Current Transducer ITN 600-S ULTRASTAB $I_{\rm PM} = 600 \, {\rm A}$ For ultra-high precision measurement of current: DC, AC, pulsed..., with galvanic separation between primary and secondary. #### **Features** - Closed loop (compensated) current transducer using an extremely accurate zero flux detector - Electrostatic shield between primary and secondary circuit - 9-pin D-Sub male secondary connector - Status signal to indicate the transducer state - LED indicator confirms normal operation. ### **Advantages** - · Very high accuracy - Excellent linearity - · Extremely low temperature drift - Wide frequency bandwidth - · High immunity to external fields - · No insertion losses - Low noise on output signal - Low noise feedback to primary conductor. # **Applications** - Feed back element in high performance gradient amplifiers - · Feedback element in high-precision, high-stability power supplies - Calibration unit - Energy measurement - · Medical equipment. ### **Standards** - EN 61000-6-2: 2005 - EN 61000-6-3: 2007 - EN 61010-1: 2010. ### **Application Domains** - Industrial - Laboratory - Medical. N° 88.44.52.000.0 Page 1/8 ### **Insulation coordination** | Parameter | Symbol | Unit | Value | Comment | |--|-------------------------------------|------|-------|--| | Rated insulation rms voltage, basic insulation | $U_{\scriptscriptstyle \mathrm{b}}$ | V | 1600 | IEC 61010-1 conditions - over voltage cat III - pollution degree 2 | | Rated insulation rms voltage, reinforced insulation | $U_{\scriptscriptstyle \mathrm{b}}$ | V | 300 | IEC 61010-1 conditions - over voltage cat III - pollution degree 2 | | Rated insulation rms voltage, basic insulation | $U_{\mathtt{b}}$ | V | 1000 | EN 50178 conditions - over voltage cat III - pollution degree 2 | | Rated insulation rms voltage, reinforced insulation | $U_{\mathtt{b}}$ | V | 600 | EN 50178 conditions - over voltage cat III - pollution degree 2 | | Drag voltage for AC inculation test, 50/60 Hz, 1 min | $U_{\rm d}$ | kV | 4.6 | Between primary and secondary + shield | | Rms voltage for AC insulation test, 50/60 Hz, 1 min | | V DC | 200 | Between secondary and shield | | Impulse withstand voltage 1.2/50 μs | Û _w | kV | 8.5 | | | Clearance (pri sec.) | d _{CI} | mm | 9 | Shortest distance through air | | Creepage distance (pri sec.) | d _{Cp} | mm | 9 | Shortest path along device body | | Comparative tracking index | СТІ | V | 600 | | If insulated cable is used for the primary circuit, the voltage category could be improved with the following table (for single insulation) (IEC 61010-1 standard): Cable insulated (primary) Category HAR03 1750 V CAT III HAR05 1850 V CAT III HAR07 1950 V CAT III ### **Environmental and mechanical characteristics** | Parameter | Symbol | Unit | Min | Тур | Max | Comment | |-------------------------------|----------------|------|-----|-----|-----|--------------------| | Ambient operating temperature | T _A | °C | 10 | | 50 | | | Ambient storage temperature | $T_{\rm s}$ | °C | -20 | | 85 | | | Relative humidity | RH | % | 20 | | 80 | Non-condensing | | Dimensions | | | | | | See drawing page 8 | | Mass | т | kg | | 0.8 | | | # **Electrical data** At $T_{\rm A}$ = 25 °C, ± $U_{\rm C}$ = ± 15 V, unless otherwise noted. | Parameter | Symbol | Unit | Min | Тур | Max | Comment | |---|--------------------------------|-----------|--------|--------|--------|---| | Primary continuous direct current | $I_{\scriptscriptstyle{PNDC}}$ | Α | -600 | | 600 | | | Primary nominal rms current | $I_{\scriptscriptstyle{PN}}$ | Α | | | 424 | | | Primary current, measuring range | $I_{\scriptscriptstyle{PM}}$ | Α | -600 | | 600 | | | Measuring resistance | $R_{\scriptscriptstyle{M}}$ | Ω | 0 | | 5 | See graph page 5 | | Secondary current | $I_{ m S}$ | А | -0.4 | | 0.4 | | | Conversion ratio | K _N | | | 1:1500 | | | | Resistance of secondary winding | R _s | Ω | | 11 | | | | Overload capability 1) | $\hat{I}_{_{\mathrm{P}}}$ | kA | -3 | | 3 | @ pulse of 100 ms | | Supply voltage | U _c | V | ±14.25 | ±15 | ±15.75 | | | Current consumption | $I_{\scriptscriptstyle m C}$ | mA | | | 150 | $\begin{array}{c} \operatorname{Add} I_{\operatorname{s}} \operatorname{for} \operatorname{total} \\ \operatorname{current} \operatorname{consumption} \end{array}$ | | Output rms noise 0 10 Hz ²⁾ | | | | | 0.08 | | | Output rms noise 0 100 Hz 2) |] | | | | 0.3 | | | Output rms noise 0 1 kHz 2) | $V_{_{ m no}}$ | ppm | | | 1 | | | Output rms noise 0 10 kHz 2) | | | | | 6 | | | Output rms noise 0 100 kHz 2) | 1 | | | | 15 | | | Re-injected rms noise on primary bus bar | | μV | | | 5 | 0 50 kHz | | Electrical offset current + self magnetization + effect of earth magnetic field ²⁾ | I_{OE} | ppm | -15 | | 15 | | | Temperature coefficient of $I_{\mathrm{OE}}^{\ \ 2)}$ | TCI _{OE} | ppm/K | -0.5 | | 0.5 | 10 °C 50 °C | | Offset stability 2) | | ppm/month | -0.8 | | 0.8 | | | Linearity error 2) | $arepsilon_{ot}$ | ppm | -1.5 | | 1.5 | | | Step response time to 90 % of $I_{\mbox{\tiny PN DC}}$ | t _r | μs | | | 1 | d <i>i</i> /d <i>t</i> of 100 A/μs | | di/dt accurately followed | di/dt | A/µs | 100 | | | | | Frequency bandwidth (± 1 dB) | BW | kHz | 0 | 100 | | $\begin{array}{c} {\rm Small\text{-}signal} \\ {\rm bandwidth,} \\ {\rm 0.5\%~of~} I_{\rm PM} \end{array}$ | | Frequency bandwidth (± 3 dB) | BW | kHz | 0 | 300 | | $\begin{array}{c} {\rm Small\text{-}signal} \\ {\rm bandwidth,} \\ {\rm 0.5\%~of~} I_{\rm PM} \end{array}$ | ¹⁾ Single pulse only, not AC. The transducer may require a few seconds to return to normal operation when autoreset system is running. $^{^{\}rm 2)}$ All ppm figures refer to full-scale which corresponds to a secondary current ($I_{\rm S}$) of 0.4 A. ### Overload protection - Electrical specification - Status The overload occurs when the primary current I_p exceeds a trip level such that the fluxgate detector becomes completely saturated and, consequently, the transducer will switch from normal operation to overload mode. This trip level is guaranteed to be greater than 110 % of $I_{PN\,DC}$ and its actual value depends on operating conditions such as temperature and measuring resistance. When this happens, the transducer will shut down the measuring circuit and wait until the primary current is near zero. #### Under these conditions: - The signal V_{out} (operation status between pin 3 and 8 of the D-sub connector) switches to V+. In other words, the output transistor is switched off (i.e., no current from collector to emitter). See the status port wiring below. - The green LED indicator (normal operation status) turns off. When the primary current returns in the range of -1 A to 1 A, the measuring circuit is automatically re-enabled, the signal V_{out} switches to ground (V_{out} < 0.2 V) and the green LED indicator (normal operation status) is again lit. # Status/interlock port wiring Some recommended standard values of *R* are given in the following table: | Power supply voltage $U_{\rm c}$ | $R_{\scriptscriptstyle \sf min}$ (k Ω) | $R_{\scriptscriptstyle max}$ (k Ω) | R standard values ± 5 % | |----------------------------------|--|--|-------------------------| | 5 V | 0.153 | 2.3 | 180 Ω, 1 kΩ or 2.2 kΩ | | 12 V | 0.386 | 5.8 | 470 Ω, 2.2 kΩ or 4.7 kΩ | | 24 V | 0.786 | 11.8 | 1 kΩ, 2.2 kΩ or 10 kΩ | ### Electrical data - status port | Parameter | Symbol | Unit | Min | Тур | Max | Comment | |--|--------------------------------------|------|-----|-----|-----|---------| | Collector-Emitter