

TPD2E007 SLVS796F - SEPTEMBER 2008-REVISED SEPTEMBER 2014

TPD2E007 2-Channel ESD-Protection Array for AC-Coupled/Negative-Rail Data Interfaces

Features

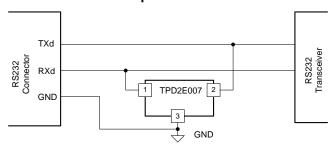
- IEC 61000-4-2 Level 4 ESD Protection
 - ±8-kV IEC 61000-4-2 Contact Discharge
 - ±15-kV IEC 61000-4-2 Air-Gap Discharge
- IEC 61000-4-5 Surge Protection
 - 4.5-A Peak Pulse Current (8/20 µs Pulse)
- IO Capacitance 15pF (max)
- Low 50-nA Leakage Current
- Space-Saving PicoStar[™] and SOT Package

Applications

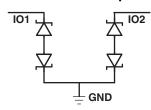
- Cell Phones
- **Audio Interface Connections**
- Consumer Electronics (DVR, Set-Top Box, TV)
- Industrial Interfaces (RS-232, RS-485, RS-422, LVDS)

3 Description

This device is a Transient Voltage Suppressor (TVS) based Electrostatic Discharge (ESD) protection device designed to offer system level ESD solutions for wide range of portable and industrial applications. The back-to-back diode array allows AC-coupled or negative-going data transmission (audio interface, LVDS, RS-485, RS-232, etc.) without compromising signal integrity. This device exceeds the IEC 61000-4-2 (Level 4) ESD protection and is ideal for providing system level ESD protection for the internal ICs when placed near the connector.


The TPD2E007 is offered in a 4-bump PicoStar and 3-pin SOT (DGK) packages. The PicoStar package (YFMG4), with only 0.15 mm (Max) package height, is recommended for ultra space saving application where the package height is a key concern. The PicoStar package can be used in either embedded PCB board applications or in surface mount applications. The industry standard SOT package offers straightforward board layout option in legacy designs.

Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE (NOM)
TDD2F007	SOT (3)	2.00 mm x 1.25 mm
TPD2E007	PicoStar (4)	0.77 mm x 0.77 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

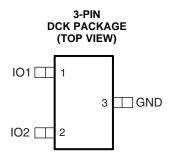
Example Schematic

Equivalent Schematic Representation

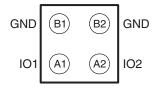
Table of Contents

1	Features 1	7.3 Feature Description	. 6
2	Applications	7.4 Device Functional Modes	
3	Description 1	8 Application and Implementation	7
4	Revision History	8.1 Application Information	. 7
5	Pin Configuration and Functions	8.2 Typical Application	. 7
6	Specifications	9 Power Supply Recommendations	Ş
•	6.1 Absolute Maximum Ratings	10 Layout	ç
	6.2 Handling Ratings	10.1 Layout Guidelines	ę
	6.3 Recommended Operating Conditions	10.2 Layout Example	ξ
	6.4 Thermal Information	11 Device and Documentation Support 1	10
	6.5 Electrical Characteristics	11.1 Trademarks	10
	6.6 Typical Characteristics5	11.2 Electrostatic Discharge Caution	10
7	Detailed Description6	11.3 Glossary	10
	7.1 Overview 6	12 Mechanical, Packaging, and Orderable	
	7.2 Functional Block Diagram 6	Information1	10

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (August 2010) to Revision F Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section



5 Pin Configuration and Functions

0.8 mm x 0.8 mm (0.4 mm pitch)

Pin Functions

PIN				
NAME	DCK NO.	YFMG4 NO.	I/O	DESCRIPTION
IO1	1	A1	Ю	ESD protected channel
IO2	2	A2	Ю	ESD protected channel
GND	3	B1, B2	G	Ground

6 Specifications

6.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

				MIN N	ИΑХ	UNIT
V_{IO}			_	-13.5	13.5	V
	Continuous power dissipation	YFM package			270	mW
	$(T_A = 70^{\circ}C)$	DCK package			218	IIIVV
	Operating temperature range	·		-40	85	°C
TJ	Junction temperature				3.5 13.5 270 m 218 40 85 3 150 220 215	°C
	Duran tamananatura (aaldarian)	Infrared (15 s)			220	°C
	Bump temperature (soldering)	Vapor phase (60 s)			215	
	Lead temperature (soldering, 10 s)				300	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

