Enable High Flux and Cost Efficient System ## Z Power Chip on board – ZC series SDWx3F1C (SDW03F1C, SDW83F1C, SDW93F1C) #### **Product Brief** #### **Description** - The ZC series are LED arrays which provide High Flux and High Efficacy. - It is especially designed for easy assembly of lighting fixtures by eliminating reflow soldering process. - It's thermal management is better than other power LED solutions with wide Metal area. - ZC series are ideal light sources for General Lighting applications including Replacement Lamps, Industrial & Commercial Lightings and other high Lumen required applications. #### **Features and Benefits** - Size 19mm * 19 mm - Power dissipation 18 ~ 37.6W - Wide CCT range with CRI70~90 - Forward V_F typ 35.8V - Maximum Current 920mA - MacAdam 3-step binning - Uniformed Shadow - Excellent Thermal management - RoHS compliant #### **Key Applications** - Commercial Downlight - Industrial High/Low Bay lighting - Residential - Replacement lamps Bulb, PAR **Table 1. Product Selection Table** | Part Number | | сст [к] | | | | | | | | |-------------|---------------|---------|------|-------|--|--|--|--|--| | Part Number | Color | Min. | Тур. | Max. | | | | | | | CDW0254C | Cool White | 4,700 | - | 6,000 | | | | | | | SDW03F1C | Neutral White | 3,700 | - | 4,700 | | | | | | | | Cool White | 4,700 | - | 6,000 | | | | | | | SDW83F1C | Neutral White | 3,700 | - | 4,700 | | | | | | | | Warm White | 2,600 | - | 3,700 | | | | | | | SDW03E4C | Neutral White | 3,700 | - | 4,200 | | | | | | | SDW93F1C | Warm White | 2,600 | - | 3,700 | | | | | | # **Table of Contents** | Inde | ex | | |------|--|----| | • | Product Brief | 1 | | • | Product Performance & Characterization Guide | 3 | | • | Characteristics Graph | 6 | | • | Product Nomenclature (Labeling Information) | 14 | | • | Color Bin Structure | 15 | | • | Mechanical Dimensions | 20 | | • | Packaging Specification | 21 | | • | Handling of Silicone Resin for LEDs | 23 | | • | Precaution For Use | 24 | | • | Company Information | 27 | ## **Product Performance & Characterization Guide** Table 2. Electro Optical Characteristics, T_i=25°C | Part Number | CCT (K) ^[1] | Typical Luminous Flux ^[2] ,
Φ _ν ^[3] (lm) | | Typical Forv
V _F ^{[/} | vard Voltage, | CRI ^[5] ,
R _a | Viewing
Angle
(degrees)
20 ½ | |-------------|------------------------|--|--------|--|---------------|--|---------------------------------------| | | Тур. | 500mA | 920mA* | 500mA | 920mA* | Min. | Тур. | | | 5600 | 2500 | 4150 | 35.8 | 37.5 | 70 | 120 | | CDW0354C | 5000 | 2520 | 4183 | 35.8 | 37.5 | 70 | 120 | | SDW03F1C | 4500 | 2532 | 4203 | 35.8 | 37.5 | 70 | 120 | | | 4000 | 2547 | 4228 | 35.8 | 37.5 | 70 | 120 | | | 5600 | 2296 | 3834 | 35.8 | 37.5 | 80 | 120 | | | 5000 | 2273 | 3796 | 35.8 | 37.5 | 80 | 120 | | SDW83F1C | 4000 | 2220 | 3685 | 35.8 | 37.5 | 80 | 120 | | 3DW63F1C | 3500 | 2173 | 3607 | 35.8 | 37.5 | 80 | 120 | | | 3000 | 2128 | 3553 | 35.8 | 37.5 | 80 | 120 | | | 2700 | 2090 | 3490 | 35.8 | 37.5 | 80 | 120 | | | 4000 | 1940 | 3201 | 35.8 | 37.5 | 90 | 120 | | SDW93F1C | 3500 | 1850 | 3052 | 35.8 | 37.5 | 90 | 120 | | 5DW93F1C | 3000 | 1810 | 3004 | 35.8 | 37.5 | 90 | 120 | | | 2700 | 1720 | 2855 | 35.8 | 37.5 | 90 | 120 | #### Notes: - (1) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. Color coordinate : ± 0.01 , CCT $\pm 5\%$ tolerance. - (2) Seoul Semiconductor maintains a tolerance of $\pm 7\%$ on flux and power measurements. - (3) Φ_{V} is the total luminous flux output as measured with an integrating sphere. - (4) Tolerance is $\,\pm 3\%$ on forward voltage measurements. - (5) Tolerance is ± 2 on CRI measurements. ^{*} No values are provided by real measurement. Only for reference purpose. ## **Product Performance & Characterization Guide** Table 3. Electro Optical Characteristics, T_i=85°C | Part Number | ССТ (K) ^[1] | Typical Luminous Flux ^[2] ,
Φ _V ^[3] (lm) | Typical Forward Voltage,
V _F ^[4] (V) | | |-------------|------------------------|--|---|--| | | Тур. | 500mA * | 500mA * | | | | 5600 | 2250 | 34.3 | | | CDW00E4.C | 5000 | 2268 | 34.3 | | | SDW03F1C | 4500 | 2279 | 34.3 | | | | 4000 | 2292 | 34.3 | | | | 5600 | 2043 | 34.3 | | | | 5000 | 2023 | 34.3 | | | SDW83F1C | 4000 | 1976 | 34.3 | | | SDWOSFIC | 3500 | 1934 | 34.3 | | | | 3000 | 1894 | 34.3 | | | | 2700 | 1860 | 34.3 | | | | 4000 | 1688 | 34.3 | | | CDW03E4C | 3500 | 1610 | 34.3 | | | SDW93F1C | 3000 | 1575 | 34.3 | | | | 2700 | 1496 | 34.3 | | #### Notes: - (1) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. Color coordinate : ± 0.01 , CCT $\pm 5\%$ tolerance. - (2) Seoul Semiconductor maintains a tolerance of $\pm 7\%$ on flux and power measurements. - (3) Φ_{V} is the total luminous flux output as measured with an integrating sphere. - (4) Tolerance is $\pm 3\%$ on forward voltage measurements. - (5) Tolerance is ± 2 on CRI measurements. ^{*} No values are provided by real measurement. Only for reference purpose. ## **Product Performance & Characterization Guide** Table 4. Absolute Maximum Characteristics, $T_j=25^{\circ}C$ | Downwater | Compleal | | | Unit | | |---------------------------------|-------------------|------|--------------|-------------|------| | Parameter | Symbol | Min. | Тур. | Max. | Onit | | Forward Current | I _F | - | 0.5 | 0.92 | Α | | Power Dissipation | P_d | - | 18 | 37.6 | W | | Junction Temperature | Tj | - | - | 140 | °C | | Operating Temperature | T _{opr} | -40 | - | 85 | °C | | Surface Temperature | T _S | - | - | 100 | °C | | Storage Temperature | T_{stg} | -40 | - | 100 | °C | | Thermal resistance (J to S) [1] | Rθ _{J-S} | - | 0.84 | - | K/W | | ESD Sensitivity(HBM) | - | | Class 3A JES | SD22-A114-E | | #### Notes: (1) Thermal Resistance : $R\theta_{J\text{-}S}$ (Junction to Ts point) Fig 1. Color Spectrum, $T_i=25 \, ^{\circ}\text{C}$, $I_F=500 \text{mA}$ (CRI70) Fig 2. Color Spectrum, $T_i=25 \, ^{\circ}C$, $I_F=500$ mA (CRI80) Fig 3. Color Spectrum, $T_i=25$ °C, $I_F=500$ mA (CRI90) Fig 4. Radiant pattern, T_i=25 ℃, I_F=500mA Fig 