | 200 | - | - | mV | | .,,- | IO FT Schmitt trigger voltage hysteresis ⁽⁴⁾ | - | 5% V _{DD} ⁽⁵⁾ | - | - | | | 1 | Input leakage current | $V_{SS} \le V_{IN} \le V_{DD}$
Standard I/Os | - | - | ±1 | | | I _{lkg} | (6) | V _{IN} = 5 V
I/O FT | - | - | 3 | μA | | R _{PU} | Weak pull-up equivalent resistor ⁽⁷⁾ | $V_{IN} = V_{SS}$ | 30 | 40 | 50 | kΩ | | R _{PD} | Weak pull-down equivalent resistor ⁽⁷⁾ | $V_{IN} = V_{DD}$ | 30 | 40 50 | | 1 K22 | | C _{IO} | I/O pin capacitance | - | - | 5 | - | pF | ^{1.} Data based on design simulation. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). ^{2.} Tested in production. FT = Five-volt tolerant. In order to sustain a voltage higher than V_{DD}+0.3 the internal pull-up/pull-down resistors must be disabled. ^{4.} Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. ^{5.} With a minimum of 100 mV. ^{6.} Leakage could be higher than max. if negative current is injected on adjacent pins. All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 23* and *Figure 24* for standard I/Os, and in *Figure 25* and *Figure 26* for 5 V tolerant I/Os. Figure 23. Standard I/O input characteristics - CMOS port 577 $V_{IH}/V_{IL}(V)$ Area not determined CMOS standard requirements V_{IH}=0.65V_{DD} V_{IH}=0.42(V_{DD}-2)+1 Based on design simulations V_{IL}=0.32(V_{DD}-2)+0.75 Based on design simulations Tested in production 1.16 1.3 1.295 CMOS standard requirment V_{IL} =0.35V_{DD} 0.975 Tested in production 0.7 V_{DD} (V) 2.7 3 3.3 3.6 VDD ai17279c Figure 25. 5 V tolerant I/O input characteristics - CMOS port ## **Output driving current** The GPIOs (general-purpose inputs/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to ± 100 mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: - The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 6*). - The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 6*). ### **Output voltage levels** Unless otherwise specified, the parameters given in *Table 34* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant. | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------------------|---|---|----------------------|-----|------| | V _{OL} ⁽¹⁾ | Output Low level voltage for an I/O pin when 8 pins are sunk at the same time | CMOS port ⁽²⁾ ,, | - | 0.4 | V | | V _{OH} ⁽³⁾ | Output High level voltage for an I/O pin when 8 pins are sourced at the same time | $2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$ | V _{DD} -0.4 | - | V | | V _{OL} ⁽¹⁾ | Output low level voltage for an I/O pin when 8 pins are sunk at the same time | TTL port ⁽²⁾ | - | 0.4 | V | | V _{OH} ⁽³⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at the same time | 2.7 V < V _{DD} < 3.6 V | 2.4 | - | v | | V _{OL} ⁽¹⁾ | Output low level voltage for an I/O pin when 8 pins are sunk at the same time | I _{IO} = +20 mA ⁽⁴⁾ | - | 1.3 | V | | V _{OH} ⁽³⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at the same time | 2.7 V < V _{DD} < 3.6 V | V _{DD} -1.3 | - | V | | V _{OL} ⁽¹⁾ | Output low level voltage for an I/O pin when 8 pins are sunk at the same time | I _{IO} = +6 mA ⁽⁴⁾ | - | 0.4 | V | | V _{OH} ⁽³⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at the same time | 2 V < V _{DD} < 2.7 V | V _{DD} -0.4 | - | V | Table 34. Output voltage characteristics 4. Based on characterization data, not tested in production. ^{1.} The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 6* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} . ^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. ^{3.} The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 6 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD} . # Input/output AC characteristics The definition and values of input/output AC characteristics are given in *Figure 27* and *Table 35*, respectively. Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. Table 35. I/O AC characteristics⁽¹⁾ | MODEx
[1:0] bit
value ⁽¹⁾ | Symbol | Parameter | Conditions | Max | Unit | | |--|-------------------------|---|---|--------------------|------|--| | | f _{max(IO)out} | Maximum frequency ⁽²⁾ | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$ | 2 | MHz | | | 10 | t _{f(IO)out} | Output high to low level fall time | C _L = 50 pF, V _{DD} = 2 V to 3.6 V | 125 ⁽³⁾ | no | | | | t _{r(IO)out} | Output low to high level rise time | - C _L = 50 μF, ν _{DD} = 2 ν to 3.0 ν | 125 ⁽³⁾ | ns | | | | f _{max(IO)out} | Maximum frequency ⁽²⁾ | C _L = 50 pF, V _{DD} = 2 V to 3.6 V | 10 | MHz | | | 01 | t _{f(IO)out} | Output high to low level fall time | -C _L = 50 pF, V _{DD} = 2 V to 3.6 V | 25 ⁽³⁾ | ns | | | | t _{r(IO)out} | Output low to high level rise time | - CL – 30 βF, V _{DD} – 2 V to 3.6 V | 25 ⁽³⁾ | _ | | | | F _{max(IO)out} | | C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V | 50 | MHz | | | | | Maximum Frequency ⁽²⁾ | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | 30 | MHz | | | | | | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$ | 20 | MHz | | | | | | $C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | 5 ⁽³⁾ | | | | 11 | t _{f(IO)out} | Output high to low level fall time | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | 8 ⁽³⁾ | | | | | | | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$ | 12 ⁽³⁾ | | | | | | Output low to high level rise | C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V | 5 ⁽³⁾ | ns | | | | t _{r(IO)} out | time | C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V | | | | | | | | C _L = 50 pF, V _{DD} = 2 V to 2.7 V | 12 ⁽³⁾ | | | | - | t _{EXTIpw} | Pulse width of external signals detected by the EXTI controller | - | 10 | ns | | The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. ^{2.} The maximum frequency is defined in Figure 27. ^{3.} Guaranteed by design, not tested in production. Figure 27. I/O AC characteristics definition ## 5.3.14 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 33*). Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------------------------|---|-------------------|------|-----|----------------------|------| | V _{IL(NRST)} ⁽¹⁾ | NRST Input low level voltage | - | -0.5 | - | 0.8 | V | | V _{IH(NRST)} ⁽¹⁾ | NRST Input high level
