Standard Rectifier Module

1~ Rectifier	
$\mathrm{V}_{\text {RRM }}=800$	
$\mathrm{I}_{\text {DAV }}=$	55
$\mathrm{I}_{\text {FSM }}=$	300

1~ Rectifier Bridge

Part number

VBO54-08NO7

71E72873

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For one phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: ECO-PAC1

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 9 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns information in the valid application- and assembly notes must be considered. Should you require prod
the specific application of your product, please contact the sales office, which is responsible for you.
the specific application of your product, please contact the sales office, which is responsible for you.
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you
Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$			900	V
$\bar{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v} \mathrm{s}}=25^{\circ} \mathrm{C}$			800	V
I_{R}	reverse current	$\begin{aligned} & V_{R}=800 \mathrm{~V} \\ & V_{R}=800 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} \nu}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \nu}=150^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 40 \\ 1.5 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\overline{V F}_{\text {F }}$	forward voltage drop	$\begin{aligned} & I_{F}=20 \mathrm{~A} \\ & I_{F}=40 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.15 \\ & 1.34 \end{aligned}$	V V
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1.12 \\ & 1.32 \end{aligned}$	V
$\overline{\mathrm{I}} \mathrm{dav}^{\text {a }}$	bridge output current	$\begin{array}{ll} \mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C} & \\ \text { rectangular } & \mathrm{d}=0.5 \end{array}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=150^{\circ} \mathrm{C}$			55	A
$\overline{V_{\text {Fo }}}$ $\mathbf{r}_{\text {F }}$			$\mathrm{T}_{\mathrm{v} \mathrm{J}}=150^{\circ} \mathrm{C}$			$\begin{aligned} & 0.82 \\ & 12.2 \end{aligned}$	V $m \Omega$
$\mathbf{R}_{\text {thuc }}$	thermal resistance junction to case					1.1	K/W
$\mathrm{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.4		K/W
$\mathbf{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			110	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 300 \\ & 325 \end{aligned}$	A
		$\begin{aligned} & \hline \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 255 \\ & 275 \end{aligned}$	A
12t	value for fusing	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 450 \\ & 440 \end{aligned}$	$A^{2} \mathrm{~S}$ $\mathrm{~A}^{2} \mathrm{~S}$
		$\begin{aligned} & \hline \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 325 \\ & 315 \end{aligned}$	$A^{2} \mathrm{~S}$ $\mathrm{~A}^{2} \mathrm{~S}$
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$		10		pF

Package	ECO-PAC1		Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMS }}$	RMS current per terminal				100	A
T_{v}	virtual junction temperature		-40		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
Weight				19		g
M_{D}	mounting torque		1.4		2	Nm
$\mathbf{d}_{\text {Spp/App }}$ $\mathbf{d}_{\text {spb/Apb }}$	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	$\begin{array}{r} 6.0 \\ 10.0 \end{array}$			$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$
$\mathrm{V}_{\text {ISOL }}$	isolation voltage $\mathrm{t}=1$ second $\mathrm{t}=1$ minute	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; lisol $\leq 1 \mathrm{~mA}$	$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$			V

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VBO54-08NO7	VBO54-08NO7	Box	25	481378

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C}$

$\mathrm{V}_{0 \text { max }}$	threshold voltage	0.82	V
$\mathbf{R}_{0 \text { max }}$	slope resistance *	11	$\mathrm{m} \Omega$

Rectifier

Fig. 1 Forward current versus voltage drop per diode

Fig. 2 Surge overload current

Fig. 4 Power dissipation vs. direct output current \& ambient temperature

Fig. $3 I^{2}$ t versus time per diode

Fig. 5 Max. forward current vs. case temperature

Fig. 6 Transient thermal impedance junction to case

Constants for $\mathrm{Z}_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\mathrm{th}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.05070	0.004
2	0.163	0.0025
3	0.2805	0.0035
4	0.363	0.02
5	0.2228	0.15

