MBR1060, MBR1080, MBR1090, MBR10100

MBR1060 and MBR10100 are Preferred Devices

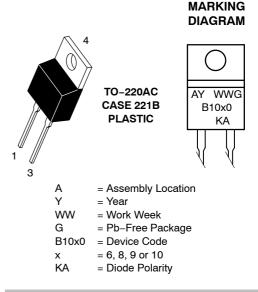
SWITCHMODE[™] Power Rectifiers

This series of SWITCHMODE power rectifiers uses the Schottky Barrier principle with a platinum barrier metal. These state–of–the–art devices have the following features:

Features

- Guard-Ring for Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Low Power Loss/High Efficiency
- High Surge Capacity
- Low Stored Charge Majority Carrier Conduction
- Pb-Free Packages are Available*

Mechanical Characteristics


- Case: Epoxy, Molded
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

ON Semiconductor®

SCHOTTKY BARRIER RECTIFIERS 10 AMPERES, 60 to 100 VOLTS

ORDERING INFORMATION

Device	Package	Shipping
MBR1060	TO-220	50 Units/Rail
MBR1060G	TO-220 (Pb-Free)	50 Units/Rail
MBR1080	TO-220	50 Units/Rail
MBR1080G	TO-220 (Pb-Free)	50 Units/Rail
MBR1090	TO-220	50 Units/Rail
MBR1090G	TO-220 (Pb-Free)	50 Units/Rail
MBR10100	TO-220	50 Units/Rail
MBR10100G	TO-220 (Pb-Free)	50 Units/Rail

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Preferred devices are recommended choices for future use and best overall value.

[©] Semiconductor Components Industries, LLC, 2008

MBR1060, MBR1080, MBR1090, MBR10100

MAXIMUM RATINGS

Poting		MBR				11
Rating	Symbol	1060	1080	1090	10100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	80	90	100	V
Average Rectified Forward Current (Rated V_R) T_C = 133°C	I _{F(AV)}	10			А	
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 133°C	I _{FRM}	20		A		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	150		A		
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	0.5		А		
Operating Junction Temperature (Note 1)	TJ	- 65 to +175		°C		
Storage Temperature	T _{stg}	- 65 to +175		°C		
Voltage Rate of Change (Rated V _R)	dv/dt	10,000			V/µs	

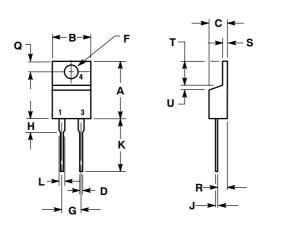
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

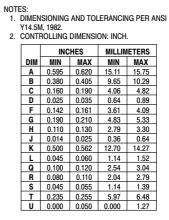
1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.0	°C/W
Maximum Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	60	°C/W

ELECTRICAL CHARACTERISTICS


$\label{eq:maximum instantaneous Forward Voltage (Note 2) \\ (i_F = 10 \text{ Amps, } T_C = 125^\circ\text{C}) \\ (i_F = 10 \text{ Amps, } T_C = 25^\circ\text{C}) \\ (i_F = 20 \text{ Amps, } T_C = 125^\circ\text{C}) \\ (i_F = 20 \text{ Amps, } T_C = 25^\circ\text{C}) \\ \end{cases}$	VF	0.7 0.8 0.85 0.95	V
Maximum Instantaneous Reverse Current (Note 2) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 125^{\circ}C - MBR1060$ only) (Rated dc Voltage, $T_C = 25^{\circ}C$)	İR	6.0 15 0.10	mA


2. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

MBR1060, MBR1080, MBR1090, MBR10100

PACKAGE DIMENSIONS

TO-220 CASE 221B-04 ISSUE E