voltage | - | 2 | - | V _{DD} +0.5 | V | | V _{hys(NRST)} | NRST Schmitt trigger voltage hysteresis | - | - | 200 | - | mV | | R _{PU} | Weak pull-up equivalent resistor ⁽²⁾ | $V_{IN} = V_{SS}$ | 30 | 40 | 50 | kΩ | | V _{F(NRST)} ⁽¹⁾ | NRST Input filtered pulse | - | - | - | 100 | ns | | V _{NF(NRST)} ⁽¹⁾ | NRST Input not filtered pulse | - | 300 | - | - | ns | Table 36. NRST pin characteristics **47**/ ^{1.} Guaranteed by design, not tested in production. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). Figure 28. Recommended NRST pin protection - 1. The reset network protects the device against parasitic resets. - The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 36. Otherwise the reset will not be taken into account by the device. #### 5.3.15 TIM timer characteristics The parameters given in *Table 37* are guaranteed by design. Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------------|---------------------------------|-------------------------------|--------|-------------------------|----------------------| | t | Timer resolution time | - | 1 | - | t _{TIMxCLK} | | t _{res(TIM)} | Time resolution time | f _{TIMxCLK} = 36 MHz | 27.8 | - | ns | | f | Timer external clock | | 0 | f _{TIMxCLK} /2 | MHz | | f _{EXT} | frequency on CH1 to CH4 | f _{TIMxCLK} = 36 MHz | 0 | 18 | MHz | | Res _{TIM} | Timer resolution | - | - | 16 | bit | | , | 16-bit counter clock period | - | 1 | 65536 | t _{TIMxCLK} | | tCOUNTER | when internal clock is selected | f _{TIMxCLK} = 36 MHz | 0.0278 | 1820 | μs | | t | Maximum possible count | - | - | 65536 × 65536 | t _{TIMxCLK} | | t _{MAX_COUNT} | I waxiinum possible count | f _{TIMxCLK} = 36 MHz | - | 119.2 | s | Table 37. TIMx⁽¹⁾ characteristics #### 5.3.16 Communications interfaces ## I²C interface characteristics The STM32F101xx medium-density access line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. The I²C characteristics are described in *Table 38*. Refer also to *Section 5.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL). ^{1.} TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. Table 38. I²C characteristics | Symbol | Parameter | Standard r | node I ² C ⁽¹⁾ | Fast mode | Unit | | |---------------------------|---|------------|--------------------------------------|----------------------|--------------------|------| | Symbol | Falametei | Min | Max | Min | Max | Oill | | t _{w(SCLL)} | SCL clock low time | 4.7 | - | 1.3 | - | μs | | t _{w(SCLH)} | SCL clock high time | 4.0 | - | 0.6 | - | μδ | | t _{su(SDA)} | SDA setup time | 250 | - | 100 | - | | | t _{h(SDA)} | SDA data hold time | 0 | - | 0 | 900 ⁽³⁾ | | | t _{r(SDA)} | SDA and SCL rise time | - | 1000 | 20+0.1C _b | 300 | ns | | $t_{f(SDA)} \ t_{f(SCL)}$ | SDA and SCL fall time | - | 300 | - | 300 | | | t _{h(STA)} | Start condition hold time | 4.0 | - | 0.6 | - | | | t _{su(STA)} | Repeated Start condition setup time | 4.7 | - | 0.6 | - | μs | | t _{su(STO)} | Stop condition setup time | 4.0 | - | 0.6 | - | μs | | t _{w(STO:STA)} | Stop to Start condition time (bus free) | 4.7 | - | 1.3 | - | μs | | C _b | Capacitive load for each bus line | - | 400 | - | 400 | pF | ^{1.} Guaranteed by design, not tested in production. ^{2.} f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. Figure 29. I²C bus AC waveforms and measurement circuit⁽¹⁾ - 1. Measurement points are done at CMOS levels: $0.3 \rm V_{DD}$ and $0.7 \rm V_{DD.}$ - 2. Rs = Series protection resistors, Rp = Pull-up resistors, $V_{DD\ 12C}$ = I2C bus supply. Table 39. SCL frequency (f_{PCLK1} = 36 MHz, V_{DD_12C} = 3.3 V)⁽¹⁾⁽²⁾ | | 20_12 | |------------------------|--------------------------| | f (kHz) | I2C_CCR value | | f _{SCL} (kHz) | R_{p} = 4.7 k Ω | | 400 | 0x801E | | 300 | 0x8028 | | 200 | 0x803C | | 100 | 0x00B4 | | 50 | 0x0168 | | 20 | 0x0384 | - 1. R_P = External pull-up resistance, f_{SCL} = I^2C speed, - For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. 57 #### **SPI** interface characteristics Unless otherwise specified, the parameters given in *Table 40* are derived from tests performed under the ambient temperature, f_{PCLKX} frequency and V_{DD} supply voltage conditions summarized in *Table 8*. Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 40. SPI characteristics | Symbol | Parameter | Conditions | Min | Max | Unit | | |--------------------------------------|-------------------------------------|---|---------------------|---------------------|------|--| | f _{SCK} | SPI clock frequency | Master mode | 0 | 18 | | | | 1/t _{c(SCK)} | SPI Clock frequency | Slave mode | 0 | 18 | MHz | | | $t_{r(SCK)} \ t_{f(SCK)}$ | SPI clock rise and fall time | Capacitive load: C = 30 pF | | 8 | | | | t _{su(NSS)} ⁽¹⁾ | NSS setup time | Slave mode | 4 t _{PCLK} | - | | | | t _{h(NSS)} ⁽¹⁾ | NSS hold time | Slave mode | 73 | - | | | | $t_{w(SCKH)}^{(1)}$ | SCK high and low time | Master mode, f _{PCLK} = 36 MHz,