5. Forward Voltage vs. Forward Current, T_i=25 ℃ Fig 6. Forward Current vs. Relative Luminous Flux, T_i =25 $^{\circ}$ C Fig 7. Junction Temperature vs. Relative Light Output, I_F=500mA Fig 8. Junction Temperature vs. Forward Voltage, I_F=500mA Fig 9. Junction Temperature vs. CIE X, Y Shift, I_F=500mA (CRI70) Fig 10. Junction Temperature vs. CIE X, Y Shift, I_F=500mA (CRI90) Fig 11. Junction Temperature vs. CIE X, Y Shift, I_E=500mA (CRI80) Fig 12. Surface Temperature vs. Maximum Forward Current, T₁(max.)=140 ℃ ## **Product Nomenclature** Table 5. Part Numbering System : $X_1X_2X_3X_4X_5X_6X_7X_8$ | Part Number Code | Description | Part Number | Value | |-------------------------------|---------------------|-------------|--------------| | X ₁ | Company | S | | | X ₂ | Package series | D | | | X ₃ X ₄ | Color Specification | W0 | CRI 70 | | | | W8 | CRI 80 | | | | W9 | CRI 90 | | X ₅ | Series number | 3 | | | X ₆ | Lens type | F | Flat | | X ₇ | PCB type | 1 | PCB | | X ₈ | Revision number | С | New COB type | Table 6. Lot Numbering System : $Y_1Y_2Y_3Y_4Y_5Y_6 - Y_7Y_8Y_9Y_{10} - Y_{11}Y_{12}Y_{13}$ | Lot Number Code | Description | |--|-------------| | Y ₁ Y ₂ | Year | | Y ₃ Y ₄ | Month | | Y ₅ Y ₆ | Day | | Y ₇ Y ₈ Y ₉ Y ₁₀ | Mass order | | Y ₁₁ Y ₁₂ Y ₁₃ | Tray No. | ## **Color Bin Structure** ### **CIE Chromaticity Diagram** ## **Color Bin Structure** ### CIE Chromaticity Diagram, $T_j=25$ °C, $I_F=500$ mA | ١ | B0 | В | 1 | В | 2 | |---|---|---|--|---|--| | CIE x | CIE y | CIE x | CIE y | CIE x | CIE y | | 0.3207 | 0.3462 | 0.3292 | 0.3539 | 0.3212 | 0.3389 | | 0.3212 | 0.3389 | 0.3293 | 0.3461 | 0.3217 | 0.3316 | | 0.3293 | 0.3461 | 0.3373 | 0.3534 | 0.3293 | 0.3384 | | 0.3292 | 0.3539 | 0.3376 | 0.3616 | 0.3293 | 0.3461 | | 1 | В3 | В | 4 | В | 5 | | CIE x | CIE y | CIE x | CIE y | CIE x | CIE y | | 0.3293 | 0.3461 | 0.3217 | 0.3316 | 0.3293 | 0.3384 | | 0.3293 | 0.3384 | 0.3222 | 0.3243 | 0.3294 | 0.3306 | | 0.3369 | 0.3451 | 0.3294 | 0.3306 | 0.3366 | 0.3369 | | 0.3373 | 0.3534 | 0.3293 | 0.3384 | 0.3369 | 0.3451 | | | C0 | C | 1 | С | 2 | | | | | | | | | CIE x | CIE y | CIE x | CIE y | CIE x | CIE y | | 0.3376 | O.3616 | CIE x
0.3463 | CIE y
0.3687 | CIE x
0.3373 | CIE y
0.3534 | | | · · · · · · · · · · · · · · · · · · · | | • | | | | 0.3376 | 0.3616 | 0.3463 | 0.3687 | 0.3373 | 0.3534 | | 0.3376
0.3373 | 0.3616
0.3534 | 0.3463
0.3456 | 0.3687
0.3601 | 0.3373
0.3369 | 0.3534
0.3451 | | 0.3376
0.3373
0.3456
0.3463 | 0.3616
0.3534
0.3601 | 0.3463
0.3456
0.3539
0.3552 | 0.3687
0.3601
0.3669 | 0.3373
0.3369
0.3448 | 0.3534
0.3451
0.3514
0.3601 | | 0.3376
0.3373
0.3456
0.3463 | 0.3616
0.3534
0.3601
0.3687 | 0.3463
0.3456
0.3539
0.3552 | 0.3687
0.3601
0.3669
0.3760 | 0.3373
0.3369
0.3448
0.3456 | 0.3534
0.3451
0.3514
0.3601 | | 0.3376
0.3373
0.3456
0.3463 | 0.3616
0.3534
0.3601
0.3687 | 0.3463
0.3456
0.3539
0.3552 | 0.3687
0.3601
0.3669
0.3760 | 0.3373
0.3369
0.3448
0.3456 | 0.3534
0.3451
0.3514
0.3601 | | 0.3376
0.3373
0.3456
0.3463 | 0.3616
0.3534
0.3601
