DESCRIPTION

The M5M5256DP,KP,FP,VP,RV is 262,144-bit CMOS static RAMs organized as 32,768 -words by 8 -bits which is fabricated using high-performance 3 polysilicon CMOS technology. The use of resistive load NMOS cells and CMOS periphery results in a high density and low power static RAM. Stand-by current is small enough for battery back-up application. It is ideal for the memory systems which require simple interface.
Especially the M5M5256DVP,RV are packaged in a 28-pin thin small outline package. Two types of devices are available, M5M5256DVP(normal lead bend type package),
M5M5256DRV(reverse lead bend type package). Using both types of devices, it becomes very easy to design a printed circuit board.

FEATURE

Type	Access time (max)	Power supply current	
		Active (max)	Stand-by (max)
M5M5256DP, KP, FP,VP,RV-45LL M5M5256DP, KP, FP,VP,RV-55LL M5M5256DP, KP, FP,VP,RV-70LL	45ns 55ns 70ns	$55 \mathrm{~mA}$$(\mathrm{Vcc}=5.5 \mathrm{~V})$	$40 \mu \mathrm{~A}$ ($\mathrm{Vcc}=5.5 \mathrm{~V}$)
M5M5256DP, KP, FP,VP,RV-45XL M5M5256DP, KP, FP,VP,RV-55XL M5M5256DP, KP, FP,VP,RV-70XL	45ns 55ns 70ns		$10 \mu \mathrm{~A}$ ($\mathrm{Vcc}=5.5 \mathrm{~V}$) $0.05 \mu \mathrm{~A}$ (Vcc=3.0V, Typical)

-Single +5 V power supply
-No clocks, no refresh
-Data-Hold on +2.0 V power supply
-Directly TTL compatible : all inputs and outputs
-Three-state outputs: OR-tie capability
-/OE prevents data contention in the I/O bus
-Common Data I/O
-Battery backup capability
-Low stand-by current $\cdots \cdots \cdots \cdots \cdot . .0 .05 \mu$ (typ.)

PACKAGE

M5M256DP	$: 28$ pin 600 mil DIP
M5M5256DKP	$: 28$ pin 300 mil DIP
M5M5256DFP	$: 28$ pin 450 mil SOP
M5M5256DVP,RV $: 28$ pin $8 \times 13.4 \mathrm{~mm}^{2}$	

TSOP

APPLICATION

Small capacity memory units

PIN CONFIGURATION (TOP VIEW)

$52 / \mathrm{OE}$		A10 ${ }^{2}$
[3 A11		15
124 A9		DQ8 14
23 A8		DQ7 is
26 A13		DQ6 17
$\underline{D 1} / \mathrm{W}$		DQ5 16
28 Vcc	M5M5256DVP	DQ4 15
\square_{1} A14		GND it
L2 A12	-1	DQ3 13
53 A7		DQ2 12
4 A6		DQ11
5 A5		A0 110
5 A4		A1 9
[73		A2 8

Outline 28P2C-A (DVP)

Outline 28P2C-B (DRV)

FUNCTION

The operation mode of the M5M5256DP,KP,FP,VP,RV is determined by a combination of the device control inputs / S, /W and /OE. Each mode is summarized in the function table.
A write cycle is executed whenever the low level /W overlaps with the low level /S. The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of /W, /S, whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable /OE directly controls the output stage. Setting the /OE at a high level,the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is executed by setting / W at a high level and /OE at a low level while / S are in an active state.
When setting / S at a high level, the chip is in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by $/ \mathrm{S}$. The power supply current is reduced as low as the stand-by current which is specified as Icc3 or Icc4, and the memory data can be held at +2 V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

FUNCTION TABLE

/S	W	IOE	Mode	DQ	Icc
H	X	X	Non selection	High-impedance	Stand-by
L	L	X	Write	D N $^{\text {Active }}$	
L	H	L	Read	Dout	Active
L	H	H		High-impedance	Active

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage	With respect to GND	-0.3*~7.0	V
VI	Input voltage		$\begin{gathered} -0.3^{*} \sim \mathrm{Vcc}+0.3 \\ (\operatorname{Max~7.0)} \end{gathered}$	V
Vo	Output voltage		0~Vcc	V
Pd_{d}	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	700	mW
Topr	Operating temperature		-40~85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-65~150	${ }^{\circ} \mathrm{C}$

* -3.0 V in case of AC (Pulse width $\leq 30 \mathrm{~ns}$)

DC ELECTRICAL CHARACTERISTICS ($\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5 \mathrm{~V} \pm 10 \%$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min	Typ	Max	
$\mathrm{V}_{\text {H }}$	High-level input voltage			2.2		$\begin{gathered} \hline \mathrm{Vcc} \\ +0.3 \end{gathered}$	V
V_{L}	Low-level input voltage			-0.3		0.8	V
Voh1	High-level output voltage 1	l он $=-1 \mathrm{~mA}$		2.4			V
Vон2	High-level output voltage 2	Іон=-0.1mA		$\begin{aligned} & \hline \text { Vcc } \\ & -0.5 \end{aligned}$			V
Vol	Low-level output voltage	lot=2mA				0.4	V
1	Input current	V I $=0 \sim \mathrm{Vcc}$				± 1	uA
lo	Output current in off-state	$\begin{aligned} & / \mathrm{S}=\mathrm{V}_{\text {н }} \text { or or } / \mathrm{OE}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{~V}_{\text {/O }=0 \sim \mathrm{Vcc}} \end{aligned}$				± 1	uA
Icc1	Active supply current (AC, MOS level)	$/ \mathrm{S} \leq 0.2 \mathrm{~V},$ Other inputs $<0.2 \mathrm{~V}$ or $>\mathrm{Vcc}-0.2 \mathrm{~V}$ Output-open Min. cycle	45ns		35	50	mA
			55ns		30	45	
			70ns		25	40	
Icc2	Active supply current (AC, TTL level)	$\begin{aligned} & \text { IS=VIL, } \\ & \text { other inputs=} V_{I H} \text { or } V_{L} \\ & \text { Output-open Min. cycle } \end{aligned}$	45ns		35	55	mA
			55ns		30	50	
			70ns		25	45	
Icc3	Stand-by current	$/ \mathrm{S} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$, other inputs=0~Vcc	-LL			40	uA
			-XL		0.1	10	
Icc4	Stand-by current	$/ \mathrm{S}=\mathrm{V}$ Ін,other inputs $=0 \sim \mathrm{Vcc}$				3	mA