				MIN	MAX	UNIT			
T _{stg}	Storage temperature	age temperature range							
	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾							
.,		Charged device mod	del (CDM), per JEDEC specification JESD22-C101, all pins (2)	-1.5	1.5	kV			
V _(ESD)	discharge	charge IEC 61000-4-2 Contact	Contact	-8	8	KV			
		ESD ratings	Air gap	-15	15				

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Operating temperatu	ire range	-40	85	°C
V _{IO}	Operating voltage range	-13	13	V

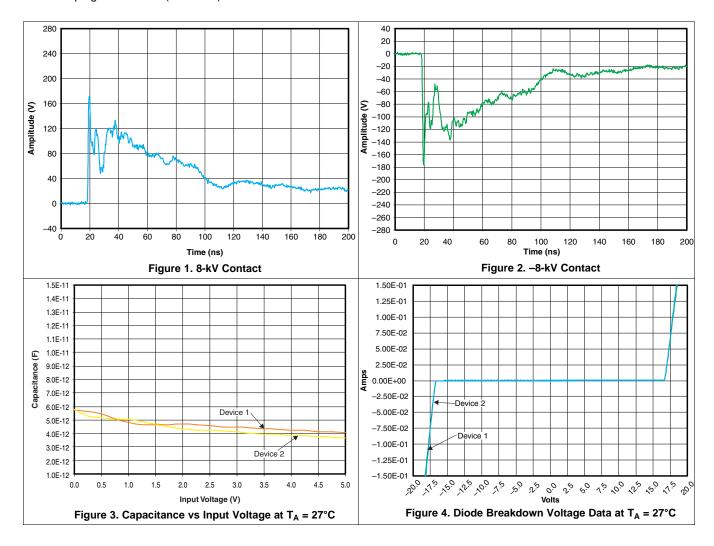
6.4 Thermal Information

		TPD2	E007	
	THERMAL METRIC ⁽¹⁾	DCK	YFMG4	UNIT
		3 PINS	4 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	251.9	175.9	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	115.4	39.2	
$R_{\theta JB}$	Junction-to-board thermal resistance	42.4	28.7	90/14/
ΨЈТ	Junction-to-top characterization parameter	9.4	8.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	42.2	28.7	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

 $T_A = -40$ °C to 85°C (unless otherwise noted)


- A						
	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{BR}	Break-down voltage	I _{IO} = 10 mA	-14		14	V
I _{IO}	Channel leakage current			20	50	nA
R_{d}	Dynamic resistance			3.5		Ω
C_{IN}	Channel input capacitance	V _{IO} = 2.5 V		10	15	pF

(1) Typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

6.6 Typical Characteristics

IEC Clamping Waveforms (20 ns/div)

Copyright © 2008–2014, Texas Instruments Incorporated

7 Detailed Description

7.1 Overview

The TPD2E007 an ESD protection device designed to offer system level ESD solutions for wide range of portable and industrial applications. The back-to-back diode array allows AC-coupled or negative-going data transmission (audio interface, LVDS, RS-485, RS-232, etc.) without compromising signal integrity. The PicoStar package is intended to be embedded inside the printed circuit board which saves board space in portable applications. This device exceeds the IEC 61000-4-2 (Level 4) ESD protection and is ideal for providing system level ESD protection for the internal ICs when placed near the connector.

7.2 Functional Block Diagram

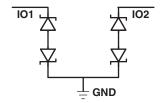


Figure 5. Equivalent Schematic Representation

7.3 Feature Description

The TPD2E007 an ESD protection device designed to offer system level ESD solutions for wide range of portable and industrial applications. The back-to-back diode array allows AC-coupled or negative-going data transmission (audio interface, LVDS, RS-485, RS-232, etc.) without compromising signal integrity. The PicoStar package is intended to be embedded inside the printed circuit board which saves board space in portable applications. This device exceeds the IEC 61000-4-2 (Level 4) ESD protection and is ideal for providing system level ESD protection for the internal ICs when placed near the connector.

7.3.1 IEC 61000-4-2 Level 4 ESD Protection

The I/O pins can withstand ESD events up to ±12-kV contact and ±15 kV-air. An ESD/surge clamp diverts the current to ground.

