# EM78P153K

# 8-Bit Microcontroller with OTP ROM

# Product Specification

Doc. Version 1.2

**ELAN MICROELECTRONICS CORP.** 

August 2012



#### **Trademark Acknowledgments:**

IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

# Copyright © 2012 by ELAN Microelectronics Corporation All Rights Reserved

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.



#### **ELAN MICROELECTRONICS CORPORATION**

#### Headquarters:

No. 12, Innovation 1<sup>st</sup> Road Hsinchu Science Park Hsinchu, TAIWAN 30076 Tel: +886 3 563-9977 Fax: +886 3 563-9966 webmaster@emc.com.tw http://www.emc.com.tw

#### Hong Kong:

# Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780

#### USA:

#### Elan Information Technology Group (U.S.A.)

PO Box 601 Cupertino, CA 95015 U.S.A. Tel: +1 408 366-8225 Fax: +1 408 366-8225

#### Korea:

# Elan Korea Electronics Company, Ltd.

301 Dong-A Building 632 Kojan-Dong, Namdong-ku Incheon City, KOREA Tel: +82 32 814-7730 Fax: +82 32 813-7730

#### Shenzhen:

# Elan Microelectronics Shenzhen, Ltd.

elan-sz@elanic.com.cn

8A Floor, Microprofit Building Gaoxin South Road 6 Shenzhen Hi-tech Industrial Park South Area, Shenzhen CHINA 518057 Tel: +86 755 2601-0565 Fax: +86 755 2601-0500

#### Shanghai:

# ELAN Microelectronics Shanghai, Ltd.

6F, Ke Yuan Building No. 5 Bibo Road Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-0273 elan-sh@elanic.com.cn



| 1 | Gen   | eral De | scription                                       | 1  |
|---|-------|---------|-------------------------------------------------|----|
| 2 | Feat  | ures    |                                                 | 1  |
| 3 | Pin A | Assign  | ment                                            | 2  |
| 4 | Pin l | Descrip | otion                                           | 3  |
| 5 | Fund  | ctional | Description                                     | 4  |
|   | 5.1   |         | tional Registers                                |    |
|   | 0     | 5.1.1   | R0 (Indirect Addressing Register)               |    |
|   |       | 5.1.2   | R1 (Timer Clock/Counter)                        |    |
|   |       | 5.1.3   | R2 (Program Counter and Stack)                  |    |
|   |       | 5.1.4   | R3 (Status Register)                            |    |
|   |       | 5.1.5   | R4 (RAM Select Register)                        | 7  |
|   |       | 5.1.6   | R5 ~ R6 (Port 5 ~ Port 6)                       | 7  |
|   |       | 5.1.7   | RF (Interrupt Status Register)                  | 7  |
|   |       | 5.1.8   | R10 ~ R2F                                       | 7  |
|   | 5.2   | Specia  | al Function Registers                           | 8  |
|   |       | 5.2.1   | A (Accumulator)                                 | 8  |
|   |       | 5.2.2   | CONT (Control Register)                         |    |
|   |       | 5.2.3   | IOC5 ~ IOC6 (I/O Port Control Register)         |    |
|   |       | 5.2.4   | IOCB (Pull-down Control Register)               |    |
|   |       | 5.2.5   | IOCC (Open-drain Control Register)              |    |
|   |       | 5.2.6   | IOCD (Pull-high Control Register)               |    |
|   |       | 5.2.7   | IOCE (WDT Control Register)                     |    |
|   |       | 5.2.8   | IOCF (Interrupt Mask Register)                  |    |
|   | 5.3   |         | VDT and Prescaler                               |    |
|   | 5.4   |         | orts                                            |    |
|   | 5.5   | Reset   | and Wake-up                                     |    |
|   |       | 5.5.1   | Reset                                           |    |
|   |       | 5.5.2   | Summary of Registers Initialized Values         |    |
|   |       | 5.5.3   | Status of RST, T, and P of the Status Register  |    |
|   | 5.6   | Interru | ıpt                                             | 20 |
|   | 5.7   | Oscilla | ator                                            | 21 |
|   |       | 5.7.1   | Oscillator Modes                                |    |
|   |       | 5.7.2   | Crystal Oscillator/Ceramic Resonators (Crystal) |    |
|   |       | 5.7.3   | External RC Oscillator Mode                     |    |
|   |       | 5.7.4   | Internal RC Oscillator Mode                     |    |
|   | 5.8   |         | Option Register                                 |    |
|   |       | 5.8.1   | Code Option Register (Word 0)                   |    |
|   |       | 5.8.2   | Code Option Register (Word 1)                   |    |
|   |       | 5.8.3   | Code Option Register (Word 2)                   | 28 |



|   | 5.9  | Power-on Considerations             | 29 |
|---|------|-------------------------------------|----|
|   | 5.10 | Programmable Oscillator Set-up Time | 29 |
|   | 5.11 | External Power-on Reset Circuits    | 29 |
|   | 5.12 | Residue-Voltage Protection          | 30 |
|   | 5.13 | Instruction Set                     | 31 |
| 6 | Abso | olute Maximum Ratings               | 34 |
| 7 | Elec | trical Characteristics              | 34 |
|   | 7.1  | DC Characteristics                  | 34 |
|   | 7.2  | AC Characteristics                  | 36 |
|   | 7.3  | Device Characteristics              | 37 |
| 8 | Timi | ng Diagrams                         | 41 |
|   |      | APPENDIX                            |    |
| Α | Orde | ering and Manufacturing Information | 42 |
| В | Pack | rage Type                           | 43 |
| С | Pack | rage Information                    | 44 |

## **Specification Revision History**

| Doc. Version | oc. Version Revision Description                                                                                                                                                                                                                                                                                      |            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.0          | Official original Specification                                                                                                                                                                                                                                                                                       | 2011/11/22 |
| 1.1          | 1. Added Ordering and Manufacturing Information     2. Modified the Instruction Table, not the Instruction Set     3. Added diagram of Voltage to Frequency Curve in     Section 7.3 Device Characteristics     4. Modified the part number     5. Modified the description about POR and LVR in the Features section |            |
| 1.2          | <ol> <li>Fixed up the part number issues</li> <li>Added 10-Pin SSOP Package</li> </ol>                                                                                                                                                                                                                                | 2012/08/07 |



### 1 General Description

The EM78P153K is an 8-bit microprocessor designed and developed with low-power and high-speed CMOS technology. The device has an on-chip 1024×13-bit Electrical One Time Programmable Read Only Memory (OTP-ROM). It provides a protection bit to prevent intrusion of user's OTP memory code. Fifteen Code option bits are also available to meet user's requirements.

With enhanced OTP-ROM features, the EM78P153K provides a convenient way of developing and verifying user's programs. Moreover, this OTP device offers the advantages of easy and effective program updates, using development and programming tools. Users can avail of the ELAN Writer to easily program their development code.

#### 2 Features

- CPU configuration
  - 1k×13 bits on-chip ROM
  - 32×8 bits on-chip registers (SRAM, general purpose)
  - 5-level stacks for subroutine nesting
  - Less than 1.5 mA at 5V / 4 MHz
  - Typically 15 µA at 3V / 32kHz
  - Typically 1 µA during Sleep mode
- I/O port configuration
  - 2 bidirectional I/O ports : P5, P6
  - 12 I/O pins
  - Wake-up port : P6
  - 6 Programmable pull-down I/O pins
  - 7 programmable pull-high I/O pins
  - 7 programmable open-drain I/O pins
  - External interrupt : P60
- Operating voltage range:
  - 2.1V ~ 5.5V at 0 ~ 70°C (Commercial)
  - 2.3V ~ 5.5V at -40 ~ 85°C (Industrial)
- Operating frequency range (base on 2 clocks):
  - IRC mode:

| Internal |                     | Drift Rate      |         |       |
|----------|---------------------|-----------------|---------|-------|
| RC Freq. | Temp.<br>(-40~85°C) | Voltage         | Process | Total |
| 4 MHz    | ± 1%                | ± 3% @ 2.1~5.5V | ± 2%    | ± 6%  |
| 16 MHz   | ± 1%                | ± 1% @ 4.0~5.5V | ± 2%    | ± 4%  |
| 8 MHz    | ± 1%                | ± 2% @ 3.0~5.5V | ± 2%    | ± 5%  |
| 1 MHz    | ± 1%                | ± 3% @ 2.1~5.5V | ± 2%    | ± 6%  |

· Crystal mode:

DC ~ 20 MHz / 2clks @ 5V

DC ~ 8 MHz / 2clks @ 3V

DC ~ 4MHz / 2clks @ 2.1V

• ERC mode:

DC ~ 2 MHz / 2clks @ 2.1V

- Peripheral configuration
  - 8-bit Real Time Clock / Counter (TCC) with selective signal sources, trigger edges, and overflow interrupt
  - Power-on reset and 3 programmable level voltage reset

POR: 1.8V (Default), LVR: 4.0, 3.5, 2.7V

- 2-/ 4 clocks per instruction cycle selected by code option
- High EFT immunity
- Three available interrupts:
  - TCC overflow interrupt
  - Input-port status changed interrupt (wake-up from sleep mode)
  - External interrupt
- Special features
  - Programmable free running watchdog timer
  - Power saving sleep mode
  - Selectable oscillation mode
  - Programmable prescaler of oscillator set-up time
- Package type:

14-pin DIP 300mil : EM78P153KD14J
 14-pin SOP 150mil : EM78P153KSO14J
 10-pin SSOP 150mil : EM78P153KSS10J