presc = 4 | 50 | 60 | | | | | Data input setup time | SPI1 | 1 | - | | | | t _{su(MI)} ⁽¹⁾ | Master mode | SPI2 | 5 | - | | | | t _{su(SI)} ⁽¹⁾ | Data input setup time
Slave mode | - | 1 | - | | | | t _{h(MI)} (1) | Data input hold time
Master mode | SPI1 | 1 | - | | | | ^ι h(MI) ` ΄ | | ster mode SPI2 | 5 | - | | | | t _{h(SI)} ⁽¹⁾ | Data input hold time
Slave mode | - | 3 | - | ns | | | t _{a(SO)} ⁽¹⁾⁽²⁾ | Data output access time | Slave mode, f _{PCLK} = 36 MHz,
presc = 4 | 0 | 55 | | | | Δ(00) | | Slave mode, f _{PCLK} = 24 MHz | 0 | 4 t _{PCLK} | | | | $t_{dis(SO)}^{(1)(3)}$ | Data output disable time | Slave mode | 10 | | | | | t _{v(SO)} (1) | Data output valid time | Slave mode (after enable edge) | - | 25 | | | | t _{v(MO)} ⁽¹⁾ | Data output valid time | Master mode (after enable edge) | - | 3 | | | | $t_{h(SO)}^{(1)}$ | | Slave mode (after enable edge) | 25 | - | | | | t _{h(MO)} ⁽¹⁾ | Data output hold time | Master mode (after enable edge) | 4 | - | | | ^{1.} Based on characterization, not tested in production. ^{2.} Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. ^{3.} Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Figure 30. SPI timing diagram - slave mode and CPHA = 0 1. Measurement points are done at CMOS levels: $0.3 \mbox{V}_{\mbox{\scriptsize DD}}$ and $0.7 \mbox{V}_{\mbox{\scriptsize DD}}$ Figure 32. SPI timing diagram - master mode⁽¹⁾ 1. Measurement points are done at CMOS levels: $\rm 0.3V_{DD}$ and $\rm 0.7V_{DD.}$ # 5.3.17 12-bit ADC characteristics Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 8*. Note: It is recommended to perform a calibration after each power-up. **Table 41. ADC characteristics** | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------------------|---|---|--|--------------------|--------------------|--------------------| | V_{DDA} | Power supply | - | 2.4 | - | 3.6 | V | | V _{REF+} | Positive reference voltage | - | 2.4 | - | V_{DDA} | V | | I _{VREF} | Current on the V _{REF} input pin | - | - | 160 ⁽¹⁾ | 220 ⁽¹⁾ | μA | | f _{ADC} | ADC clock frequency | - | 0.6 | - | 14 | MHz | | f _S ⁽²⁾ | Sampling rate | - | 0.05 | - | 1 | MHz | | f _{TRIG} ⁽²⁾ | External trigger frequency | f _{ADC} = 14 MHz | - | - | 823 | kHz | | 'TRIG` ' | External ingger frequency | - | - | - | 17 | 1/f _{ADC} | | V _{AIN} | Conversion voltage range ⁽³⁾ | - | 0 (V _{SSA} or V _{REF-}
tied to ground) | - | V _{REF+} | V | | R _{AIN} ⁽²⁾ | External input impedance | See Equation 1 and Table 42 for details | - | - | 50 | κΩ | | R _{ADC} ⁽²⁾ | Sampling switch resistance | - | - | - | 1 | κΩ | | C _{ADC} ⁽²⁾ | Internal sample and hold capacitor | - | - | - | 8 | pF | | t _{CAL} ⁽²⁾ | Calibration time | f _{ADC} = 14 MHz | 5.9 | | μs | | | CAL, | Calibration time | - | 83 | | 1/f _{ADC} | | | t _{lat} ⁽²⁾ | Injection trigger conversion | f _{ADC} = 14 MHz | - | - | 0.214 | μs | | lat` ′ | latency | - | - | - | 3 ⁽⁴⁾ | 1/f _{ADC} | | t _{latr} (2) | Regular trigger conversion | f _{ADC} = 14 MHz | - | - | 0.143 | μs | | latr` ′ | latency | - | - | - | 2 ⁽⁴⁾ | 1/f _{ADC} | | t _S ⁽²⁾ | Sampling time f _{ADC} = 14 MHz | 0.107 | - | 17.1 | μs | | | ıs, , | | IADC - 14 IVITIZ | 1.5 | - | 239.5 | 1/f _{ADC} | | t
_{STAB} ⁽²⁾ | Power-up time | - | 0 | 0 | 1 | μs | | | Total conversion time | f _{ADC} = 14 MHz | 1 | - | 18 | μs | | t _{CONV} ⁽²⁾ | Total conversion time (including sampling time) | - | 14 to 252 (t _S for sampling +12.5 for successive approximation) | | 1/f _{ADC} | | ^{1.} Based on characterization results, not tested in production. 57 ^{2.} Guaranteed by design, not tested in production. V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 3: Pinouts and pin description for further details. ^{4.} For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 41*. # Equation 1: R_{AIN} max formula: $$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times In(2^{N+2})} - R_{ADC}$$ The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 42. R_{AIN} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$ | T _s (cycles) | t _S (µs) | R _{AIN} max (kΩ) | |-------------------------|---------------------|---------------------------| | 1.5 | 0.11 | 0.4 | | 7.5 | 0.54 | 5.9 | | 13.5 | 0.96 | 11.4 | | 28.5 | 2.04 | 25.2 | | 41.5 | 2.96 | 37.2 | | 55.5 | 3.96 | 50 | | 71.5 | 5.11 | NA | | 239.5 | 17.1 | NA | ^{1.} Guaranteed by design, not tested in production. Table 43. ADC accuracy - limited test conditions (1) (2) | Symbol | Parameter | Test conditions | Тур | Max ⁽³⁾ | Unit | |--------|------------------------------|--|------|--------------------|------| | ET | Total unadjusted error | f_{PCLK2} = 28 MHz,
f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ,
V_{DDA} = 3 V to 3.6 V
T_A = 25 °C
Measurements made after
ADC calibration | ±1.3 | ±2 | | | EO | Offset error | | ±1 | ±1.5 | | | EG | Gain error | | ±0.5 | ±1.5 | LSB | | ED | Differential linearity error | | ±0.7 | ±1 | | | EL | Integral linearity error | | ±0.8 | ±1.5 | | ^{1.} ADC DC accuracy values are measured after internal calibration. 3. Based on characterization, not tested in production. ^{2.} ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 5.3.12 does not affect the ADC accuracy. | Symbol | Parameter | Test conditions | Тур | Max ⁽⁴⁾ | Unit | | | |--------|------------------------------|--|------|--------------------|------|--|--| | ET | Total unadjusted error | f _{PCLK2} = 28 MHz,