0.3687 | 0.3463
0.3456
0.3539
0.3552 | 0.3687
0.3601
0.3669
0.3760
4 | 0.3373
0.3369
0.3448
0.3456 | 0.3534
0.3451
0.3514
0.3601
5 | | 0.3376
0.3373
0.3456
0.3463
CIE x
0.3456 | 0.3616
0.3534
0.3601
0.3687
C3
CIE y
0.3601 | 0.3463
0.3456
0.3539
0.3552
CIE x
0.3369 | 0.3687
0.3601
0.3669
0.3760
4
CIE y
0.3451 | 0.3373
0.3369
0.3448
0.3456
CIE x
0.3448 | 0.3534
0.3451
0.3514
0.3601
5
CIE y
0.3514 | ## **Color Bin Structure** ### CIE Chromaticity Diagram, $T_j=25$ °C, $I_F=500$ mA | | 3-S | TEP | | | 4-S1 | ΓEP | | |--------|--------|--------|--------|--------|--------|--------|--------| | D. | 10 | E, | 10 | D. | 11 | E11 | | | CIE x | CIE y | | 0.3589 | 0.3685 | 0.3764 | 0.3713 | 0.3560 | 0.3557 | 0.3746 | 0.3689 | | 0.3665 | 0.3742 | 0.3793 | 0.3828 | 0.3580 | 0.3697 | 0.3784 | 0.3841 | | 0.3637 | 0.3622 | 0.3890 | 0.3887 | 0.3681 | 0.3771 | 0.3914 | 0.3922 | | 0.3573 | 0.3579 | 0.3854 | 0.3768 | 0.3645 | 0.3618 | 0.3865 | 0.3762 | | | | | AN | ISI | | | | |--------|--------|--------|--------|--------|--------|--------|--------| | D | 21 | D | 22 | D | 23 | D | 24 | | CIE x | CIE y | | 0.3528 | 0.3599 | 0.3628 | 0.3732 | 0.3601 | 0.3587 | 0.3511 | 0.3466 | | 0.3548 | 0.3736 | 0.3641 | 0.3805 | 0.3645 | 0.3618 | 0.3528 | 0.3599 | | 0.3641 | 0.3805 | 0.3736 | 0.3874 | 0.3663 | 0.3699 | 0.3570 | 0.3631 | | 0.3628 | 0.3732 | 0.3703 | 0.3728 | 0.3703 | 0.3728 | 0.3560 | 0.3558 | | 0.3580 | 0.3697 | 0.3663 | 0.3699 | 0.3670 | 0.3578 | 0.3601 | 0.3587 | | 0.3570 | 0.3631 | 0.3681 | 0.3771 | 0.3590 | 0.3521 | 0.3590 | 0.3521 | | E: | 21 | E | 22 | E: | 23 | E | 24 | | CIE x | CIE y | | 0.3703 | 0.3726 | 0.3890 | 0.3842 | 0.3670 | 0.3578 | 0.3784 | 0.3647 | | 0.3736 | 0.3874 | 0.3914 | 0.3922 | 0.3703 | 0.3726 | 0.3806 | 0.3725 | | 0.3871 | 0.3959 | 0.3849 | 0.3881 | 0.3765 | 0.3765 | 0.3865 | 0.3762 | | 0.3849 | 0.3881 | 0.3871 | 0.3959 | 0.3746 | 0.3689 | 0.3890 | 0.3842 | | 0.3784 | 0.3841 | 0.4006 | 0.4044 | 0.3806 | 0.3725 | 0.3952 | 0.3880 | | 0.3765 | 0.3765 | 0.3952 | 0.3880 | 0.3784 | 0.3647 | 0.3898 | 0.3716 | ## **Color Bin Structure** ### CIE Chromaticity Diagram, $T_j=25$ °C, $I_F=500$ mA | | | | | | | / \ | | | | | | |----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | | 3-8 | TEP | | | | 4-STEP | | | | | | F [*] | 10 | G | 10 | H10 | | F11 | | G11 | | H11 | | | CIE x | CIE y | | 0.4006 | 0.3829 | 0.4267 | 0.3946 | 0.4502 | 0.4020 | 0.3981 | 0.3800 | 0.4243 | 0.3922 | 0.4477 | 0.3998 | | 0.4051 | 0.3954 | 0.4328 | 0.4079 | 0.4576 | 0.4158 | 0.4040 | 0.3966 | 0.4324 | 0.4100 | 0.4575 | 0.4182 | | 0.4159 | 0.4007 | 0.4422 | 0.4113 | 0.4667 | 0.4180 | 0.4186 | 0.4037 | 0.4451 | 0.4145 | 0.4697 | 0.4211 | | 0.4108 | 0.3878 | 0.4355 | 0.3977 | 0.4588 | 0.4041 | 0.4116 | 0.3865 | 0.4361 | 0.3964 | 0.4591 | 0.4025 | | 0.4108 | 0.3878 | 0.4355 | 0.3977 | 0.4588 | 0.4041 | 0.4116 | 0.3865 | 0.4361 | 0.3964 | 0.4591 | 0.4025 | |--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | | | | | 1A | NSI | | | | | | | | F21 | | | F22 | | | F23 | | | F24 | | | CIE | (| CIE y | CIE x | | CIE y | CIE x | | CIE y | CIE x | (| CIE y | | 0.414 | 8 C | 0.4090 | 0.401 | 3 (| 0.3887 | 0.4223 | 3 | 0.3990 | 0.429 | 9 | 0.4165 | | 0.399 | 6 0 |).4015 | 0.394 | 3 (| 0.3853 | 0.4153 | 3 | 0.3955 | 0.414 | 8 | 0.4090 | | 0.394 | 3 (|).3853 | 0.3889 | 9 (| 0.3690 | 0.4116 | 6 | 0.3865 | 0.411 | 3 | 0.4002 | | 0.401 | 3 (|).3887 | 0.4018 | 3 (| 0.3752 | 0.4049 |) | 0.3833 | 0.418 | 6 | 0.4037 | | 0.404 | 0 0 |).3966 | 0.4049 | 9 (| 0.3833 | 0.4018 | 3 | 0.3752 | 0.415 | 3 | 0.3955 | | 0.411 | 3 (| 0.4002 | 0.398 | 1 (| 0.3800 | 0.4147 | 7 | 0.3814 | 0.422 | 3 | 0.3990 | | | G21 | | | G22 | | | G23 | | | G24 | | | CIE | (| CIE y | CIE x | | CIE y | CIE x | | CIE y | CIE x | (| CIE y | | 0.422 | 3 (| 0.3990 | 0.440 | 6 (| 0.4055 | 0.4147 | 7 | 0.3814 | 0.425 | 9 | 0.3853 | | 0.429 | 9 0 |).4165 | 0.445 | 1 (| 0.4145 | 0.4223 | 3 | 0.3990 | 0.430 | 2 | 0.3943 | | 0.443 | 0 0 |).4212 | 0.438 | 7 (| 0.4122 | 0.4284 | 1 | 0.4011 | 0.436 | 1 | 0.3964 | | 0.438 | 7 (|).4122 | 0.4430 |) (| 0.4212 | 0.4243 | 3 | 0.3922 | 0.440 | 6 | 0.4055 | | 0.432 | 4 C | .4100 | 0.4562 | 2 (| 0.4260 | 0.4302 | 2 | 0.3943 | 0.446 | 8 | 0.4077 | | 0.428 | 4 C |).4011 | 0.446 | 3 (| 0.4077 | 0.4259 | 9 | 0.3853 | 0.437 | 3 | 0.3893 | | | H21 | | | H22 | | | H23 | | | H24 | | | CIE | (| CIE y | CIE x | | CIE y | CIE x | | CIE y | CIE x | (| CIE y | | 0.446 | 8 0 |).4077 | 0.464 | 4 (| 0.4118 | 0.4373 | 3 | 0.3893 | 0.448 | 3 | 0.3919 | | 0.456 | 2 (| 0.4260 | 0.469 | 7 (| 0.4211 | 0.4468 | 3 | 0.4077 | 0.453 | 4 | 0.4012 | | 0.468 | 7 (|).4289 | 0.463 | 6 (| 0.4197 | 0.4526 | 3 | 0.4090 | 0.459 | 1 | 0.4025 | | 0.463 | 6 0 |).4197 | 0.468 | 7 (| 0.4289 | 0.4477 | 7 | 0.3998 | 0.464 | 4 | 0.4118 | | 0.457 | 5 0 |).4182 | 0.4810 |) (| 0.4319 | 0.4534 | 1 | 0.4012 | 0.470 | 3 | 0.4132 | | 0.452 | 6 0 | 0.4090 | 0.470 | 3 (| 0.4132 | 0.4483 | 3 | 0.3919 | 0.459 | 3 | 0.3944 | ## **Color Bin Structure** Table 7. Bin Code description | Part Number | Luminous Flux (lm)
@ I _F = 500mA | | | Color
Chromaticity
Coordinate | Typical Forward Voltage (V _f)
@ I _F = 500mA | | | |-------------|--|------|------|-------------------------------------|---|------|------| | | Bin Code | Min. | Max. | @ I _F = 500mA | Bin Code | Min. | Max. | | SDW03F1C | H1 | 1800 | 2400 | | D | 32.0 | 34.0 | | | | | | Refer to page.15~17 | E | 34.0 | 38.0 | | | H2 | 2400 | 2900 | paga | F | 38.0 | 40.0 | | SDW83F1C | G2 | 1600 | 1800 | | D | 32.0 | 34.0 | | | H1 | 1800 | 2400 | Refer to page.15~18 | E | 34.0 | 38.0 | | | H2 | 2400 | 2900 | | F | 38.0 | 40.0 | | SDW93F1C | G2 | 1600 | 1800 | Refer to | D | 32.0 | 34.0 | | | | | | page.15~18 | E | 34.0 | 38.0 | | | H1 | 1800 | 2400 | | F | 38.0 | 40.0 | Table 8. Ordering Information(Bin Code) Available ranks | Part