* -3.0 V in case of AC (Pulse width $\leq 30 \mathrm{~ns}$)

CAPACITANCE ($\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
Cl_{1}	Input capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}, \mathrm{V}_{\mathrm{I}}=25 \mathrm{mVrms}, \mathrm{f}=1 \mathrm{MHz}$			6	pF
Co	Output capacitance	V o $=\mathrm{GND}, \mathrm{V}_{\mathrm{o}}=25 \mathrm{mVrms}, \mathrm{f}=1 \mathrm{MHz}$			8	pF

Note 0: Direction for current flowing into an IC is positive (no mark).
1: Typical value is one at $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
2: CI, Co are periodically sampled and are not 100% tested.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$, unless otherwise noted) (1) MEASUREMENT CONDITIONS

Input pulse level............
Input rise and fall time.
Reference level..........
Output loads.............
(2) READ CYCLE

Symbol	Parameter	Limits						Unit
		-45LL, XL		-55LL, XL		-70LL, XL		
		Min	Max	Min	Max	Min	Max	
tcr	Read cycle time	45		55		70		ns
$\mathrm{ta}_{2}(\mathrm{~A})$	Address access time		45		55		70	ns
ta (S)	Chip select access time		45		55		70	ns
ta(OE)	Output enable access time		25		30		35	ns
tdis(S)	Output disable time after /S high		15		20		25	ns
tdis(OE)	Output disable time after /OE high		15		20		25	ns
ten(S)	Output enable time after /S low	5		5		5		ns
ten(OE)	Output enable time after /OE low	5		5		5		ns
$\operatorname{tv}(\mathrm{A})$	Data valid time after address	10		10		10		ns

(3) WRITE CYCLE

Symbol	Parameter	Limits						Unit
		-45LL, XL		-55LL, XL		-70LL, XL		
		Min	Max	Min	Max	Min	Max	
tcw	Write cycle time	45		55		70		ns
$\mathrm{tw}_{\mathrm{w}}(\mathrm{W})$	Write pulse width	35		40		50		ns
tsu(A)	Address setup time	0		0		0		ns
tsu(A-WH)	Address setup time with respect to /W high	40		50		65		ns
tsu(S)	Chip select setup time	40		50		65		ns
tsu(D)	Data setup time	20		25		30		ns
$\operatorname{th}(\mathrm{D})$	Data hold time	0		0		0		ns
trec(W)	Write recovery time	0		0		0		ns
tdis(W)	Output disable time from /W low		15		20		25	ns
tdis(OE)	Output disable time from /OE high		15		20		25	ns
ten(W)	Output enable time from /W high	5		5		5		ns
ten(OE)	Output enable time from /OE low	5		5		5		ns

(4) TIMING DIAGRAMS

Write cycle (/W control mode)

M5M5256DP,KP,FP,VP,RV -45LL-I,-55LL-I,-70LL-I, -45XL-I,-55XL-1,-70XL-I

Write cycle (/S control mode)

Note 3 : Hatching indicates the state is "don't care".
4 : Writing is executed in overlap of / S and /W low.
5 : If /W goes low simultaneously with or prior to /S, the outputs remain in the high impedance state.
6 : Don't apply inverted phase signal externally when DQ pin is output mode.
7 : ten, tdis are periodically sampled and are not 100% tested.

POWER DOWN CHARACTERISTICS
(1) ELECTRICAL CHARACTERISTICS $\left(\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits		Unit
				Min	Typ	Max	
VcC (PD)	Power down supply voltage			2			V
$\mathrm{V}_{1(\mathrm{~S})}$	Chip select input /S	$2.2 \mathrm{~V} \leq \mathrm{VCC}(\mathrm{PD})$		2.2			V
		$2 \mathrm{~V} \leq \mathrm{VCC}(\mathrm{PD}) \leq 2.2 \mathrm{~V}$			Vcc(PD)		V
ICC (PD)	Power down supply current	$\mathrm{Vcc}=3 \mathrm{~V}, / \mathrm{S} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$, Other inputs=0~Vcc	-LL			$\underbrace{20}_{\text {(Note 7) }}$	uA
			-XL		0.05	$\underset{\text { (Note 8) }}{4}$	

Note7: ICC (PD) = 1uA in case of $\mathrm{Ta}=25^{\circ} \mathrm{C}$
Note8: ICC (PD) $=0.2 \mathrm{uA}$ in case of $\mathrm{Ta}=25^{\circ} \mathrm{C}$
(2) TIMING REQUIREMENTS $\left(\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits | | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | | Typ | Max | ns |
| tsu (PD) | Power down set up time | | 0 | | |
| trec (PD) | Power down recovery time | | tCR | | ns |

(3) POWER DOWN CHARACTERISTICS

/S control mode
Vcc
/S

