

Current Transducer LF 1005-S/SP14

1000 A

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current		1000		Α
I _P	Primary current, measuring range		0±1500		Α
R _M	Measuringresistance		$\mathbf{R}_{_{\mathrm{M}}}$ min	\mathbf{R}_{M} m	ax
	with $\pm 24 \text{ V}$	@ $\pm 1000 A_{max}$	3	50	Ω
		@ ± 1500 A _{max}	3	15	Ω
I _{sn}	Secondary nominal r.m.s. current		200		mΑ
K _N	Conversion ratio		1:5000)	
V _c	Supply voltage (±5%)		±24		V
Ic	Current consumption		28 + I _s		mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ^{1) 2)}		kV
•			1 ³⁾		kV

Accuracy - Dynamic performance data

$oldsymbol{\epsilon}_{\scriptscriptstyle L}^{\scriptscriptstyle G}$	Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity		±0.5 <0.1		% %
Ι _ο Ι _{οτ}	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 40°C + 85°C	Typ ±0.3	Max ± 0.4 ± 0.8	m A m A
t _r di/dt f	Response time ⁴⁾ @ 90 % of I _{PN} di/dtaccurately followed Frequency bandwidth (-1 dB)		< 1 > 100 DC 1	50	μs A/μs kHz

General data

T _A	Ambientoperatingtemperature Ambientstoragetemperature	- 40 + 85 - 45 + 100	°C
R _s	Secondary coil resistance @ T _A = 85°C	55	Ω
m	Mass	500	g
	Standards	EN 50155	

Notes: 1) With a primary bar which fills the through-hole

2) Between primary and secondary + shield

3) Between secondary and shield

4) With a di/dt of 100 A/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_C = \pm 24 (\pm 5\%) \text{ V}$
- \bullet $V_d = 6 kV$
- $T_A = -40^{\circ}C ... +85^{\circ}C$
- Shield between primary and secondary
- Connection to secondary circuit on M4 threaded studs
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

070509/3

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

Dimensions LF 1005-S/SP14 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

 Transducer fastening Vertical position 2 holes Ø 5.3 mm 2 M5 steel screws

Fastening torque, max. 4 Nm or 2.92 Lb. - Ft.

2 holes \varnothing 6.3 mm 2 M6 steel screws Fastening torque, max. 5 Nm or 3.69 Lb. - Ft.

4 holes Ø 4.2 mm 4 M4 steel screws

Fastening torque, max. 3.2 Nm or 2.34 Lb. - Ft. 4 holes \varnothing 2.25 mm depth 10 mm

4 x PT KA30 screws long 10 mm 0.9 Nm or 0.66 Lb. - Ft. Fastening torque, max.

Transducer fastening

Horizontal position 4 holes Ø 5.3 mm 4 M5 steel screws

4 Nm or 2.92 Lb. - Ft. Fastening torque, max. 4 holes Ø 2.25 mm depth 16 mm

4 x PT KA30 screws long 16 mm Fastening torque, max. 1 Nm or 0.73 Lb. - Ft.

Primary through-hole 40.5 x 40.5 mm Connection of secondary M4 threaded studs Fastening torque, max. 1.2 Nm or .88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

070509/3

page 2/2