Number | сст | CIE | LF rank | | | VF rank | | | |----------------|------------|-----|---------|----|----|---------|---|---| | SDW03F1C - | 5300~6000K | В | H1 | H2 | - | D | Е | F | | | 4700~5300K | С | H1 | H2 | - | D | Е | F | | | 4200~4700K | D | H1 | H2 | - | D | E | F | | | 3700~4200K | E | H1 | H2 | - | D | E | F | | SDW83F1C - | 5300~6000K | В | G2 | H1 | H2 | D | E | F | | | 4700~5300K | С | G2 | H1 | H2 | D | Е | F | | | 3700~4200K | Е | G2 | H1 | H2 | D | Е | F | | | 3200~3700K | F | G2 | H1 | H2 | D | E | F | | | 2900~3700K | G | G2 | H1 | H2 | D | Е | F | | | 2600~2900K | Н | G2 | H1 | H2 | D | E | F | | SDW93F1C - | 3700~4200K | E | G2 | H1 | - | D | Е | F | | | 3200~3700K | F | G2 | H1 | - | D | E | F | | | 2900~3200K | G | G2 | H1 | | D | E | F | | | 2600~2900K | Н | G2 | H1 | - | D | E | F | ## **Mechanical Dimensions** #### Notes: - (1) All dimensions are in millimeters. - (2) Scale: none - (3) Undefined tolerance is $\pm 0.2 \text{mm}$ ## **Packaging Specification** #### Notes: (1) Quantity: 20pcs/Tray (2) All dimensions are in millimeters (tolerance : ± 0.3) (3) Scale none ## **Packaging Specification** ## Aluminum Bag #### Notes: - (1) Heat Sealed after packing (Use Zipper Bag) - (2) Quantity: 3Tray(60pcs)/Bag ## **Handling of Silicone Resin for LEDs** (1) During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound. (2) In general, LEDs should only be handled from the side. By the way, this also applies to LEDs without a silicone sealant, since the surface can also become scratched. - (3) Silicone differs from materials conventionally used for the manufacturing of LEDs. These conditions must be considered during the handling of such devices. Compared to standard encapsulants, silicone is generally softer, and the surface is more likely to attract dust. As mentioned previously, the increased sensitivity to dust requires special care during processing. In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning solution must be applied to the surface after the soldering of wire. - (4) Seoul Semiconductor suggests using isopropyl alcohol for cleaning. In case other solvents are used, it must be assured that these solvents do not dissolve the package or resin. Ultrasonic cleaning is not - recommended. Ultrasonic cleaning may cause damage to the LED. - (5) Please do not mold this product into another resin (epoxy, urethane, etc) and do not handle this product with acid or sulfur material in sealed space. - (6) Avoid leaving fingerprints on silicone resin parts. ### **Precaution for Use** #### (1) Storage To avoid the moisture penetration, we recommend storing Power LEDs in a dry box with a desiccant The recommended storage temperature range is 5 °C to 30 °C and a maximum humidity of 50%. - (2) Use Precaution after Opening the Packaging. Pay attention to the following: - a. Recommend conditions after opening the package - Sealing - Temperature : 5 ~ 40 °C Humidity : less than RH30% - b. If the package has been opened more than 4 week or the color of the desiccant changes. - (3) For manual soldering Seoul Semiconductor recommends the soldering condition (ZC series product is not adaptable to reflow process) - a. Use lead-free soldering - b. Soldering should be implemented