f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ, | ±2 | ±5 | | | | | EO | Offset error | | ±1.5 | ±2.5 | | | | | EG | Gain error | V _{DDA} = 2.4 V to 3.6 V | ±1.5 | ±3 | LSB | | | | ED | Differential linearity error | Measurements made after ADC calibration | ±1 | ±2 | | | | | EL | Integral linearity error | ADC calibration | ±1.5 | ±3 | | | | Table 44. ADC accuracy⁽¹⁾ (2) (3) - ADC DC accuracy values are measured after internal calibration. - 2. Better performance could be achieved in restricted V_{DD} , frequency, V_{REF} and temperature ranges. - ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.12 does not affect the ADC accuracy. - Based on characterization, not tested in production. Figure 33. ADC accuracy characteristics Figure 34. Typical connection diagram using the ADC - Refer to Table 41 for the values of R_{AIN}, R_{ADC} and C_{ADC}. - 2. C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. ## General PCB design guidelines Power supply decoupling should be performed as shown in *Figure 35* or *Figure 36*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 35. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA}) 1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages. Figure 36. Power supply and reference decoupling (V_{REF+} connected to V_{DDA}) 1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages. # 5.3.18 Temperature sensor characteristics Table 45. TS characteristics | Symbol | Parameter | Min | Тур | Max | Unit | |---------------------------------------|--|------|------|------|-------| | T _L ⁽¹⁾ | V _{SENSE} linearity with temperature | - | ±1 | ±2 | °C | | Avg_Slope ⁽¹⁾ | Average slope | 4.0 | 4.3 | 4.6 | mV/°C | | V ₂₅ ⁽¹⁾ | Voltage at 25°C | 1.34 | 1.43 | 1.52 | V | | t _{START} ⁽²⁾ | Startup time | 4 | - | 10 | μs | | T _{S_temp} ⁽³⁾⁽²⁾ | ADC sampling time when reading the temperature | - | - | 17.1 | μs | - 1. Guaranteed by characterization, not tested in production. - 2. Guaranteed by design, not tested in production. - 3. Shortest sampling time can be determined in the application by multiple iterations. ### 6 Package characteristics ## 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. ### 6.2 UFQFPN48 package information Figure 37. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline - 1. Drawing is not to scale. - 2. There is an exposed die pad on the underside of the QFPN package, this pad is not internally connected to the VSS or VDD power pads. It is recommended to connect it to VSS. - 3. All leads/pads should also be soldered to the PCB to improve the lead solder joint life. Table 46. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data | 0 | millimeters | | | inches ⁽¹⁾ | | | |--------|-------------|-------|-------|-----------------------|--------|--------| | Symbol | Min | Тур | Max | Min | Тур | Max | | А | 0.500 | 0.550 | 0.600 | 0.0197 | 0.0217 | 0.0236 | | A1 | 0.000 | 0.020 | 0.050 | 0.0000 | 0.0008 | 0.0020 | | D | 6.900 | 7.000 | 7.100 | 0.2717 | 0.2756 | 0.2795 | | E | 6.900 | 7.000 | 7.100 | 0.2717 | 0.2756 | 0.2795 | | D2 | 5.500 | 5.600 | 5.700 | 0.2165 | 0.2205 | 0.2244 | | E2 | 5.500 | 5.600 | 5.700 | 0.2165 | 0.2205 | 0.2244 | | L | 0.300 | 0.400 | 0.500 | 0.0118 | 0.0157 | 0.0197 | | T | - | 0.152 | - | - | 0.0060 | - | | b | 0.200 | 0.250 | 0.300 | 0.0079 | 0.0098 | 0.0118 | | е | - | 0.500 | - | - | 0.0197 | - | | ddd | - | - | 0.080 | - | - | 0.0031 | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. 7.30 ### **Device Marking for UFQFPN48** The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 39. UFQFPN48 marking example (package top view) Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision
to use these Engineering Samples to run qualification activity. ## 6.3 VFQFPN36 package information Figure 40. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat 1. Drawing is not to scale. 577 Table 47. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data | Symbol | millimeters | | | inches ⁽¹⁾ | | | |--------|-------------|-------|-------|-----------------------|--------|--------| | Symbol | Min | Тур | Max | Min | Тур | Max | | Α | 0.800 | 0.900 | 1.000 | 0.0315 | 0.0354 | 0.0394 | | A1 | - | 0.020 | 0.050 | - | 0.0008 | 0.0020 | | A2 | - | 0.650 | 1.000 | - | 0.0256 | 0.0394 | | A3 | - | 0.200 | - | - | 0.0079 | - | | b | 0.180 | 0.230 | 0.300 | 0.0071 | 0.0091 | 0.0118 | | D | 5.875 | 6.000 | 6.125 | 0.2313 | 0.2362 | 0.2411 | | D2 | 1.750 | 3.700 | 4.250 | 0.0689 | 0.1457 | 0.1673 | | Е | 5.875 | 6.000 | 6.125 | 0.2313 | 0.2362 | 0.2411 | | E2 | 1.750 | 3.700 | 4.250 | 0.0689 | 0.1457 | 0.1673 | | е | 0.450 | 0.500 | 0.550 | 0.0177 | 0.0197 | 0.0217 | | L | 0.350 | 0.550 | 0.750 | 0.0138 | 0.0217 | 0.0295 | | K | 0.250 | - | - | 0.0098 | - | - | | ddd | - | - | 0.080 | - | - | 0.0031 | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 41. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint 577 ### **Device Marking for VFQFPN36** The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 42. VFQFPN36 marking example (package top view) ^{1.} Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. #### 6.4 LQFP100 package information Figure 43. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline 1. Drawing is not to scale. Table 48. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data | Cumbal | millimeters | | | inches ⁽¹⁾ | | | |--------|-------------|--------|--------|-----------------------|--------|--------| | Symbol | Min | Тур | Max | Min | Тур | Max | | А | - | - | 1.600 | - | - | 0.0630 | | A1 | 0.050 | - | 0.150 | 0.0020 | - | 0.0059 | | A2 | 1.350 | 1.400 | 1.450 | 0.0531 | 0.0551 | 0.0571 | | b | 0.170 | 0.220 | 0.270 | 0.0067 | 0.0087 | 0.0106 | | С | 0.090 | - | 0.200 | 0.0035 | - | 0.0079 | | D | 15.800 | 16.000 | 16.200 | 0.6220 | 0.6299 | 0.6378 | | D1 | 13.800 | 14.000 | 14.200 | 0.5433 | 0.5512 | 0.5591 | millimeters inches⁽¹⁾ **Symbol** Min Тур Max Min Тур Max D3 12.000 0.4724 Ε 15.800 16.000 16.200 0.6220 0.6299 0.6378 14.200 E1 13.800 14.000 0.5433 0.5512 0.5591 E3 12.000 0.4724 0.500 -0.0197 е L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 7.0° k 0.0° 3.5° 0.0° 3.5° 7.0° 0.080 0.0031 CCC Table 48. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data (continued) ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 44. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint ### **Device Marking for LQFP100** The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 45. LQFP100 marking example (package top view) Parts marked as "ES","E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. ### 6.5 LQFP64 package information Figure 46. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline 1. Drawing is not to scale. Table 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data | Symbol | millimeters | | | inches ⁽¹⁾ | | | |--------|-------------|--------|-------|-----------------------|--------|--------| | Symbol | Min | Тур | Max | Min | Тур | Max | | А | - | - | 1.600 | - | - | 0.0630 | | A1 | 0.050 | - | 0.150 | 0.0020 | - | 0.0059 | | A2 | 1.350 | 1.400 | 1.450 | 0.0531 | 0.0551 | 0.0571 | | b | 0.170 | 0.220 | 0.270 | 0.0067 | 0.0087 | 0.0106 | | С | 0.090 | - | 0.200 | 0.0035 | - | 0.0079 | | D | - | 12.000 | - | - | 0.4724 | - | | D1 | - | 10.000 | - | - | 0.3937 | - | | D3 | - | 7.500 | - | - | 0.2953 | - | | E | - | 12.000 | - | - | 0.4724 | - | | E1 | - | 10.000 | - | - | 0.3937 | - | millimeters inches⁽¹⁾ **Symbol** Min Тур Max Min Тур Max E3 7.500 0.2953 е 0.500 0.0197 Κ 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 0.080 0.0031 CCC Table 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued) ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint 57 ### **Device Marking for LQFP64** The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 48. LQFP64 marking example (package top view) 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. ### 6.6 LQFP48 package information Figure 49. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline 1. Drawing is not to scale. Table 50. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data | Symbol | millimeters | | | inches ⁽¹⁾ | | | |--------|-------------|-------|-------|-----------------------|--------|--------| | Symbol | Min | Тур | Max | Min | Тур | Max | | А | - | - | 1.600 | - | - | 0.0630 | | A1 | 0.050 | - | 0.150 | 0.0020 | - | 0.0059 | | A2 | 1.350 | 1.400 | 1.450 | 0.0531 | 0.0551 | 0.0571 | | b | 0.170 | 0.220 | 0.270 | 0.0067 | 0.0087 | 0.0106 | | С | 0.090 | - | 0.200 | 0.0035 | - | 0.0079 | | D | 8.800 | 9.000 | 9.200 | 0.3465 | 0.3543 | 0.3622 | | D1 | 6.800 | 7.000 | 7.200 | 0.2677 | 0.2756 | 0.2835 | | D3 | - | 5.500 | - | - | 0.2165 | - | | E | 8.800 | 9.000 | 9.200 | 0.3465 | 0.3543 | 0.3622 | | E1 | 6.800 | 7.000 | 7.200 | 0.2677 | 0.2756 | 0.2835 | | E3 | - | 5.500 | - | - | 0.2165 | - | | е | - | 0.500 | - | - | 0.0197 | - | | L | 0.450 | 0.600 | 0.750 | 0.0177 | 0.0236 | 0.0295 | | L1 | - | 1.000 | - | - | 0.0394 | - | | k | 0° | 3.5° | 7° | 0° | 3.5° | 7° | | ccc | - | - | 0.080 | - | - | 0.0031 | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 50. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint ### **Device Marking for LQFP48** The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 51. LQFP48 marking example (package top view) 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. ### 6.7 Thermal characteristics The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 8: General operating conditions on page 33*. The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation: $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$ #### Where: - T_A max is the maximum ambient temperature in °C, - Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W, - P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max), - P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power. $P_{I\!/O}$ max represents the maximum power dissipation on output pins where: $$P_{I/O}$$ max = $\Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DD} - V_{OH}) \times I_{OH})$, taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application. | Symbol | Parameter | Value | Unit | |---------------|--|-------|------| | | Thermal resistance junction-ambient LQFP 100 - 14 x 14 mm / 0.5 mm pitch | 46 | | | | Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch | 45 | | | Θ_{JA} | Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm / 0.5 mm pitch | 55 | °C/W | | | Thermal resistance junction-ambient UFQFPN 48 - 6 x 6 mm / 0.5 mm pitch | 32 | | | | Thermal resistance junction-ambient VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch | 18 | | Table 51. Package thermal characteristics #### 6.7.1 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 577 ### 6.7.2 Evaluating the maximum junction temperature for an application When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 52:
Ordering information scheme*. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. Here, only temperature range 6 is available (–40 to 85 °C). The following example shows how to calculate the temperature range needed for a given application, making it possible to check whether the required temperature range is compatible with the STM32F101xx junction temperature range. #### **Example: high-performance application** Assuming the following application conditions: Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$ $P_{IOmax = 20} \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$ This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW $P_{Dmax} = 175 + 272 = 447 \text{ mW}$ Thus: P_{Dmax} = 447 mW Using the values obtained in *Table 51* T_{Jmax} is calculated as follows: For LQFP64, 45 °C/W T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C This is within the junction temperature range of the STM32F101xx ($-40 < T_J < 105$ °C). ## 7 Ordering information scheme Table 52. Ordering information scheme xxx = programmed parts TR = tape and real 92/101 DocID13586 Rev 17 Although STM32F101x6 devices are not described in this datasheet, orderable part numbers that do not show the A internal code after temperature range code 6 should be referred to this datasheet for the electrical characteristics. The low-density datasheet only covers STM32F101x6 devices that feature the A code. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact the nearest ST sales office. # 8 Revision history Table 53. Document revision history | Date | Revision | Changes | |-------------|-------------|--| | 06-Jun-2007 | 1 | First draft. | | | | I _{DD} values modified in <i>Table 11: Maximum current consumption in Run</i> and <i>Sleep modes (TA = 85 °C)</i> . V _{BAT} range modified in <i>Power supply schemes</i> . V _{REF+} min value, t _{STAB} , t _{lat} and f _{TRIG} added to <i>Table 41: ADC</i> characteristics. <i>Table 37: TIMx characteristics</i> modified. | | | | Note 6 modified and Note 8, Note 5 and Note 7 added below Table 4: Medium-density STM32F101xx pin definitions. | | | | Figure 20: Low-speed external clock source AC timing diagram, Figure 11: Power supply scheme, Figure 28: Recommended NRST pin protection and Figure 29: I2C bus AC waveforms and measurement circuit(1) modified. Sample size modified and machine model removed in Electrostatic discharge (ESD). Number of parts modified and standard reference updated in Static latch- up. 25 °C and 85 °C conditions removed and class name modified in | | 20-Jul-07 | 20-Jul-07 2 | Table 31: Electrical sensitivities. | | | | t _{SU(LSE)} changed to t _{SU(LSE)} in <i>Table 21: HSE 4-16 MHz oscillator characteristics</i> . | | | | In <i>Table 27: Flash memory characteristics</i> , typical endurance added, data retention for $T_A = 25$ °C removed and data retention for $T_A = 85$ °C added. Note removed below <i>Table 8: General operating conditions</i> . | | | | V _{BG} changed to V _{REFINT} in <i>Table 11: Embedded internal reference voltage</i> . I _{DD} max values added to <i>Table 11: Maximum current consumption in Run and Sleep modes (TA = 85 °C)</i> . I _{DD(HSI)} max value added to <i>Table 23: HSI oscillator characteristics</i> . R _{PU} and R _{PD} min and max values added to <i>Table 33: I/O static characteristics</i> . R _{PU} min and max values added to <i>Table 36: NRST pin characteristics</i> (two notes removed). | | | | Datasheet title corrected. USB characteristics section removed. Features on page 1 list optimized. Small text changes. | Table 53. Document revision history (continued) | V _{ESD(CDM)} value added to <i>Table 30: ESD absolute maximum rating</i> Note added below <i>Table 10: Embedded reset and power control be characteristics</i> . and below <i>Table 21: HSE 4-16 MHz oscillator characteristics</i> . Note added below <i>Table 34: Output voltage characteristics</i> and V _C parameter description modified. <i>Table 41: ADC characteristics</i> and <i>Table 43: ADC accuracy - limite conditions</i> modified. <i>Figure 33: ADC accuracy characteristics</i> modified. Packages are ECOPACK® compliant. Tables modified in <i>Section 5.3.5: Supply current characteristics</i> . ADC and ANTI_TAMPER signal names modified (see <i>Table 4: Medensity STM32F101xx pin definitions</i>). <i>Table 4: Medium-density STM32F101xx pin definitions</i> modified. Note 4 removed and value updated in <i>Table 21: Typical current consumption in Standby model</i> | | |---|--| | V _{hys} modified in <i>Table 33: I/O static characteristics</i> . Updated: <i>Table 28: EMS characteristics</i> and <i>Table 29: EMI characteristics</i> . t _{VDD} modified in <i>Table 9: Operating conditions at power-up / power</i> Typical values modified, note 2 modified and note 3 removed in <i>Ta Low-power mode wakeup timings</i> . Maximum current consumption <i>Table 12, Table 13</i> and <i>Table 14</i> up Values added and notes added in <i>Table 15: Typical and maximum consumptions in Stop and Standby modes</i> . On-chip peripheral current consumption on page 43 added. Package mechanical data inch values are calculated from mm and rounded to 4 decimal digits (see <i>Section 6: Package characteristics</i> . T _{S_temp} added to <i>Table 27: Flash memory characteristics</i> . T _{S_vrefint} added to <i>Table 45: TS characteristics</i> . T _{S_vrefint} added to <i>Table 11: Embedded internal reference voltage</i> . Handling of unused pins specified in <i>General input/output character