7.3.2 IEC 61000-4-5 Surge Protection

The I/O pins can withstand surge events up to 4.5 A (8/20 µs waveform). An ESD/surge clamp diverts this current to ground.

7.3.3 IO Capacitance

The capacitance between each I/O pin to ground is 15 pF.

7.3.4 Low 50-nA Leakage Current

The I/O pins feature a low 50-nA (max) leakage current.

7.3.5 Space-Saving PicoStar and SOT Package

This device is offered in both a space-saving PicoStar package, as well as a standard DCK package.

7.4 Device Functional Modes

TPD2E007 is a passive integrated circuit that triggers when voltages are above or below V_{BR} . During ESD events, voltages as high as ± 15 kV (air) can be directed to ground via the internal diode network. Once the voltages on the protected line fall below the trigger levels of TPD2E007 (usually within 10's of nano-seconds) the device reverts to passive.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

TPD2E007 is a diode type TVS which is typically used to provide a path to ground for dissipating ESD events on signal lines between a human interface connector and a system. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected IC.

8.2 Typical Application

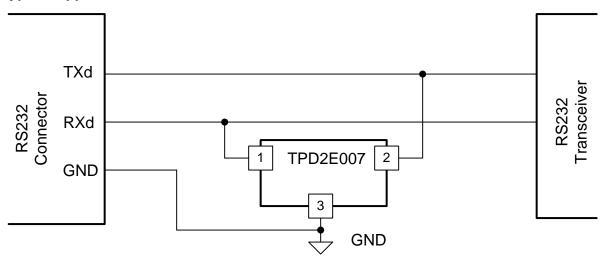


Figure 6. Example Schematic

8.2.1 Design Requirements

For this design example, a single TPD2E007 is used to protect an RS232 3-wire connector.

Given the application, the following parameters are known.

DESIGN PARAMETER	VALUE
Signal range on all pins except GND	-12 V to 12V
Surge Withstand - IEC 61000-4-5	150 W

8.2.2 Detailed Design Procedure

To begin the design process, some parameters must be decided upon; the designer needs to know the following:

- Signal voltage range on all protected lines
- Surge Withstand

8.2.2.1 Signal range on IO1 and IO2 pins

The TPD2E007 has 2 IO pins which can support up to ±13 V.

8.2.2.2 Surge Withstand

The TPD2E007 can withstand up to 170W of IEC 61000-4-5 8/20µs surge.

8.2.3 Application Curves

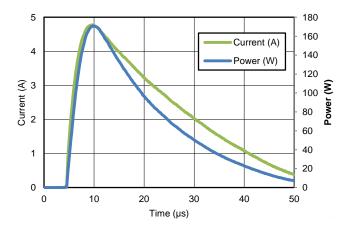


Figure 7. Surge Pulse Waveform

9 Power Supply Recommendations

This device is a passive ESD device so there is no need to power it. Care should be taken to not violate the recommended I/O specification (±13 V) to ensure the device functions properly.

10 Layout

10.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer needs to minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- Route the protected traces as straight as possible.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

10.2 Layout Example

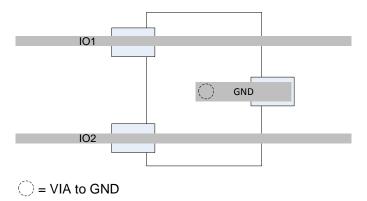


Figure 8. Layout Example

11 Device and Documentation Support

11.1 Trademarks

PicoStar is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7-Aug-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPD2E007DCKR	ACTIVE	SC70	DCK	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	45U	Samples
TPD2E007YFMR	PREVIEW	DSLGA	YFM	4		TBD	Call TI	Call TI	-40 to 85		
TPD2E007YFMRG4	ACTIVE	DSLGA	YFM	4	3000	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM	-40 to 85	45 T	Samples
TPD2E007YFMTG4	ACTIVE	DSLGA	YFM	4	250	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM	-40 to 85	45 T	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

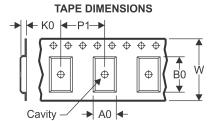
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