voltage, off-state | $V_{\rm CEoff}$ | V | 4 | | 45 | | | Collector-Emitter current, on-state | $I_{\scriptscriptstyle{ extsf{CE}}}$ | mA | 2 | | 30 | | | Reverse Collector-Emitter voltage, off-state | V _{CER off} | V | | | 5 | | | Collector-Emitter voltage, on-state | V _{CE on} | V | | | 0.2 | | # Maximum measuring resistance versus primary current ### **Safety** This transducer must be used in limited-energy secondary circuits according to IEC 61010-1. This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions. Caution, risk of electrical shock When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected. # Performance parameters definition The schematic used to measure all electrical parameters is shown below: ## **Transducer simplified model** The static model of the transducer at temperature T_A is: $$I_{\rm S} = K_{\rm N} \cdot I_{\rm P} + \text{error}$$ In which $$\text{error} = I_{\text{OE}} \text{ at 25 °C} + I_{\text{OT}} (T_{\text{A}}) + \varepsilon_{\text{L}} \cdot I_{\text{PM}} \cdot K_{\text{N}}$$ Where, $$I_{\text{OT}}\left(T_{\text{A}}\right) = TCI_{\text{OE}} \cdot |T_{\text{A}} - 25 \text{ °C}| \cdot I_{\text{PM}} \cdot K_{\text{N}}$$: secondary current (A) : conversion ratio (1: 1500) : primary current (A) : primary current, measuring range (A) : ambient operating temperature (°C) : electrical offset current (A) : temperature variation of $I_{\scriptscriptstyle \rm OE}$ at $T_{\scriptscriptstyle \rm A}({\rm A})$: linearity error This is the absolute maximum error. As all errors are independent, a more realistic way to calculate the error would be to use the following formula: error = $$\sqrt{\sum (error_component)^2}$$ ### Linearity To measure linearity, the primary current (DC) is cycled from 0 to $I_{\rm PM}$, then to ${}^{-}I_{\rm PM}$ and back to 0 (equally spaced $I_{\rm PM}$ /10 steps). The linearity error $\varepsilon_{\rm L}$ is the maximum positive or negative difference between the measured points and the linear regression line, expressed in parts per million (ppm) of fullscale which corresponds to the maximum measured value. ### **Electrical offset** The electrical offset current $I_{\rm OE}$ is the residual output current when the input current is zero. The temperature variation $I_{\rm OT}$ of the electrical offset current $I_{\rm OE}$ is the variation of the electrical offset from 25 °C to the considered temperature. ### Response time The response time t_r is shown in the next figure. It depends on the primary current di/dt and it's measured at nominal current. ### **Dimensions** (in mm) ### Connection • Normal operation status (Pins 3 and 8) Normal operation means: - \pm 15 V (\pm $U_{\rm C}$) present - zero detector is working - compensation current - \leq 110 % of I_{PNDC} - green LED indicator is lit. # Remarks - $\bullet \ \ I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow. - We recommend that a shielded output cable and plug are used to ensure the maximum immunity against electrostatic fields. - Pin 4 should be connected to cable and connector shield to maintain lowest output noise. - Temperature of the primary conductor should not exceed 50 °C. ### **Mechanical characteristics** General tolerance ± 0.3 mm Transducer fastening - Straight mounting 2 holes Ø 6.5 mm 2 x M6 steel screws Recommended fastening torque 4.4 Nm - Flat mounting 4 holes Ø 5.5 mm 4 x M5 steel screws Recommended fastening torque 3.7 Nm Connection of secondary on D-SUB-9, connector UNC 4-40 All mounting recommendations are given for a standard mounting. Screws with flat and spring washers. • Primary through hole $\emptyset \le 30 \text{ mm}$ Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: Products/Product Documentation.