on page 55</i> . All I/Os are CMOS and TTL compliant. <i>Table 4: Medium-density STM32F101xx pin definitions</i> : table clarifi <i>Note 7</i> modified. Internal LSI RC frequency changed from 32 to 40 kHz (see <i>Table 2 oscillator characteristics</i>). Values added to <i>Table 25: Low-power makeup timings</i> . N _{END} modified in <i>Table 27: Flash memory characteristics</i> . Option byte addresses corrected in <i>Figure 8: Memory map</i> . ACC _{HSI} modified in <i>Table 23: HSI oscillator characteristics</i> . t _{IITTER} removed from <i>Table 26: PLL characteristics</i> . | block VOH ited test Medium- ues ide. ver-down. Table 25: updated. m current nd tics). e. cteristics rified and e 24: LSI | Table 53. Document revision history (continued) Table 53. Document revision history (continued) | Date | Revision | Changes | |-------------|----------
---| | | | | | 14-Mar-2008 | 5 | Figure 2: Clock tree on page 13 added. CRC added (see CRC (cyclic redundancy check) calculation unit on page 9 and Figure 8: Memory map on page 29 for address). Maximum T _J value given in Table 7: Thermal characteristics on page 33. P _D , T _A and T _J added, t _{prog} values modified and t _{prog} description clarified in Table 27: Flash memory characteristics on page 51. I _{DD} modified in Table 15: Typical and maximum current consumptions in Stop and Standby modes on page 39. ACC _{HSI} modified in Table 23: HSI oscillator characteristics on page 49, note 2 removed. t _{RET} modified in Table 27: Flash memory characteristics. V _{NF(NRST)} unit corrected in Table 36: NRST pin characteristics on page 60. Table 40: SPI characteristics on page 65 modified. I _{VREF} added in Table 41: ADC characteristics on page 68. Table 43: ADC accuracy - limited test conditions added. Table 44: ADC accuracy modified. LQFP100 package specifications updated (see Section 6: Package characteristics on page 73). Recommended LQFP100, LQFP64, LQFP48 and VFQFPN36 footprints added (see Figure 44, Figure 47, Figure 50 and Figure 41). Section 6.7: Thermal characteristics on page 90 modified. | | 21-Mar-2008 | 6 | Appendix A: Important notes removed. Small text changes. In Table 27: Flash memory characteristics: - N _{END} tested over the whole temperature range - cycling conditions specified for t _{RET} - t _{RET} min modified at T _A = 55 °C Figure 2: Clock tree corrected. Figure 8: Memory map clarified. V ₂₅ , Avg_Slope and T _L modified in Table 45: TS characteristics. CRC feature removed. | | 22-May-2008 | 7 | Section 1: Introduction modified, Section 2.2: Full compatibility throughout the family added. CRC feature added. I _{DD_VBAT} removed from Table 21: Typical current consumption in Standby mode on page 42. Values added to Table 39: SCL frequency (fPCLK1= 36 MHz, VDD_I2C = 3.3 V) on page 64. Figure 30: SPI timing diagram - slave mode and CPHA = 0 on page 66 modified. Equation 1 corrected. Section 6.7.2: Evaluating the maximum junction temperature for an application on page 91 added. Axx option added to Table 52: Ordering information scheme on page 92. | Table 53. Document revision history (continued) | Date | Revision | Changes | |-------------------------|----------|---| | Date 21-Jul-2008 | | Small text changes. Power supply supervisor on page 16 modified and V _{DDA} added to Table 8: General operating conditions on page 33. Capacitance modified in Figure 11: Power supply scheme on page 31. Table notes revised in Section 5: Electrical characteristics. Maximum value of t _{RSTTEMPO} modified in Table 10: Embedded reset and power control block characteristics on page 35. Values added to Table 15: Typical and maximum current consumptions in Stop and Standby modes and Table 21: Typical current consumption in Standby mode removed. f _{HSE_ext} modified in Table 19: High-speed external user clock characteristics on page 45. f _{PLL_IN} modified in Table 26: PLL characteristics on page 50. f _{HCLK} corrected in Table 28: EMS characteristics. Minimum SDA and SCL fall time value for Fast mode removed from Table 38: I2C characteristics on page 63, note 1 modified. t _{h(NSS)} modified in Table 40: SPI characteristics on page 65 and Figure 30: SPI timing diagram - slave mode and CPHA = 0 on page 66. | | | | C _{ADC} modified in <i>Table 41: ADC characteristics on page 68</i> and <i>Figure 34: Typical connection diagram using the ADC</i> modified. f _{PCLK2} corrected in <i>Table 43: ADC accuracy - limited test conditions</i> and <i>Table 44: ADC accuracy.</i> Typical T _{S_temp} value removed from <i>Table 45: TS characteristics on page 72.</i> LQFP48 package specifications updated (see <i>Table 50</i> , <i>Table 49</i> and <i>Table 50</i>). Axx option removed from <i>Table 52: Ordering information scheme on page 92.