**Note:** These are all green products which do not contain hazardous substances.



# 3 Pin Assignment

#### 14-Pin DIP/SOP

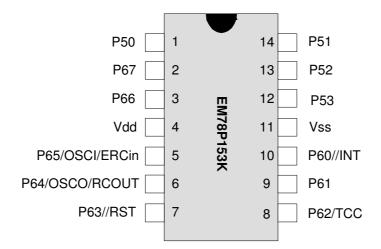



Figure 3-1 EM78P153KD14J/SO14J

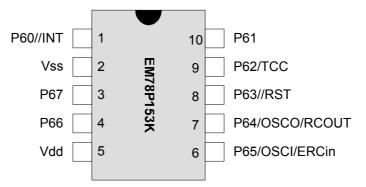



Figure 3-2 EM78P153KSS10J



# Pin Description

| Name Function Input Type Output Type Descri |                   | Description |      |                                                                                                                                               |
|---------------------------------------------|-------------------|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| P53 P53                                     |                   | ST          | CMOS | Bidirectional I/O pin                                                                                                                         |
| P52<br>P51<br>P50                           | P52<br>P51<br>P50 | ST          | CMOS | Bidirectional I/O pin with programmable pull-low                                                                                              |
| P67<br>P66                                  | P67<br>P66        | ST          | CMOS | Bidirectional I/O pin with programmable pull-<br>high, open-drain and wake-up pin from sleep<br>mode when the pin status changes.             |
| P65/OSCI                                    | P65               | ST          | CMOS | Bidirectional I/O pin with programmable pull-<br>high, open-drain and wake-up pin from sleep<br>mode when the pin status changes.             |
|                                             | OSCI              | XTAL        | -    | Clock input of crystal/ resonator oscillator                                                                                                  |
| P64/OSCO                                    | P64               | ST          | CMOS | Bidirectional I/O pin with programmable pull-<br>high, open-drain and wake-up pin from sleep<br>mode when the pin status changes.             |
|                                             | osco              | -           | XTAL | Clock output of crystal/ resonator oscillator                                                                                                 |
| P63//RESET                                  | P63               | ST          | I    | Input pin and wake-up pin from sleep mode when the pin status changes.                                                                        |
|                                             | /RESET            | ST          | -    | Reset Pin, Active Low.                                                                                                                        |
| P62/TCC                                     | P62               | ST          | CMOS | Bidirectional I/O pin with programmable pull-<br>high, pull-low, open-drain and wake-up pin from<br>sleep mode when the pin status changes.   |
|                                             | TCC               | ST          | -    | TCC External Input                                                                                                                            |
| P61                                         | P61               | ST          | CMOS | Bidirectional I/O pin<br>with programmable pull-high, pull-low,<br>open-drain and wake-up pin from sleep mode<br>when the pin status changes. |
| P60/INT                                     | P60               | ST          | CMOS | Bidirectional I/O pin with programmable pull-<br>high, pull-low, open-drain and wake-up pin from<br>sleep mode when the pin status changes.   |
|                                             | /INT              | ST          | _    | External interrupt pin triggered by a falling edge                                                                                            |
| VDD                                         | VDD               | Power       | -    | IC Power supply                                                                                                                               |
| VSS                                         | VSS               | Power       | -    | Ground for the IC                                                                                                                             |



## 5 Functional Description

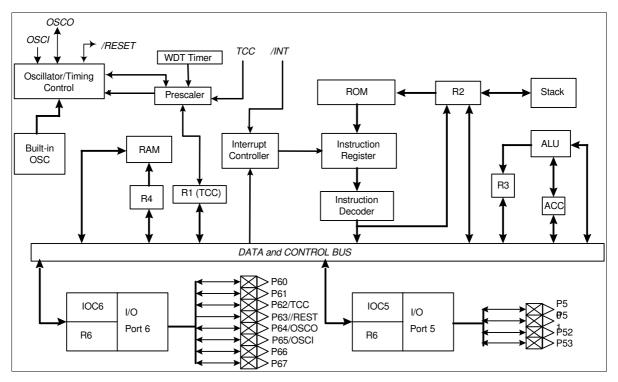



Figure 5-1 EM78P153K Functional Block Diagram

#### 5.1 Operational Registers

#### 5.1.1 R0 (Indirect Addressing Register)

R0 is not a physically implemented register. It is used as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select Register (R4).

#### 5.1.2 R1 (Timer Clock/Counter)

- Incremented by an external signal edge, which is defined by TE bit (CONT-4) through the TCC pin, or by the instruction cycle clock.
- Writable and readable as any other registers.
- Defined by resetting PAB (CONT-3).
- The prescaler is assigned to TCC, if the PAB bit (CONT-3) is reset.
- The contents of the prescaler counter will be cleared only when the TCC register is written with a value.



#### 5.1.3 R2 (Program Counter and Stack)

Depending on the device type, R2 and hardware stack are 10-bit wide. The structure is depicted in the following figure.



Figure 5-2 Program Counter Organization

- The configuration structure generates 1024×13 bits on-chip OTP ROM addresses to the relative programming instruction codes. One program page is 1024 words long.
- R2 is set as all "0" when under RESET condition.
- "JMP" instruction allows direct loading of the lower 10 program counter bits. Thus, "JMP" allows PC to go to any location within a page.
- "CALL" instruction loads the lower 10 bits of the PC, and then PC+1 are pushed onto the stack. Thus, the subroutine entry address can be located anywhere within a page.
- "RET" ("RETLk", "RETI") instruction loads the program counter with the contents of the top-level stack.
- Any instruction written to R2 (e.g. "ADD R2, A", "MOV R2, A", "BC R2, 6",...) will cause the ninth bit and the tenth bit (A8 ~ A9) of the PC to be cleared. Hence, the computed jump is limited to the first 256 locations of a page.
- All instructions are single instruction cycle (fclk / 2 or fclk / 4) except for instructions that would change the contents of R2. Such instructions will need one more instruction cycle.



#### ■ The Data Memory Configuration is as follows:

| Address | R PAGE Registers      | IOC PAGE Registers                |
|---------|-----------------------|-----------------------------------|
| 00      | R0 (IAR)              | Reserve                           |
| 01      | R1 (TCC)              | CONT (Control Register)           |
| 02      | R2 (PC)               | Reserve                           |
| 03      | R3 (Status)           | Reserve                           |
| 04      | R4 (RSR)              | Reserve                           |
| 05      | R5 (Port 5)           | IOC5 (I/O Port Control Register)  |
| 06      | R6 (Port 6)           | IOC6 (I/O Port Control Register)  |
| 07      | Reserve               | Reserve                           |
| 08      | Reserve               | Reserve                           |
| 09      | Reserve               | Reserve                           |
| 0A      | Reserve               | Reserve                           |
| 0B      | Reserve               | IOCB (Pull-down Register)         |
| 0C      | Reserve               | IOCC (Open-drain Control)         |
| 0D      | Reserve               | IOCD (Pull-high Control Register) |
| 0E      | Reserve               | IOCE (WDT Control Register)       |
| 0F      | RF (Interrupt Status) | IOCF (Interrupt Mask Register)    |
| 10      |                       |                                   |
| :       | General Registers     |                                   |
| 2F      |                       |                                   |

Figure 5-3 Data Memory Configuration

#### 5.1.4 R3 (Status Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RST   | GP1   | GP0   | Т     | Р     | Z     | DC    | С     |

Bit 7 (RST): Bit for reset type

0: Set to "0" if the device wakes up from other reset type

1: Set to "1" if the device wakes up from sleep mode on a pin change

Bits 6 ~ 5 (GP1 ~ GP0): General-purpose read/write bits

Bit 4 (T): Time-out bit

Set to "1" with the "SLEP" and "WDTC" commands, or during power up; and reset to "0" by WDT time-out.

Bit 3 (P): Power down bit

Set to "1" during power on or by a "WDTC" command; and reset to "0" by a "SLEP" command.

Bit 2 (Z): Zero flag

Set to "1" if the result of an arithmetic or logic operation is zero.

Bit 1 (DC): Auxiliary carry flag

Bit 0 (C): Carry flag



#### 5.1.5 R4 (RAM Select Register)

- Bits 7 ~ 6 are not used (Read only).
- Bits 7 ~ 6 set to "1" at all time.
- Bits 5 ~ 0 are used to select registers (Address: 0x00 ~ 0x06, 0x0F ~ 0x2F) in indirect addressing mode.
- See the Data Memory Configuration in Figure 5-3.

#### 5.1.6 R5 ~ R6 (Port 5 ~ Port 6)

R5 and R6 are I/O registers.

Only the lower 4 bits of R5 are available.

The upper 4 bits of R5 are fixed to "0".

P63 is input only.

#### 5.1.7 RF (Interrupt Status Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | -     | EXIF  | ICIF  | TCIF  |

Note: "1" means with interrupt request

"0" means no interrupt occurs

Bits 7 ~ 3: Not used. Set to "0" at all time.

**Bit 2 (EXIF):** External Interrupt Flag. Set by a falling edge on /INT pin, reset by software.

**Bit 1 (ICIF):** Port 6 input status changed interrupt flag. Set when Port 6 input changes, reset by software.

**Bit 0 (TCIF):** TCC Overflow Interrupt Flag. Set when TCC overflows, reset by software.

RF can be cleared by instruction but cannot be set.

IOCF is the interrupt mask register.

#### NOTE

The result of reading RF is the "logic AND" of RF and IOCF.

#### 5.1.8 R10 ~ R2F

These are all 8-bit general-purpose registers.



#### 5.2 Special Function Registers

#### 5.2.1 A (Accumulator)

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator, which is not an addressable register.

#### 5.2.2 CONT (Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GP    | /INT  | TS    | TE    | PAB   | PSR2  | PSR1  | PSR0  |

Bit 7 (GP): General purpose register

Bit 6 (/INT): Interrupt Enable flag

0: Masked by DISI or hardware interrupt

1: Enabled by ENI/RETI instructions

Bit 5 (TS): TCC signal source

0: Internal instruction cycle clock, P62 is a bidirectional I/O pin

1: Transition on the TCC pin

Bit 4 (TE): TCC Signal Edge

0: Increment if the transition from low to high takes place on the TCC pin

1: Increment if the transition from high to low takes place on the TCC pin

Bit 3 (PAB): Prescaler Assigned Bit

0: TCC

**1:** WDT

Bits 2 ~ 0 (PSR2 ~ PSR0): TCC / WDT prescaler bits

| PSR2 | PSR1 | PSR0 | TCC Rate | WDT Rate |
|------|------|------|----------|----------|
| 0    | 0    | 0    | 1:2      | 1:1      |
| 0    | 0    | 1    | 1:4      | 1:2      |
| 0    | 0 1  |      | 1:8      | 1:4      |
| 0    | 1    | 1    | 1:16     | 1:8      |
| 1    | 0    | 0    | 1:32     | 1:16     |
| 1    | 0    |      | 1:64     | 1:32     |
| 1    | 1 0  |      | 1:128    | 1:64     |
| 1    | 1 1  |      | 1:256    | 1:128    |

The CONT register is both readable and writable.



#### 5.2.3 IOC5 ~ IOC6 (I/O Port Control Register)

0: Defines the relative I/O pin as output

1: Puts the relative I/O pin into high impedance

Only the lower 4 bits of IOC5 are available to be defined.

IOC5 and IOC6 registers are both readable and writable.