7-Aug-2014

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

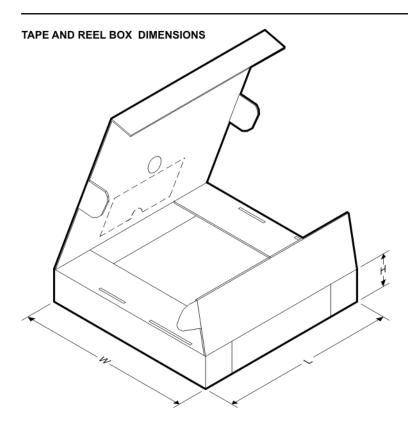

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Aug-2014

TAPE AND REEL INFORMATION

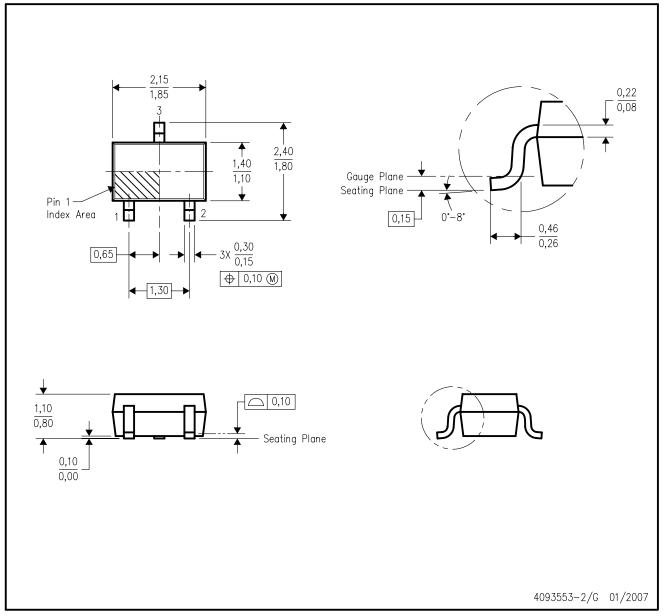
Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W									147	D:4		
Device	Туре	Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD2E007DCKR	SC70	DCK	3	3000	179.0	8.4	2.4	2.4	1.19	4.0	8.0	Q3
TPD2E007YFMRG4	DSLGA	YFM	4	3000	178.0	9.2	0.83	0.83	0.19	4.0	8.0	Q1
TPD2E007YFMTG4	DSLGA	YFM	4	250	178.0	9.2	0.83	0.83	0.19	4.0	8.0	Q1

www.ti.com 7-Aug-2014



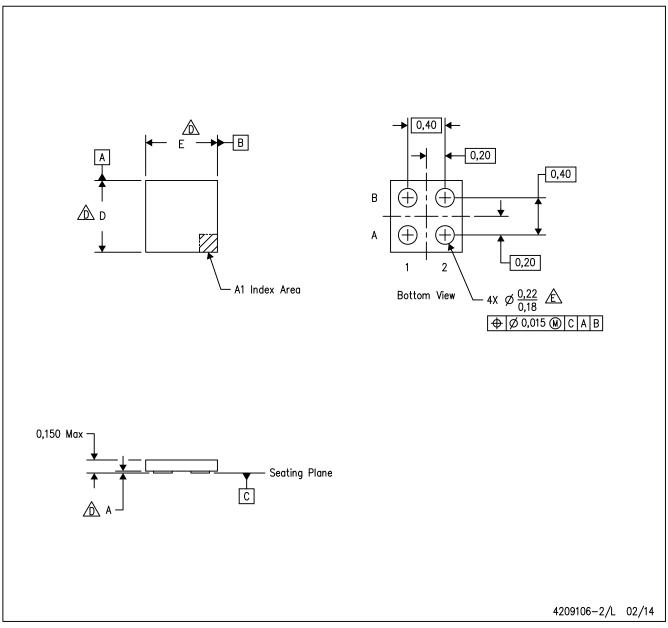
*All dimensions are nominal

7 III GITTIOTOTOTO GITO TTOTTIITIGI							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPD2E007DCKR	SC70	DCK	3	3000	195.0	200.0	45.0
TPD2E007YFMRG4	DSLGA	YFM	4	3000	220.0	220.0	35.0
TPD2E007YFMTG4	DSLGA	YFM	4	250	220.0	220.0	35.0

DCK (R-PDSO-G3)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

YFM (S-pSTAR-N4)

PicoStar™

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- C. PicoStar™ package configuration.

The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.

Reference Product Data Sheet for array population. 2 x 2 matrix pattern is shown for illustration only.

F. This package is a Pb-free solder land design.

PicoStar is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>