</i> | | 24-Jul-2008 | 9 | First page modified: "Up to 2 x I ² C interfaces" instead of "1 x I ² C interface" | | 23-Sep-2008 | 10 | STM32F101xx devices with 32 Kbyte Flash memory capacity removed, document updated accordingly. Section 2.2: Full compatibility throughout the family on page 14 updated. Notes modified in Table 4: Medium-density STM32F101xx pin definitions on page 24. Note 2 modified below Table 5: Voltage characteristics on page 32, \(\Delta V_{DDx} \) min and \(\Delta V_{DDx} \) min removed. Note 2 added to Table 8: General operating conditions on page 33. Measurement conditions specified in Section 5.3.5: Supply current characteristics on page 36. IDD in standby mode at 85 °C modified in Table 15: Typical and maximum current consumptions in Stop and Standby modes on page 39. General input/output characteristics on page 55 modified. Note added below Table 52: Ordering information scheme. Section 7.1: Future family enhancements removed. Small text changes. | Table 53. Document revision history (continued) | Date | Revision | Changes | |-------------|----------|---| | 21-Apr-2009 | 11 | I/O information clarified <i>on page 1. Figure 8: Memory map</i> modified. In <i>Table 4: Medium-density STM32F101xx pin definitions</i> : PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column. Note modified in <i>Table 12: Maximum current consumption in Run mode, code with data processing running from Flash</i> and <i>Table 14: Maximum current consumption in Sleep mode, code running from Flash or RAM. Figure 16, Figure 17</i> and <i>Figure 18</i> show typical curves. <i>Table 19: High-speed external user clock characteristics</i> and <i>Table 20: Low-speed external user clock characteristics</i> modified. ACC _{HSI} max values modified in <i>Table 23: HSI oscillator characteristics</i> . Small text changes. | | 22-Sep-2009 | 12 | Note 5 updated and Note 4 added in Table 4: Medium-density STM32F101xx pin definitions. VRERINT and TCOOFF added to Table 11: Embedded internal reference voltage. Typical IDD_VBAT value added in Table 15: Typical and maximum current consumptions in Stop and Standby modes. Figure 15: Typical current consumption on VBAT with RTC on versus temperature at different VBAT values added. INSE_ext min modified in Table 19: High-speed external user clock characteristics. CL1 and CL2 replaced by C in Table 21: HSE 4-16 MHz oscillator characteristics
and Table 22: LSE oscillator characteristics (fLSE = 32.768 kHz), notes modified and moved below the tables. Table 23: HSI oscillator characteristics modified. Conditions removed from Table 25: Low-power mode wakeup timings. Figure 28: Recommended NRST pin protection modified. Note 1 modified below Figure 21: Typical application with an 8 MHz crystal. Figure 28: Recommended NRST pin protection modified. IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to IEC 61967-2 in Section 5.3.10: EMC characteristics on page 51. Jitter added to Table 26: PLL characteristics. CADC and RAIN parameters modified in Table 41: ADC characteristics. RAIN max values modified in Table 42: RAIN max for fADC = 14 MHz. Small text changes. | | 20-May-2010 | 13 | Added STM32F101TB devices. Added VFQFPN48 package. Updated note 2 below Table 38: I2C characteristics Updated Figure 29: I2C bus AC waveforms and measurement circuit(1) Updated Figure 28: Recommended NRST pin protection Updated Section 5.3.12: I/O current injection characteristics | Table 53. Document revision history (continued) | Date | Revision | e 53. Document revision history (continued) Changes | |-------------|----------|--| | 19-Apr-2011 | 14 | Updated footnotes below Table 5: Voltage characteristics on page 32 and Table 6: Current characteristics on page 33 Updated tw min in Table 19: High-speed external user clock characteristics on page 45 Updated startup time in Table 22: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 48 Added Section 5.3.12: I/O current injection characteristics Updated Section 5.3.13: I/O port characteristics | | 15-May-2013 | 15 | Replaced VQFN48 package with UQFN48 in cover page packages, Table 2: Device features and peripheral counts (STM32F101xx mediumdensity access line), Figure 7: STM32F101xx mediumdensity access line UVFQPFN48 pinout, Table 4: Mediumdensity STM32F101xx pin definitions, Figure 4: STM32F101xx mediumdensity access line LQFP64 pinout, added Figure 37: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline, Table 47: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data, Table 52: Ordering information scheme and updated Table 51: Package thermal characteristics Updated 'All GPIOs are high current' in Section 2.3.22: GPIOs (general-purpose inputs/outputs) Updated Table 4: Mediumdensity STM32F101xx pin definitions Corrected Sigma letter in Section 5.1.1: Minimum and maximum values Updated Table 6: Current characteristics Added 'V _{IN} ' in Table 8: General operating conditions Removed the first sentence in Section 5.3.16: Communications interfaces Updated first sentence in Output driving current Added note 5. in Table 23: HSI oscillator characteristics Updated 'V _{IL} ' and 'V _{IH} ' in Table 33: I/O static characteristics Added notes to Figure 23: Standard I/O input characteristics - CMOS port, Figure 24: Standard I/O input characteristics - TTL port, Figure 25: 5 V tolerant I/O input characteristics - TTL port Updated note 2. in Table 44: ADC accuracy Updated Figure 29: I2C bus AC waveforms and measurement circuit(1) Updated note 2. and 3.,removed note "the device must internally" in Table 38: I2C characteristics Updated title of Table 39: SCL frequency (fPCLK1= 36 MHz, VDD_I2C = 3.3 V) | | 05-Aug-2013 | 16 | Updated the reference for 'V _{ESD(CDM)} ' in <i>Table 30: ESD absolute</i> maximum ratings Corrected 'tf(IO)out' in Figure 27: I/O AC characteristics definition Updated <i>Table 46: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package</i> mechanical data | | 19-Jun-2015 | 17 | Updated Section 6.1: Package mechanical data and Table 18: Peripheral current consumption. | 100/101 DocID13586 Rev 17 #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics - All rights reserved