#### 5.2.4 IOCB (Pull-down Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | /PD62 | /PD61 | /PD60 | -     | /PD52 | /PD51 | /PD50 |

Bit 7: Not used. Set to "1" at all time.

0: Enable internal pull-down

1: Disable internal pull-down

Bit 6 (/PD62): Control bit used to enable pull-down of the P62 pin.

Bit 5 (/PD61): Control bit used to enable pull-down of the P61 pin.

Bit 4 (/PD60): Control bit used to enable pull-down of the P60 pin.

Bit 3: Not used. Set to "1" at all time.

Bit 2 (/PD52): Control bit used to enable pull-down of the P52 pin.

Bit 1 (/PD51): Control bit used to enable pull-down of the P51 pin.

Bit 0 (/PD50): Control bit used to enable pull-down of the P50 pin.

The IOCB Register is both readable and writable.

#### 5.2.5 IOCC (Open-drain Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| OD67  | OD66  | OD65  | OD64  | -     | OD62  | OD61  | OD60  |

Bit 7 (OD67): Control bit used to enable open-drain of the P67 pin.

0: Disable open-drain output

1: Enable open-drain output

Bit 6 (OD66): Control bit used to enable open-drain of the P66 pin.

Bit 5 (OD65): Control bit used to enable open-drain of the P65 pin.

Bit 4 (OD64): Control bit used to enable open-drain of the P64 pin.

Bit 3: Not used. Set to "0" at all time.

Bit 2 (OD62): Control bit used to enable open-drain of the P62 pin.

Bit 1 (OD61): Control bit used to enable open-drain of the P61 pin.

Bit 0 (OD60): Control bit used to enable open-drain of the P60 pin.

The IOCC Register is both readable and writable.



#### 5.2.6 IOCD (Pull-high Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| /PH67 | /PH66 | /PH65 | /PH64 | -     | /PH62 | /PH61 | /PH60 |

Bit 7 (/PH67): Control bit is used to enable pull-high of the P67 pin.

0: Enable internal pull-high

1: Disable internal pull-high

Bit 6 (/PH66): Control bit used to enable pull-high of the P66 pin.

Bit 5 (/PH65): Control bit used to enable pull-high of the P65 pin.

Bit 4 (/PH64): Control bit used to enable pull-high of the P64 pin.

Bit 3: Not used. Set to "1" at all time.

Bit 2 (/PH62): Control bit used to enable pull-high of the P62 pin.

Bit 1 (/PH61): Control bit used to enable pull-high of the P61 pin.

Bit 0 (/PH60): Control bit used to enable pull-high of the P60 pin.

The IOCD Register is both readable and writable.

#### 5.2.7 IOCE (WDT Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WDTE  | EIS   | -     | -     | -     | -     | -     | -     |

Bit 7 (WDTE): Control bit used to enable the Watchdog timer.

0: Disable WDT

1: Enable WDT

WDTE is both readable and writable.

Bit 6 (EIS): Control bit is used to define the function of P60 (/INT) pin.

0: P60, bidirectional I/O pin.

1: /INT, external interrupt pin. In this case, the I/O control bit of P60 (Bit 0 of IOC6) must be set to "1."

When EIS is "0," the path of /INT is masked. When EIS is "1," the status of /INT pin can also be read by way of reading Port 6 (R6). See Figure 5-6 under Section 5.4 for reference.

EIS is both readable and writable.

Bits 5 ~ 0: Not used. Set to "0" at all time.



#### 5.2.8 IOCF (Interrupt Mask Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | -     | EXIE  | ICIE  | TCIE  |

Bits 7 ~ 3: Not used. Set to "1" at all time.

Individual interrupt is enabled by setting its associated control bit in the IOCF to "1".

Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction.

Bit 2 (EXIE): EXIF interrupt enable bit

0: Disable EXIF interrupt

1: Enable EXIF interrupt

Bit 1 (ICIE): ICIF interrupt enable bit

0: Disable ICIF interrupt

1: Enable ICIF interrupt

Bit 0 (TCIE): TCIF interrupt enable bit

0: Disable TCIF interrupt

1: Enable TCIF interrupt

The IOCF register is both readable and writable.

#### 5.3 TCC/WDT and Prescaler

There is an 8-bit counter available as prescaler for the TCC or WDT. The prescaler is available for the TCC only or the WDT only and the PAB bit of the CONT register is used to determine the prescaler assignment. The PSR0~PSR2 bits determine the ratio. The prescaler is cleared each time the instruction is written to TCC under TCC mode. The WDT and prescaler, when assigned to WDT mode, are cleared by the "WDTC" or "SLEP" instructions. Figure 5-4 depicts the circuit diagram of TCC / WDT.

■ R1 (TCC) is an 8-bit timer / counter. The TCC clock source can be internal or external clock input (edge selectable from TCC pin). If the TCC signal source is from an internal clock, TCC will be incremented by 1 at every instruction cycle (without prescaler). Referring to Figure 5-4, CLK=Fosc / 2 or CLK=Fosc / 4, depends on the Code Option bit CLK. CLK=Fosc / 2 is used if CLK bit is "0", and CLK=Fosc / 4 is used if CLK bit is "1". If the TCC signal source is from an external clock input, TCC is incremented by "1" at every falling edge or rising edge of the TCC pin.



The Watchdog Timer is a free running on-chip RC oscillator. The WDT will keep running even when the oscillator driver has been turned off (i.e. in sleep mode). During normal operation or sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled any time during normal mode by software programming. Refer to WDTE bit of the IOCE register. Without prescaler, the WDT time-out period is approximately 18 ms<sup>1</sup> (default).

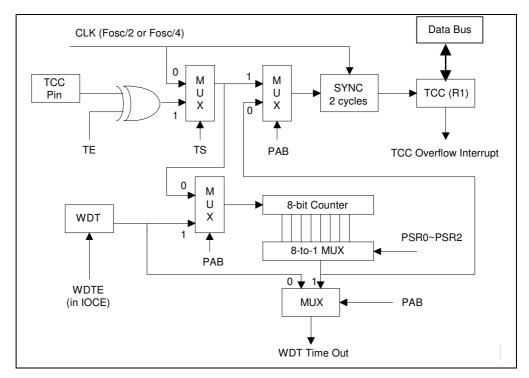
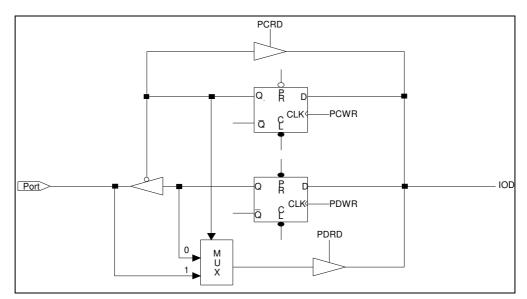
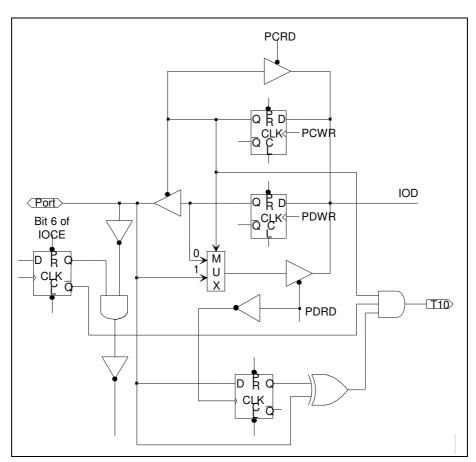



Figure 5-4 TCC and WDT Block Diagram


#### **5.4** I/O Ports

The I/O registers, both Port 5 and Port 6, are bidirectional tri-state I/O ports. Port 6 can be pulled-high internally by software except P63. In addition, Port 6 can also have open-drain output by software except P63. Input status changed interrupt (or wake-up) function is available from Port 6. P50  $\sim$  P52 and P60  $\sim$  P62 pins can be pulled-down by software. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC5  $\sim$  IOC6) except P63. The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Port 5 and Port 6 are shown in Figure 5-5  $\sim$  Figure 5-7 respectively.

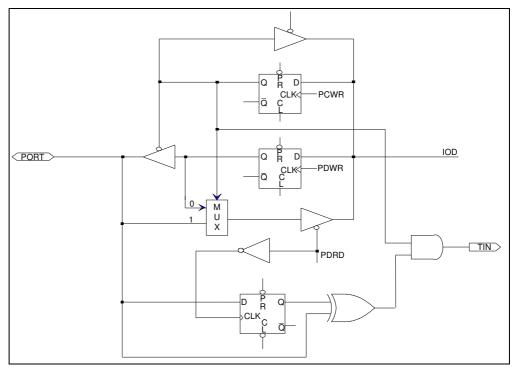
\_


Vdd = 5V, set up time period = 16.5ms ± 30% at 25°C
Vdd = 3V, set up time period = 18ms ± 30% at 25°C





Note: Pull-down is not shown in the figure.


Figure 5-5 I/O Port and I/O Control Register Circuit for Port 5



Note: Pull-high (down) and open-drain are not shown in the figure.

Figure 5-6 I/O Port and I/O Control Register Circuit for P60 (/INT)





Note: Pull-high (down) and open-drain are not shown in the figure.