using a soldering equipment at temperature lower than 350°C. - c. Before proceeding the next step, product temperature must be stabilized at room temperature. - (4) Components should not be mounted on warped (non coplanar) portion of PCB. - (5) Radioactive exposure is not considered for the products listed here in. - (6) It is dangerous to drink the liquid or inhale the gas generated by such products when chemically disposed of. - (7) This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When washing is required, IPA (Isopropyl Alcohol) should be used. - (8) When the LEDs are in operation the maximum current should be decided after measuring the package temperature. - (9) LEDs must be stored properly to maintain the device. If the LEDs are stored for 3 months or more after being shipped from Seoul Semiconductor, a sealed container with vacuum atmosphere should be used for storage. - (10) The appearance and specifications of the product may be modified for improvement without notice. ### **Precaution for Use** - (11) Long time exposure of sun light or occasional UV exposure will cause silicone discoloration. - (12) Attaching LEDs, do not use adhesive that outgas organic vapor. - (13) The driving circuit must be designed to allow forward voltage only when it is ON or OFF. If the reverse voltage is applied to LED, migration can be generated resulting in LED damage. - (14) Please do not touch any of the circuit board, components or terminals with bare hands or metal while circuit is electrically active. - (15) VOCs (Volatile organic compounds) emitted from materials used in the construction of fixtures can penetrate silicone encapsulants of LEDs and discolor when exposed to heat and photonic energy. The result can be a significant loss of light output from the fixture. Knowledge of the properties of the materials selected to be used in the construction of fixtures can help prevent these issues. - (16) LEDs are sensitive to Electro-Static Discharge (ESD) and Electrical Over Stress (EOS). Below is a list of suggestions that Seoul Semiconductor purposes to minimize these effects. - I. ESD (Electro Static Discharge) Electrostatic discharge (ESD) is the defined as the release of static electricity when two objects come into contact. While most ESD events are considered harmless, it can be an expensive problem in many industrial environments during production and storage. The damage from ESD to an LEDs may cause the product to demonstrate unusual characteristics such as: - Increase in reverse leakage current lowered turn-on voltage - Abnormal emissions from the LED at low current The following recommendations are suggested to help minimize the potential for an ESD event. One or more recommended work area suggestions: - Ionizing fan setup - ESD table/shelf mat made of conductive materials - ESD safe storage containers One or more personnel suggestion options: - Antistatic wrist-strap - Antistatic material shoes - Antistatic clothes #### Environmental controls: - Humidity control (ESD gets worse in a dry environment) ### **Precaution for Use** #### II. EOS (Electrical Over Stress) Electrical Over-Stress (EOS) is defined as damage that may occur when an electronic device is subjected to a current or voltage that is beyond the maximum specification limits of the device. The effects from an EOS event can be noticed through product performance like: - Changes to the performance of the LED package (If the damage is around the bond pad area and since the package is completely encapsulated the package may turn on but flicker show severe performance degradation.) - Changes to the light output of the luminaire from component failure - Components on the board not operating at determined drive power Failure of performance from entire fixture due to changes in circuit voltage and current across total circuit causing trickle down failures. It is impossible to predict the failure mode of every LED exposed to electrical overstress as the failure modes have been investigated to vary, but there are some common signs that will indicate an EOS event has occurred: - Damaged may be noticed to the bond wires (appearing similar to a blown fuse) - Damage to the bond pads located on the emission surface of the LED package (shadowing can be noticed around the bond pads while viewing through a microscope) - Anomalies noticed in the encapsulation and phosphor around the bond wires. - This damage usually appears due to the thermal stress produced during the EOS event. - III. To help minimize the damage from an EOS event Seoul Semiconductor recommends utilizing: - A surge protection circuit - An appropriately rated over voltage protection device - A current limiting device ## **Company Information** #### Published by Seoul Semiconductor © 2013 All Rights Reserved. #### **Company Information** Seoul Semiconductor (www.SeoulSemicon.com) manufacturers and packages a wide selection of light emitting diodes (LEDs) for the automotive, general illumination/lighting, Home appliance, signage and back lighting markets. The company is the world's fifth largest LED supplier, holding more than 10,000 patents globally, while offering a wide range of LED technology and production capacity in areas such as "nPola", "Acrich", the world's first commercially produced AC LED, and "Acrich MJT - Multi-Junction Technology" a proprietary family of high-voltage LEDs. The company's broad product portfolio includes a wide array of package and device choices such as Acrich and Acirch2, high-brightness LEDs, mid-power LEDs, side-view LEDs, and through-hole type LEDs as well as custom modules, displays, and sensors. #### **Legal Disclaimer** Information in this document is provided in connection with Seoul Semiconductor products. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Seoul Semiconductor hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. The appearance and specifications of the product can be changed to improve the quality and/or performance without notice.