

Current Transducer LA 205-T/SP6

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

	'	10270					
EI	ectrical data						
I _{PN}	Primary nominal r.m.s. current			200			
	Primary current, measuring range			0 ± 300			
I _P Î _{P max}	Measuring overload 1)			600			
R _M	•			$T_A = 70^{\circ}C \mid T_A = 85^{\circ}C$			
101				$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$		\mathbf{R}_{Mmax}	
	with ± 12 V	$@ \pm 200 \text{ A}_{max}$	0	68	0	66	Ω
		@ ± 300 A max	0	33	0	30	Ω
	with ± 15 V	@ ± 200 A max	5	95	5	93	Ω
		@ ± 300 A max	5	50	5	49	Ω
I _{SN}	Secondary nominal r.m.s. current			100	0		mΑ
K _N	Conversion ratio			1:	2000		
V _C	Supply voltage (±5%)		± 1	2 1	5	V	
I _c	Current consumption			20 (@ ±15 V)+ I _s r			mΑ
V _d	R.m.s. voltage for AC isc	plation test, 50 Hz, 1	mn	6		Ü	kV
V _b	R.m.s. rated voltage 2), s	safe separation		162	25		V
ŭ	t	oasic isolation		32	50		V
Accuracy - Dynamic performance data							
X _G	Overall accuracy @ I _{PN} , T _A = 25°C			± 0.8			%
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity			< 0	.1		%
				ΙTν	n I N	/lav	

Accuracy - Dynamic performance data						
X _G	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.8		%		
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity	< 0.1		%		
		Тур	Max			
I_{o}	Offset current @ $I_P = 0$, $T_A = 25$ °C		Max ± 0.15	mΑ		
I _{OM}	Residual current 3 @ $I_p = 0$, after an overload of 3 x I_{pN}		± 0.50	mΑ		
I _{OT}	Thermal drift of I_0 - 40°C + 85°C	± 0.20	± 0.50	mΑ		
t _{ra}	Reaction time @ 10 % of I _{P max}	< 500		ns		
t,	Response time 4 @ 90 % of I _{P max}	< 1		μs		
di/dt	di/dt accurately followed	> 100		A/µs		
f	Frequency bandwidth (- 3 dB)	DC ′	100	kHz		
	1 . 1 . 4 .					

G	Seneral data			
T _A	Ambient operating temperature		- 40 + 85	°C
T _s	Ambient storage temperature		- 50 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	35	Ω
-		$T_A = 85^{\circ}C$	37	Ω
m	Mass		290	g
	Standards		EN 50155	

Notes : 1) 3 mn/hour @ $V_C = \pm 15 \text{ V}$, $R_M = 5 \Omega$

- Pollution class 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs.

$I_{PN} = 200 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $T_A = -40^{\circ}C ... + 85^{\circ}C$
- Connection to secondary circuit on Faston 6.3 x 0.8 mm
- Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

071010/3

Dimensions LA 205-T/SP6 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

•	General	tolerance	± 0.5	mm

Fastening

By the transducer 2 holes \varnothing 5.5 mm 2 M5 steel screws

Fastening torque 4 Nm or 2.95 Lb.-Ft.

Or

By the primary bar $2 \text{ holes } \emptyset 8.5 \text{ mm}$ • Connection of secondary Faston $6.3 \times 0.8 \text{ mm}$

Remarks

- \bullet ${\bf I}_{\rm S}$ is positive when ${\bf I}_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.