Figure 5-7 I/O Port and I/O Control Register Circuit for P61~P67

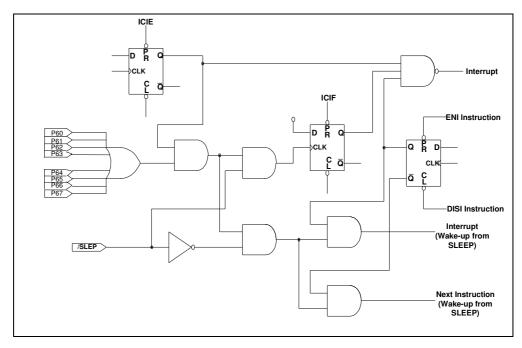



Figure 5-8 Block Diagram of I/O Port 6 with input change interrupt/wake-up



Table 5-1 Usage of Port 6 Input Change Wake-up / Interrupt Function

| 3 1 3                                             | •                                         |
|---------------------------------------------------|-------------------------------------------|
| Usage of Port 6 Input Status 0                    | Change Wake-up/Interrupt                  |
| (I) Wake-up from Port 6 Input Status Change       | (II) Port 6 Input Status Change Interrupt |
| (a) Before Sleep                                  | 1. Read I/O Port 6 (MOV R6,R6)            |
| 1. Disable WDT                                    | 2. Execute "ENI"                          |
| 2. Read I/O Port 6 (MOV R6,R6)                    | 3. Enable interrupt (Set IOCF.1)          |
| 3. Execute "ENI" or "DISI"                        | 4. IF Port 6 change (interrupt)           |
| 4. Enable interrupt (Set IOCF.1)                  | → Interrupt vector (008H)                 |
| 5. Execute "SLEP" instruction                     |                                           |
| (b) After Wake-up                                 |                                           |
| 1. IF "ENI" $\rightarrow$ Interrupt vector (008H) |                                           |
| 2. IF "DISI" $\rightarrow$ Next instruction       |                                           |

#### 5.5 Reset and Wake-up

#### 5.5.1 Reset

A Reset is initiated by one of the following events:

- 1) Power-on reset
- 2) /RESET pin input "low"
- 3) WDT time-out (if enabled)
- 4) Low Voltage Reset

The device is kept under reset condition for a period of approximately 18ms<sup>2</sup> (one oscillator start-up timer period) after a reset is detected. Once a Reset occurs, the following functions are performed:

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0."
- All I/O port pins are configured as input mode (high-impedance state)
- The Watchdog timer and prescaler are cleared.
- When power is switched on, the upper 3 bits of R3 are cleared.
- The bits of the CONT register are set to all "1" except for Bit 6 (INT flag).
- The bits of the IOCB register are set to all "1."
- The IOCC register is cleared.
- The bits of the IOCD register are set to all "1."
- Bit 7 of the IOCE register is set to "1," and Bits 4 and 6 are cleared.
- Bits 0 ~ 2 of RF and Bits 0 ~ 2 of IOCF registers are cleared.

\_

Vdd = 5V, set up time period = 16.8ms ± 30%
Vdd = 3V, set up time period = 18ms ± 30%



Sleep (power down) mode is asserted by executing the "SLEP" instruction. While entering Sleep mode, WDT (if enabled) is cleared but keeps on running.

The controller can be awakened by:

- 1) External reset input on /RESET pin
- 2) WDT time-out (if enabled)
- 3) Port 6 Input Status changed (if enabled)

The first two cases will cause the EM78P153K to reset. The T and P flags of R3 are used to determine the source of the reset (wake-up). The last case is considered a continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) determines whether or not the controller branches to the interrupt vector following a wake-up. If ENI is executed before SLEP, the instruction will begin to execute from Address 008H after wake-up. If DISI is executed before SLEP, the operation will restart from the succeeding instruction right next to SLEP after a wake-up.

Only one of Cases 2 and 3 can be enabled before going into the Sleep mode. That is,

- [a] If Port 6 Input Status Change Interrupt is enabled before SLEP, WDT must be disabled by software. Hence, the EM78P153K can be awakened only by Case 1 or Case 3.
- **[b]** If WDT is enabled before SLEP, Port 6 Input Status Change Interrupt must be disabled. Hence, the EM78P153K can be awakened only by Case 1 or Case 2. For further details, refer to Section 5.6, *Interrupt*.

If Port 6 Input Status Change Interrupt is used to wake-up the EM78P153K (Case [a] above), the following instructions must be executed before SLEP:

```
MOV A, @xxxx1110b
                     ; Select the WDT prescaler, it must be
                     ; set over 1:1
CONTW
WDTC
                     ; Clear WDT and prescaler
MOV A, @0xxxxxxxb
                   ; Disable WDT
IOW RE
                     ; Read Port 6
MOV R6, R6
MOV A, @00000x1xb
                   ; Enable Port 6 input change interrupt
IOW RF
ENI (or DISI)
                    ; Enable (or disable) global interrupt
SLEP
                     ; Sleep
```



#### **NOTE**

- 1. After waking up from sleep mode, WDT is automatically enabled. The WDT enable / disable operation after waking up from sleep mode should be appropriately defined in the software.
- 2. To avoid a reset from occurring when the Port 6 Input Status Changed Interrupt enters into interrupt vector or is used to wake-up the MCU, the WDT prescaler must be set above the 1:1 ratio.

#### 5.5.2 Summary of Registers Initialized Values

| Address | Name     | Reset Type                 | Bit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0   |
|---------|----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|---------|
|         |          | Bit Name                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     | 1     | -     | -     | -     | -     | -       |
|         |          | Power-on                   | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J     | J     | J     | J     | U     | J     | U       |
| 0×00    | R0 (IAR) | /RESET and WDT             | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р     | Р     | Р     | Р     | Р     | Р     | Р       |
|         |          | Wake-up from Pin<br>Change | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р     | Р     | Р     | Р     | Р     | Р     | Р       |
|         |          | Bit Name                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     | -     | -     | -     | -     | -     | -       |
|         | R1       | Power-on                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0     | 0     | 0     | 0     | 0     | 0     | 0       |
| 0×01    | (TCC)    | /RESET and WDT             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0     | 0     | 0     | 0     | 0     | 0     | 0       |
|         | (100)    | Wake-up from Pin<br>Change | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р     | Р     | Р     | Р     | Р     | Р     | Р       |
|         |          | Bit Name                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     | -     | -     | -     | -     | -     | -       |
|         |          | Power-on                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0     | 0     | 0     | 0     | 0     | 0     | 0       |
| 0×02    | R2 (PC)  | /RESET and WDT             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0     | 0     | 0     | 0     | 0     | 0     | 0       |
|         | Wake-u   | Wake-up from Pin<br>Change | Jump to Address 0x08 or continue to execute next instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       |       |       | ruction |
|         |          | Bit Name                   | RST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GP1   | GP0   | Т     | Р     | Z     | DC    | С       |
|         |          | Power-on                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0     | 0     | 1     | 1     | U     | U     | U       |
| 0×03    | R3 (SR)  | /RESET and WDT             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0     | 0     | *     | *     | Р     | Р     | Р       |
|         |          | Wake-up from Pin<br>Change | Bit Name Power-on U RESET and WDT P Wake-up from Pin Change Bit Name Power-on RESET and WDT O | Р     | Р     | *     | *     | Р     | Р     | Р       |
|         |          | Bit Name                   | GP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GP0   | 1     | 1     | 1     | -     | 1     | -       |
|         | R4       | Power-on                   | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U     | U     | U     | J     | U     | U     | U       |
| 0×04    | (RSR)    | /RESET and WDT             | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р     | Р     | Р     | Р     | Р     | Р     | Р       |
|         | (11011)  | Wake-up from Pin<br>Change | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р     | Р     | Р     | Р     | Р     | Р     | Р       |
|         |          | Bit Name                   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×     | ×     | ×     | P53   | P52   | P51   | P50     |
|         |          | Power-on                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     | 1     | 1     | 1     | 1     | 1     | 1       |
| 0×05    | P5       | /RESET and WDT             | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р     | Р     | Р     | Р     | Р     | Р     | Р       |
|         |          | Wake-up from Pin<br>Change | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р     | Р     | Р     | Р     | Р     | Р     | Р       |



| Address | Name   | Reset Type                 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|--------|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|         |        | Bit Name                   | P67   | P66   | P65   | P64   | P63   | P62   | P61   | P60   |
|         |        | Power-on                   | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 0×06    | P6     | /RESET and WDT             | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|         |        | Wake-up from Pin<br>Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|         |        | Bit Name                   | ×     | ×     | ×     | ×     | ×     | EXIF  | ICIF  | TCIF  |
|         | RF     | Power-on                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0×0F    | (ISR)  | /RESET and WDT             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|         | (1011) | Wake-up from Pin<br>Change | 0     | 0     | 0     | 0     | 0     | Р     | N     | Р     |
|         |        | Bit Name                   | ×     | /INT  | TS    | TE    | PAB   | PSR2  | PSR1  | PSR0  |
|         |        | Power-on                   | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1     |
| N/A     | CONT   | /RESET and WDT             | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1     |
|         |        | Wake-up from Pin<br>Change | Р     | 0     | Р     | Р     | Р     | Р     | Р     | Р     |
|         |        | Bit Name                   | ×     | ×     | ×     | ×     | C53   | C52   | C51   | C50   |
|         |        | Power-on                   | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
| 0×05    | IOC5   | /RESET and WDT             | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
|         |        | Wake-up from Pin<br>Change | 0     | 0     | 0     | 0     | Р     | Р     | Р     | Р     |
|         |        | Bit Name                   | C67   | C66   | C65   | C64   | C63   | C62   | C61   | C60   |
|         |        | Power-on                   | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 0×06    | IOC6   | /RESET and WDT             | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
|         |        | Wake-up from Pin<br>Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|         |        | Bit Name                   | ×     | /PD66 | /PD65 | /PD64 | Х     | /PD52 | /PD51 | /PD50 |
|         |        | Power-on                   | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 0×0B    | IOCB   | /RESET and WDT             | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
|         |        | Wake-up from Pin<br>Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|         |        | Bit Name                   | OD67  | OD66  | OD65  | OD64  | ×     | OD62  | OD61  | OD60  |
|         |        | Power-on                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0×0C    | IOCC   | /RESET and WDT             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|         |        | Wake-up from Pin<br>Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|         |        | Bit Name                   | /PH67 | /PH66 | /PH65 | /PH64 | ×     | /PH62 | /PH61 | /PH60 |
|         |        | Power-on                   | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 0×0D    | IOCD   | /RESET and WDT             | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
|         |        | Wake-up from Pin<br>Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |



| Address      | Name           | Reset Type                 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|----------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|              |                | Bit Name                   | WDTE  | EIS   | ×     | ×     | ×     | ×     | ×     | ×     |
|              |                | Power-on                   | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1     |
| 0×0E         | IOCE           | /RESET and WDT             | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1     |
|              |                | Wake-up from Pin<br>Change | 1     | Р     | 1     | 1     | 1     | 1     | 1     | 1     |
|              | Bit Name       | ×                          | ×     | ×     | ×     | ×     | EXIE  | ICIE  | TCIE  |       |
|              |                | Power-on                   | 1     | 1     | 1     | 1     | 1     | 0     | 0     | 0     |
| 0×0F         | IOCF           | /RESET and WDT             | 1     | 1     | 1     | 1     | 1     | 0     | 0     | 0     |
|              |                | Wake-up from Pin<br>Change | 1     | 1     | 1     | 1     | 1     | Р     | Р     | Р     |
|              |                | Bit Name                   | -     | -     | -     | -     | -     | -     | -     | -     |
| 0×10~        |                | Power-on                   | U     | J     | U     | J     | J     | U     | J     | U     |
| 0×2F R10~R2F | /RESET and WDT | Р                          | Р     | Р     | Р     | Р     | Р     | Р     | Р     |       |
| ٥٨٤١         |                | Wake-up from Pin<br>Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |

**Legend:** x: Not used U: Unknown or don't care P: Previous value before reset \*Refer to the tables provided in the next section (Section 5.5.3).

#### 5.5.3 Status of RST, T, and P of the Status Register

A Reset condition is initiated by the following events

- 1) A power-on condition
- 2) A high-low-high pulse on /RESET pin
- 3) Watchdog timer time-out

The values of T and P listed in the table below are used to check how the processor wakes up.

Table 5-2 Values of RST, T, and P after a Reset

| Reset Type                              | RST | Т  | Р  |
|-----------------------------------------|-----|----|----|
| Power on                                | 0   | 1  | 1  |
| /RESET during Operation mode            | 0   | *P | *P |
| /RESET wake-up during Sleep mode        | 0   | 1  | 0  |
| WDT during Operation mode               | 0   | 0  | *P |
| WDT wake-up during Sleep mode           | 0   | 0  | 0  |
| Wake-up on pin change during Sleep mode | 1   | 1  | 0  |

<sup>\*</sup> P: Previous status before reset



The following table shows the events that may affect the status of T and P.

Table 5-3 Status of T and P Being Affected by Events

| Event                                   | RST | Т | Р  |
|-----------------------------------------|-----|---|----|
| Power on                                | 0   | 1 | 1  |
| WDTC instruction                        | *P  | 1 | 1  |
| WDT time-out                            | 0   | 0 | *P |
| SLEP instruction                        | *P  | 1 | 0  |
| Wake-up on pin change during Sleep mode | 1   | 1 | 0  |

\* P: Previous status before reset

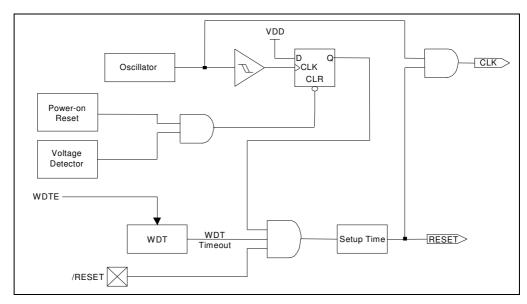



Figure 5-9 Controller Reset Block Diagram

#### 5.6 Interrupt

The EM78P153K has three falling-edge interrupts as listed herewith:

- 1) TCC overflow interrupt
- 2) Port 6 Input Status Change Interrupt
- 3) External interrupt [(P60, /INT) pin]

Before the Port 6 Input Status Changed Interrupt is enabled, reading Port 6 (e.g. "MOV R6, R6") is necessary. Each pin of Port 6 will have this feature if its status changes. Any pin configured as output or P60 pin configured as /INT is excluded from this function. The Port 6 Input Status Changed Interrupt can wake up the EM78P153K from Sleep mode if Port 6 is enabled prior to going into Sleep mode by executing SLEP instruction. When the chip wakes-up, the controller will continue to execute the program in-line if the global interrupt is disabled. If the global interrupt is enabled, it will branch to the interrupt Vector 008H.



RF is the interrupt status register that records the interrupt requests in the relative flags / bits. IOCF is an interrupt mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the interrupts (enabled) occurs, the next instruction will be fetched from Address 008H. Once in the interrupt service routine, the source of an interrupt can be determined by polling the flag bits in RF. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine before interrupts are enabled to avoid recursive interrupts.

The flag (except ICIF bit) in the Interrupt Status Register (RF) is set regardless of the status of its mask bit or the execution of ENI. Note that the outcome of RF will be the logic AND of RF and IOCF (refer to Figure 5-10). The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

When an interrupt is generated by the INT instruction (enabled), the next instruction will be fetched from Address 001H.

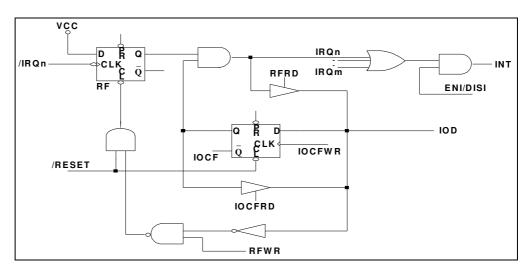



Figure 5-10 Interrupt Input Circuit

#### 5.7 Oscillator

#### 5.7.1 Oscillator Modes

The EM78P153K can be operated in four different oscillator modes, such as External RC oscillator mode (ERC), Internal RC oscillator mode (IRC), High Crystal oscillator mode (XT, HXT1/2), and Low Crystal oscillator mode (LXT1/2). The desired mode can be selected by programming OSC3 ~ OSC0 in the Code Option register. Table 5-4 describes how these four oscillator modes are defined.



Table 5-4 Oscillator Modes Defined by OSC

| Oscillator Modes                                                       | OSC3 | OSC2 | OSC1 | OSC0 |
|------------------------------------------------------------------------|------|------|------|------|
| ERC <sup>1</sup> (External RC oscillator mode); P64/RCOUT act as P64   | 0    | 0    | 0    | 0    |
| ERC <sup>1</sup> (External RC oscillator mode); P64/RCOUT act as RCOUT | 0    | 0    | 0    | 1    |
| IRC <sup>2</sup> (Internal RC oscillator mode); P64/RCOUT act as P64   | 0    | 0    | 1    | 0    |
| IRC <sup>2</sup> (Internal RC oscillator mode); P64/RCOUT act as RCOUT | 0    | 0    | 1    | 1    |
| LXT1 <sup>3</sup> (Frequency range of LXT1 mode is 1 MHz ~ 100kHz)     | 0    | 1    | 0    | 0    |
| HXT1 <sup>3</sup> (Frequency range of HXT1 mode is 20 MHz ~ 12 MHz)    | 0    | 1    | 0    | 1    |
| LXT2 <sup>3</sup> (Frequency range of LXT2 mode is 32.768kHz)          | 0    | 1    | 1    | 0    |
| HXT2 <sup>3</sup> (Frequency range of HXT2 mode is 12 MHz ~ 6 MHz)     | 0    | 1    | 1    | 1    |
| XT (Frequency range of XT mode is 6 MHz~1 MHz) (default)               | 1    | 1    | 1    | 1    |

<sup>&</sup>lt;sup>1</sup> In ERC mode, ERCin is used as oscillator pin. RCOUT/P64 is defined by code option Word 1 Bit 4 ~ Bit 1.

The maximum operational frequency of the crystal/resonator under different VDD is listed below.

Table 5-5 Summary of Maximum Operating Speeds

| Conditions                 | VDD | Max Freq. (MHz) |
|----------------------------|-----|-----------------|
|                            | 2.1 | 4.0             |
| Two cycles with two clocks | 3.0 | 8.0             |
|                            | 5.0 | 20.0            |

#### 5.7.2 Crystal Oscillator/Ceramic Resonators (Crystal)

The EM78P153K can be driven by an external clock signal through the OSCI pin as shown in the following figure.

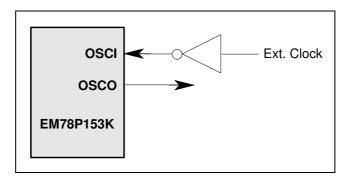



Figure 5-11 Circuit for External Clock Input

In IRC mode, P64 is normal I/O pin. RCOUT/P64 is defined by code option Word 1 Bit 4 ~ Bit 1.

<sup>&</sup>lt;sup>3</sup> In LXT1, LXT2, HXT1, HXT2 and XT modes; OSCI and OSCO are used as oscillator pins. These pins cannot and should not be defined as normal I/O pins.



In most applications, pin OSCI and pin OSCO can be connected with a crystal or ceramic resonator to generate oscillation. Figure 5-12 depicts such a circuit. The same thing applies whether it is in the HXT mode or in the LXT mode.

In Figure 5-12-1, when the connected resonator in OSCI and OSCO is used in applications, the 1 M $\Omega$  R1 needs to be shunted with a resonator.

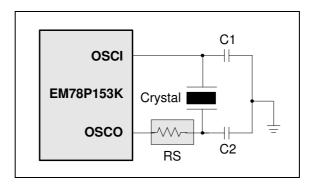



Figure 5-12 Circuit for Crystal/Resonator

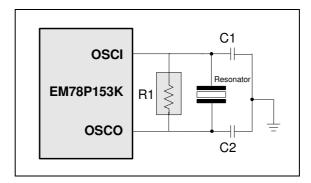



Figure 5-12-1 Circuit for Crystal/Resonator

Table 5-6 provides the recommended values of C1 and C2. Since each resonator has its own attribute, refer to its specification for appropriate values of C1 and C2. A serial resistor RS, may be necessary for AT strip cut crystal or low frequency mode.



Table 5-6 Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonator

| Oscillator Type                        | Frequency Mode        | Frequency | C1 (pF) | C2 (pF) |
|----------------------------------------|-----------------------|-----------|---------|---------|
|                                        |                       | 100kHz    | 60pF    | 60pF    |
|                                        | LXT1                  | 200kHz    | 60pF    | 60pF    |
|                                        | (100k ~ 1 MHz)        | 455kHz    | 40pF    | 40pF    |
| Ceramic Resonators                     |                       | 1 MHz     | 30pF    | 30pF    |
|                                        | XT                    | 1.0 MHz   | 30pF    | 30pF    |
|                                        | (1M ~ 6 MHz)          | 2.0 MHz   | 30pF    | 30pF    |
| Ceramic Resonators  Crystal Oscillator | (1101 0 1011 12)      | 4.0 MHz   | 20pF    | 20pF    |
|                                        | LXT2 (32.768kHz)      | 32.768kHz | 40pF    | 40pF    |
|                                        |                       | 100kHz    | 60pF    | 60pF    |
|                                        | LXT1                  | 200kHz    | 60pF    | 60pF    |
|                                        | (100k ~ 1 MHz)        | 455kHz    | 40pF    | 40pF    |
|                                        |                       | 1 MHz     | 30pF    | 30pF    |
|                                        |                       | 455kHz    | 30pF    | 30pF    |
|                                        | VT                    | 1.0 MHz   | 30pF    | 30pF    |
|                                        | XT<br>(1 ~ 6 MHz)     | 2.0 MHz   | 30pF    | 30pF    |
| Crystal Oscillator                     | (1 0 11112)           | 4.0 MHz   | 20pF    | 20pF    |
|                                        |                       | 6.0 MHz   | 30pF    | 30pF    |
|                                        |                       | 6.0 MHz   | 30pF    | 30pF    |
|                                        | HXT2                  | 8.0 MHz   | 20pF    | 20pF    |
|                                        | (6 ~ 12 MHz)          | 10.0 MHz  | 30pF    | 30pF    |
|                                        |                       | 12.0 MHz  | 30pF    | 30pF    |
|                                        | LIVT4                 | 12.0 MHz  | 30pF    | 30pF    |
|                                        | HXT1<br>(12 ~ 20 MHz) | 16.0 MHz  | 20pF    | 20pF    |
|                                        | (12 20 111112)        | 20.0 MHz  | 15pF    | 15pF    |

#### 5.7.3 External RC Oscillator Mode

For some applications that do not require a very precise timing calculation, the RC oscillator (Figure 5-13) offers a cost-effective oscillator configuration. Nevertheless, it should be noted that the frequency of the RC oscillator is influenced by the supply voltage, the values of the resistor (Rext), the capacitor (Cext), and even by the operation temperature. Moreover, the frequency also changes slightly from one chip to another due to manufacturing process variations.

In order to maintain a stable system frequency, the values of the Cext should not be lesser than 20pF, and the value of Rext should not be greater than 1 M $\Omega$ . If they cannot be kept in this range, the frequency can be easily affected by noise, humidity, and leakage.



The smaller the Rext in the RC oscillator is, the faster its frequency will be. On the contrary, for very low Rext values, for instance, 1 k $\Omega$ , the oscillator becomes unstable because the NMOS cannot correctly discharge the current of the capacitance.

Based on the above reasons, it must be kept in mind that all of the supply voltage, the operation temperature, the components of the RC oscillator, the package types, the way the PCB is laid out, will affect the system frequency.

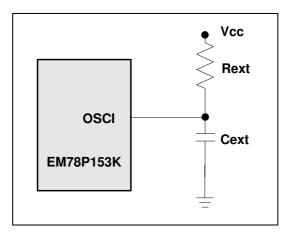



Figure 5-13 External RC Oscillator Mode Circuit

| Table 5-7 | <b>RC Oscillator</b> | <b>Frequencies</b> |
|-----------|----------------------|--------------------|
|-----------|----------------------|--------------------|

| Cext  | Rext | Average Fosc<br>5V, 25°C | Average Fosc<br>3V, 25°C |
|-------|------|--------------------------|--------------------------|
|       | 3.3k | 2.064 MHz                | 1.901 MHz                |
| 20pF  | 5.1k | 1.403 MHz                | 1.316 MHz                |
| 20μΓ  | 10k  | 750kHz                   | 719.7kHz                 |
|       | 100k | 81.45kHz                 | 81.33kHz                 |
|       | 3.3k | 647.3kHz                 | 615.1 MHz                |
| 100pF | 5.1k | 430.8kHz                 | 414.3kHz                 |
| ТООРГ | 10k  | 225.8kHz                 | 219.8kHz                 |
|       | 100k | 23.88kHz                 | 23.96kHz                 |
|       | 3.3k | 256.6kHz                 | 245.3kHz                 |
| 2005  | 5.1k | 169.5kHz                 | 163.0kHz                 |
| 300pF | 10k  | 88.53kHz                 | 86.14kHz                 |
|       | 100k | 9.283kHz                 | 9.255kHz                 |

Note: 1: These are measured in DIP packages

2. The values are for design reference only

3. The frequency drift is  $\pm$  30%



#### 5.7.4 Internal RC Oscillator Mode

EM78P153K offers a versatile internal RC mode with default frequency value of 4 MHz. The Internal RC oscillator mode has other frequencies (1 MHz, 8 MHz and 16 MHz) that can be set by Code Option (Word 1), RCM1, and RCM0. All these four main frequencies can be calibrated by programming the Option Bits C0 ~ C4. The table below describes the EM78P153K internal RC drift with variation of voltage, temperature, and process.

Table 5-8 Internal RC Drift Rate (Ta=25°C, VDD=5V, VSS=0V)

| Internal RC |                             | Drift Rate         |         |       |
|-------------|-----------------------------|--------------------|---------|-------|
| Frequency   | Temperature<br>(-40°C~85°C) | Voltage            | Process | Total |
| 4 MHz       | ± 1%                        | ± 3% @ 2.1V ~ 5.5V | ± 2%    | ± 6%  |
| 16 MHz      | ± 1%                        | ± 1% @ 4.0V ~ 5.5V | ± 2%    | ± 4%  |
| 8 MHz       | ± 1%                        | ± 2% @ 3.0V ~ 5.5V | ± 2%    | ± 5%  |
| 1 MHz       | ± 1%                        | ± 3% @ 2.1V ~ 5.5V | ± 2%    | ± 6%  |

**Note:** These are theoretical values provided for reference only. Actual values may vary depending on the actual process.

#### 5.8 Code Option Register

The EM78P153K has a Code Option word that is not part of the normal program memory. The option bits cannot be accessed during normal program execution.

#### ■ Code Option Register and Customer ID Register Arrangement Distribution:

| Word 0         | Word 1         | Word 2         |
|----------------|----------------|----------------|
| Bit 12 ~ Bit 0 | Bit 12 ~ Bit 0 | Bit 12 ~ Bit 0 |

#### 5.8.1 Code Option Register (Word 0)

|          | Word 0  |         |          |       |       |       |        |        |       |       |         |  |  |  |
|----------|---------|---------|----------|-------|-------|-------|--------|--------|-------|-------|---------|--|--|--|
| Bit      | Bit 12  | Bit 11  | Bit 10   | Bit 9 | Bit 8 | Bit 7 | Bit 6  | Bit 5  | Bit 4 | Bit 3 | Bit 2~0 |  |  |  |
| Mnemonic | RESETEN | ENWDT   | CLKS     | LVR1  | LVR0  | _     | WDTPS1 | WDTPS0 | ID10  | ID9   | Protect |  |  |  |
| 1        | Disable | Disable | 4 clocks | High  | High  | -     | High   | High   | High  | High  | Disable |  |  |  |
| 0        | Enable  | Enable  | 2 clocks | Low   | Low   | -     | Low    | Low    | Low   | Low   | Enable  |  |  |  |

Bit 12 (RESETEN): Define Pin 63 as a reset pin

0: /RESET enable1: /RESET disable

Bit 11 (ENWDT): Watchdog timer enable bit

0: Enable1: Disable



Bit 10 (CLKS): Instruction period option bit.

0: Two oscillator periods

1: Four oscillator periods

Refer to the Instruction Set section.

Bits 9 ~ 8 (LVR1 ~ LVR0): Low Voltage Reset control bits

| LVR1, LVR0 | VDD Reset Level               | VDD Release Level |  |  |  |  |  |
|------------|-------------------------------|-------------------|--|--|--|--|--|
| 11         | NA (Power-on Reset) (default) |                   |  |  |  |  |  |
| 10         | 2.7V                          | 2.9V              |  |  |  |  |  |
| 01         | 3.5V                          | 3.7V              |  |  |  |  |  |
| 00         | 4.0V                          | 4.0V              |  |  |  |  |  |

Bit 7: Not used. Set to "1" at all time.

Bits 6 ~ 5 (WDTPS1 ~ WDTPS0): WDT Time-out Period of device bits.

Table 5-9 WDT Time-out Period of Device Programming

| WDTPS1 | WDTPS0 | *WDT Time-out Period |
|--------|--------|----------------------|
| 1      | 1      | 18 ms                |
| 1      | 0      | 4.5 ms               |
| 0      | 1      | 288 ms               |
| 0      | 0      | 72 ms                |

<sup>\*</sup> These are theoretical values, provided for reference only

Bits 4 ~ 3: Bit 10 and 9 of Customer's ID code

Bits 2 ~ 0 (Protect): Protect Bits. Each protect status is as follows:

| Protect Bits | Protect           |
|--------------|-------------------|
| 0            | Enable            |
| 1            | Disable (Default) |

#### 5.8.2 Code Option Register (Word 1)

|          | Word 1 |        |        |       |       |       |       |       |       |       |       |       |       |
|----------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit      | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Mnemonic | _      | C4     | C3     | C2    | C1    | C0    | RCM1  | RCM0  | OSC3  | OSC2  | OSC1  | OSC0  | _     |
| 1        | _      | High   | High   | High  | High  | High  | High  | High  | High  | High  | High  | High  | _     |
| 0        | _      | Low    | Low    | Low   | Low   | Low   | Low   | Low   | Low   | Low   | Low   | Low   | _     |

Bit 12: Not used. Set to "1" at all time.

Bits 11 ~ 7 (C4 ~ C0): Internal RC mode Calibration bits. These bits must always be set to "1" only (auto calibration).



Bits 6 ~ 5 (RCM1, RCM0): RC mode selection bits

| RCM 1 | RCM 0 | *Frequency (MHz) |
|-------|-------|------------------|
| 1     | 1     | 4                |
| 1     | 0     | 16               |
| 0     | 1     | 8                |
| 0     | 0     | 1                |

<sup>\*</sup> Theoretical values, for reference only

Bits 4 ~ 1 (OSC3, OSC2, OSC1 and OSC0): Oscillator Mode Select bits

| Oscillator Modes                                                       | OSC3 | OSC2 | OSC1 | OSC0 |
|------------------------------------------------------------------------|------|------|------|------|
| ERC <sup>1</sup> (External RC oscillator mode); P64/RCOUT act as P64   | 0    | 0    | 0    | 0    |
| ERC <sup>1</sup> (External RC oscillator mode); P64/RCOUT act as RCOUT | 0    | 0    | 0    | 1    |
| IRC <sup>2</sup> (Internal RC oscillator mode); P64/RCOUT act as P64   | 0    | 0    | 1    | 0    |
| IRC <sup>2</sup> (Internal RC oscillator mode); P64/RCOUT act as RCOUT | 0    | 0    | 1    | 1    |
| LXT1 <sup>3</sup> (Frequency range of LXT1 mode is 1 MHz~100 kHz)      | 0    | 1    | 0    | 0    |
| HXT1 <sup>3</sup> (Frequency range of HXT1 mode is 20 MHz~12 MHz)      | 0    | 1    | 0    | 1    |
| LXT2 <sup>3</sup> (Frequency range of LXT2 mode is 32.768 kHz)         | 0    | 1    | 1    | 0    |
| HXT2 <sup>3</sup> (Frequency range of HXT2 mode is 12 MHz~6 MHz)       | 0    | 1    | 1    | 1    |
| XT (Frequency range of XT mode is 6 MHz~1 MHz) (default)               | 1    | 1    | 1    | 1    |

<sup>&</sup>lt;sup>1</sup> In ERC mode, ERCin is used as oscillator pin. RCOUT/P64 is defined by Code Option Word 1 Bit 4 ~ Bit 1.

Bit 0: Not used. Set to "1" at all time.

#### 5.8.3 Code Option Register (Word 2)

|          | Word 2 |        |        |       |       |       |       |       |       |       |       |       |       |
|----------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit      | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Mnemonic | ID12   | ID11   | 1      | -     | ID8   | ID7   | ID6   | ID5   | ID4   | ID3   | ID2   | ID1   | ID0   |
| 1        | High   | High   | -      | -     | High  |
| 0        | Low    | Low    | _      | _     | Low   |

Bits 12 ~ 11: Bit 12 and Bit 11 of Customer's ID code

Bits 10 ~ 9: Not used. Set to "1" at all time.

Bits 8 ~ 0: Bit 8 ~ 0 of Customer's ID code

<sup>&</sup>lt;sup>2</sup> In IRC mode, P64 is normal I/O pin. RCOUT/P64 is defined by Code Option Word 1 Bit 4 ~ Bit 1.

<sup>&</sup>lt;sup>3</sup> In LXT1, LXT2, HXT1, HXT2 and XT modes; OSCI and OSCO are used as oscillator pins. These pins cannot and should not be defined as normal I/O pins.



#### 5.9 Power-on Considerations

Any microcontroller is not guaranteed to start to operate properly before the power supply stabilizes at its steady state. Under customer application, when power is OFF, Vdd must drop to below 1.8V and remains OFF for 10 µs before power can be switched ON again. This way, the EM78P153K will reset and operate normally. The extra external reset circuit will work well if Vdd can rise at a very fast speed (50 ms or less). However, under most cases where critical applications are involved, extra devices are required to assist in solving the power-up problems.

#### 5.10 Programmable Oscillator Set-up Time

The Option word contains SUT0 and SUT1 which can be used to define the oscillator set-up time. Theoretically, the range is from 4.5 ms to 72 ms. For most of crystal or ceramic resonators, the lower the operation frequency, the longer the Set-up time may be required. Table 12 describes the values of the Oscillator Set-up Time.

#### 5.11 External Power-on Reset Circuits

The circuitry in the figure implements an external RC to produce the reset pulse. The pulse width (time constant) should be kept long enough for Vdd to reach minimum operation voltage. This circuit is used when the power supply has a slow rise time.

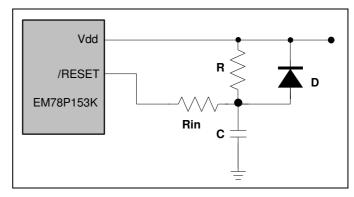



Figure 5-14 External Power-up Reset Circuit

Since the current leakage from the /RESET pin is  $\pm$  5  $\mu$ A, it is recommended that R should not be greater than 40K. In this way, the /RESET pin voltage is held below 0.2V. The diode (D) acts as a short circuit at the moment of power down. The capacitor C will discharge rapidly and fully. The current-limited resistor, Rin, will prevent high current or ESD (electrostatic discharge) from flowing to pin /RESET.



#### 5.12 Residue-Voltage Protection

When the battery is replaced, the device power (Vdd) is cut off but residue-voltage remains. The residue-voltage may trip below the minimum Vdd, but not to zero. This condition may cause a poor power-on reset. The following figures illustrate two recommended methods on how to build a residue-voltage protection circuit for the EM78P153K.

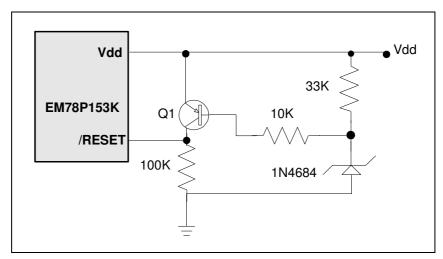



Figure 5-15 Residue Voltage Protection Circuit 1

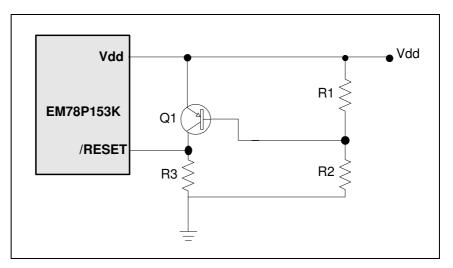



Figure 5-16 Residue Voltage Protection Circuit 2

#### Note

Figure 5-15 and Figure 5-16 should be designed to ensure that the voltage of the /RESET pin is larger than VIH (min).



#### 5.13 Instruction Set

Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of two oscillator periods), unless the program counter is changed by instruction "MOV R2,A", "ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g., "SUB R2,A", "BS(C) R2,6", "CLR R2", ). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try to modify the instruction as follows:

- A) Modify one instruction cycle to consist of four oscillator periods.
- **B)** "JMP," "CALL," "RET," "RETL," "RETI," or the conditional skip ("JBS," "JBC," "JZ," "JZA," "DJZ," "DJZA") commands which were tested to be true, are executed within two instruction cycles. The instructions that are written to the program counter also take two instruction cycles.

Case (A) is selected by the Code Option bit, called CLK. One instruction cycle consists of two oscillator clocks if CLK is low; and four oscillator clocks if CLK is high.

Note that once the four oscillator periods within one instruction cycle is selected as in Case (A), the internal clock source to TCC should be CLK=Fosc/4, instead of Fosc/2.

Moreover, the instruction set has the following features:

- 1) Every bit of any register can be set, cleared, or tested directly.
- 2) The I/O register can be regarded as general register. That is, the same instruction can operate on I/O register.

The following symbols are used in the Instruction Set table:

#### Convention:

- **R** = Register designator that specifies which one of the registers (including operation and general purpose registers) is to be utilized by the instruction.
- b = Bit field designator that selects the value for the bit located in the register R and which affects the operation.
- **k** = 8 or 10-bit constant or literal value

| Mnemonic | Operation                             | Status Affected |
|----------|---------------------------------------|-----------------|
| NOP      | No Operation                          | None            |
| DAA      | Decimal Adjust A                      | С               |
| CONTW    | A 	o CONT                             | None            |
| SLEP     | $0 \rightarrow WDT$ , Stop oscillator | T, P            |
| WDTC     | $0 \rightarrow WDT$                   | T, P            |



#### (Continuation)

| Mnemonic | Operation                                         | Status Affected   |
|----------|---------------------------------------------------|-------------------|
| IOW R    | $A \rightarrow IOCR$                              | None <sup>1</sup> |
| ENI      | Enable Interrupt                                  | None              |
| DISI     | Disable Interrupt                                 | None              |
| RET      | $[Top\;of\;Stack] 	o PC$                          | None              |
| RETI     | [Top of Stack] $\rightarrow$ PC, Enable Interrupt | None              |
| CONTR    | $CONT \rightarrow A$                              | None              |
| IOR R    | $IOCR \rightarrow A$                              | None <sup>1</sup> |
| MOV R, A | $A \rightarrow R$                                 | None              |
| CLRA     | $0 \rightarrow A$                                 | Z                 |
| CLR R    | $0 \rightarrow R$                                 | Z                 |
| SUB A, R | $R - A \rightarrow A$                             | Z, C, DC          |
| SUB R, A | $R - A \rightarrow R$                             | Z, C, DC          |
| DECA R   | $R - 1 \rightarrow A$                             | Z                 |
| DEC R    | $R-1 \rightarrow R$                               | Z                 |
| OR A, R  | $A \lor R \to A$                                  | Z                 |
| OR R, A  | $A \vee R \to R$                                  | Z                 |
| AND A, R | $A \& R \rightarrow A$                            | Z                 |
| AND R, A | $A \& R \rightarrow R$                            | Z                 |
| XOR A, R | $A \oplus R \rightarrow A$                        | Z                 |
| XOR R, A | $A \oplus R \rightarrow R$                        | Z                 |
| ADD A, R | $A + R \rightarrow A$                             | Z, C, DC          |
| ADD R, A | $A + R \rightarrow R$                             | Z, C, DC          |
| MOV A, R | $R \rightarrow A$                                 | Z                 |
| MOV R, R | $R \rightarrow R$                                 | Z                 |
| COMA R   | $/R \rightarrow A$                                | Z                 |
| COM R    | $/R \rightarrow R$                                | Z                 |
| INCA R   | $R+1 \rightarrow A$                               | Z                 |
| INC R    | $R+1 \rightarrow R$                               | Z                 |
| DJZA R   | R - 1 $\rightarrow$ A, skip if zero               | None              |
| DJZ R    | R - 1 $\rightarrow$ R, skip if zero               | None              |

**Note:** <sup>1</sup>This instruction is applicable to IOC5~IOC6, IOCB ~ IOCF only.



#### (Continuation)

| Mnemonic | Operation                                                           | Status Affected   |
|----------|---------------------------------------------------------------------|-------------------|
| RRCA R   | $R(n) \rightarrow A(n-1), R(0) \rightarrow C, C \rightarrow A(7)$   | С                 |
| RRC R    | $R(n) \rightarrow R(n-1), R(0) \rightarrow C, C \rightarrow R(7)$   | С                 |
| RLCA R   | $R(n) \rightarrow A(n+1),  R(7) \rightarrow C,  C \rightarrow A(0)$ | С                 |
| RLC R    | $R(n) \rightarrow R(n+1), R(7) \rightarrow C, C \rightarrow R(0)$   | С                 |
| SWAPA R  | $R(0-3) \rightarrow A(4-7), R(4-7) \rightarrow A(0-3)$              | None              |
| SWAPR    | $R(0-3) \leftrightarrow R(4-7)$                                     | None              |
| JZA R    | $R + 1 \rightarrow A$ , skip if zero                                | None              |
| JZ R     | $R + 1 \rightarrow R$ , skip if zero                                | None              |
| BC R, b  | $0 \rightarrow R(b)$                                                | None <sup>2</sup> |
| BS R, b  | $1 \rightarrow R(b)$                                                | None <sup>3</sup> |
| JBC R, b | if $R(b) = 0$ , skip                                                | None              |
| JBS R, b | if R(b) = 1, skip                                                   | None              |
| CALL k   | $PC + 1 \rightarrow [SP], (Page, k) \rightarrow PC$                 | None              |
| JMP k    | $(Page,k) \to PC$                                                   | None              |
| MOV A, k | $k \rightarrow A$                                                   | None              |
| OR A, k  | $A \lor k \to A$                                                    | Z                 |
| AND A, k | $A \& k \rightarrow A$                                              | Z                 |
| XOR A, k | $A \oplus k \rightarrow A$ Z                                        |                   |
| RETL k   | $k \rightarrow A$ , [Top of Stack] $\rightarrow PC$                 | None              |
| SUB A, k | $K - A \rightarrow A$                                               | Z, C,DC           |
| INT      | PC + 1 → [SP], 001H → PC                                            | None              |
| ADD A, k | $K + A \rightarrow A$                                               | Z, C, DC          |

Note: <sup>2</sup>This instruction is not recommended for RF operation.

<sup>&</sup>lt;sup>3</sup>This instruction cannot operate under RF.



# 6 Absolute Maximum Ratings

| Items                  |          | Rating |          |
|------------------------|----------|--------|----------|
| Temperature under bias | -40°C    | to     | 85°C     |
| Storage temperature    | -65°C    | to     | 150°C    |
| Input voltage          | Vss-0.3V | to     | Vdd+0.5V |
| Output voltage         | Vss-0.3V | to     | Vdd+0.5V |
| Working Voltage        | 2.1V     | to     | 5.5V     |
| Working Frequency      | DC       | to     | 20 MHz   |

Note: These parameters are theoretical values and have not been tested.

# 7 Electrical Characteristics

### 7.1 DC Characteristics

Ta=25°C, VDD=5V, VSS=0V

| Symbol | Parameter                             | Condition                        | Min.  | Тур. | Max.    | Unit |
|--------|---------------------------------------|----------------------------------|-------|------|---------|------|
|        | Crystal: VDD to 2.3V                  | Two cycles with two clocks       | DC    | -    | 4.0     | MHz  |
| FXT    | Crystal: VDD to 3V                    | Two cycles with two clocks       | DC    | -    | 8.0     | MHz  |
|        | Crystal: VDD to 5V                    | Two cycles with two clocks       | DC    | 1    | 20.0    | MHz  |
| ERC    | ERC: VDD to 5V                        | R: 5KΩ, C: 39pF                  | F±30% | 1500 | F±30%   | kHz  |
| IIL    | Input Leakage Current for input pins  | VIN = VDD, VSS                   | -     | _    | ±1      | μΑ   |
| VIH1   | Input High Voltage (VDD=5V)           | Ports 5, 6                       | 2.0   | 1    | -       | V    |
| VIL1   | Input Low Voltage (VDD=5V)            | Ports 5, 6                       | _     | _    | 0.8     | V    |
| VIHT1  | Input High Threshold Voltage (VDD=5V) | /RESET, TCC<br>(Schmitt trigger) | 2.0   | _    | -       | V    |
| VILT1  | Input Low Threshold Voltage (VDD=5V)  | /RESET, TCC<br>(Schmitt trigger) | -     | -    | 0.8     | V    |
| VIHX1  | Clock Input High Voltage (VDD=5V)     | OSCI                             | 2.5   | 1    | Vdd+0.3 | V    |
| VILX1  | Clock Input Low Voltage (VDD=5V)      | OSCI                             |       | -    | 1.0     | V    |
| VIH2   | Input High Voltage (VDD=3V)           | Ports 5, 6                       | 1.5   | _    | _       | V    |
| VIL2   | Input Low Voltage (VDD=3V)            | Ports 5, 6                       | _     | _    | 0. 4    | V    |
| VIHT2  | Input High Threshold Voltage (VDD=3V) | /RESET, TCC<br>(Schmitt trigger) | 1.5   | -    | -       | V    |
| VILT2  | Input Low Threshold Voltage (VDD=3V)  | /RESET, TCC<br>(Schmitt trigger) | -     | -    | 0.4     | V    |
| VIHX2  | Clock Input High Voltage (VDD=3V)     | OSCI                             | 1.5   | -    | -       | V    |
| VILX2  | Clock Input Low Voltage (VDD=3V)      | OSCI                             | -     | _    | 0.6     | V    |



#### (Continuation)

| Symbol | Parameter                                                                 | Condition                                                                                       | Min. | Тур. | Max. | Unit |
|--------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|------|------|------|
| VOH1   | Output High Voltage (Port 6)<br>(P60~P62, P66~P67 are<br>Schmitt trigger) | IOH = -12 mA                                                                                    | 2.4  | -    | I    | V    |
| VOL1   | Output Low Voltage (P50~P53, P60~P62 P66~P67 are Schmitt trigger)         | IOL = 16 mA                                                                                     |      | _    | 0.4  | ٧    |
| VOL2   | Output Low Voltage (P64, P65)                                             | IOL = 25.0 mA                                                                                   | -    | _    | 0.4  | V    |
| IPH    | Pull-high current                                                         | Pull-high active, input pin at VSS                                                              | -60  | -75  | -90  | μΑ   |
| IPD    | Pull-down current                                                         | Pull-down active, input pin at VDD                                                              | 20   | 35   | 50   | μΑ   |
| ISB1   | Power down current                                                        | All input and I/O pins at VDD,<br>Output pin floating,<br>WDT disabled                          | -    | -    | 1    | μА   |
| ISB2   | Power down current                                                        | All input and I/O pins at VDD,<br>Output pin floating,<br>WDT enabled                           | -    | -    | 10   | μА   |
| ICC1   | Operating supply current at two clocks (VDD=3V)                           | /RESET= 'High', Fosc=32kHz<br>(Crystal type, CLKS="0"),<br>Output pin floating,<br>WDT disabled | -    | 15   | 30   | μА   |
| ICC2   | Operating supply current at two clocks (VDD=3V)                           | /RESET= 'High', Fosc=32kHz<br>(Crystal type, CLKS="0"),<br>Output pin floating,<br>WDT enabled  | 1    | 19   | 35   | μΑ   |
| ICC3   | Operating supply current at two clocks (VDD=5.0V)                         | /RESET= 'High', Fosc=4 MHz<br>(Crystal type, CLKS="0"),<br>Output pin floating                  | -    | -    | 2.0  | mA   |
| ICC4   | Operating supply current at two clocks (VDD=5.0V)                         | /RESET= 'High', Fosc=10 MHz<br>(Crystal type, CLKS="0"),<br>Output pin floating                 | -    | -    | 4.0  | mA   |

**Note:** \*These parameters are theoretical values and have not been tested.

## ■ Internal RC Electrical Characteristics ( $T_A = 25$ °C, $V_{DD} = 5$ V, $V_{SS} = 0$ V)

| Internal RC   |             | Drift Rate        |           |        |           |  |  |
|---------------|-------------|-------------------|-----------|--------|-----------|--|--|
| Selected Band | Temperature | Operating Voltage | Min.      | Тур.   | Max.      |  |  |
| 4 MHz         | 25°C        | 5V                | 3.92 MHz  | 4 MHz  | 4.08 MHz  |  |  |
| 16 MHz        | 25°C        | 5V                | 15.68 MHz | 16 MHz | 16.32 MHz |  |  |
| 8 MHz         | 25°C        | 5V                | 7.84 MHz  | 8 MHz  | 8.16 MHz  |  |  |
| 1 MHz         | 25°C        | 5V                | 0.98 MHz  | 1 MHz  | 1.02 MHz  |  |  |



### Internal RC Electrical Characteristics (Process, Voltage and Temperature Deviation)

| Internal RC   | Drift Rate (Pr | Drift Rate (Process & Operating Voltage and Temperature Variation) |           |        |           |  |
|---------------|----------------|--------------------------------------------------------------------|-----------|--------|-----------|--|
| Selected Band | Temperature    | Operating Voltage                                                  | Min.      | Тур.   | Max.      |  |
| 4 MHz         | -40 ~ 85°C     | 2.1V ~ 5.5V                                                        | 3.76 MHz  | 4 MHz  | 4.24 MHz  |  |
| 16 MHz        | -40 ~ 85°C     | 4.0V ~ 5.5V                                                        | 15.36 MHz | 16 MHz | 16.64 MHz |  |
| 8 MHz         | -40 ~ 85°C     | 3.0V ~ 5.5V                                                        | 7.60 MHz  | 8 MHz  | 8.40 MHz  |  |
| 1 MHz         | -40 ~ 85°C     | 2.1V ~ 5.5V                                                        | 0.94 MHz  | 1 MHz  | 1.06 MHz  |  |

#### 7.2 AC Characteristics

Ta=25 °C, VDD=5V, VSS=0V

| Symbol | Parameter              | Conditions               | Min.         | Тур. | Max.     | Unit |
|--------|------------------------|--------------------------|--------------|------|----------|------|
| Dclk   | Input CLK duty cycle   | 1                        | 45           | 50   | 55       | %    |
| Tins   | Instruction cycle time | Crystal type             | 100          | ı    | DC       | ns   |
| 11115  | (CLKS="0")             | RC type                  | 500          | 1    | DC       | ns   |
| Ttcc   | TCC input period       | 1                        | (Tins+20)/N* | 1    | -        | ns   |
| Tdrh   | Device reset hold time | TXAL,<br>SUT1, SUT0=1, 1 | 17.6-30%     | 17.6 | 17.6+30% | ms   |
| Trst   | /RESET pulse width     | 1                        | 2000         | 1    | -        | ns   |
| *Twdt1 | Watchdog timer period  | SUT1, SUT0=1,1           | 17.6~30%     | 17.6 | 17.6+30% | ms   |
| *Twdt2 | Watchdog timer period  | SUT1, SUT0=1,0           | 4.5+30%      | 4.5  | 4.5+30%  | ms   |
| *Twdt3 | Watchdog timer period  | SUT1, SUT0=0,1           | 288~30%      | 288  | 288+30%  | ms   |
| *Twdt4 | Watchdog timer period  | SUT1, SUT0=0,0           | 72~30%       | 72   | 72+30%   | ms   |
| Tset   | Input pin setup time   | -                        | -            | 0    | -        | ns   |
| Thold  | Input pin hold time    | -                        | -            | 20   | -        | ns   |
| Tdelay | Output pin delay time  | Cload=20pF               | -            | 50   | -        | ns   |

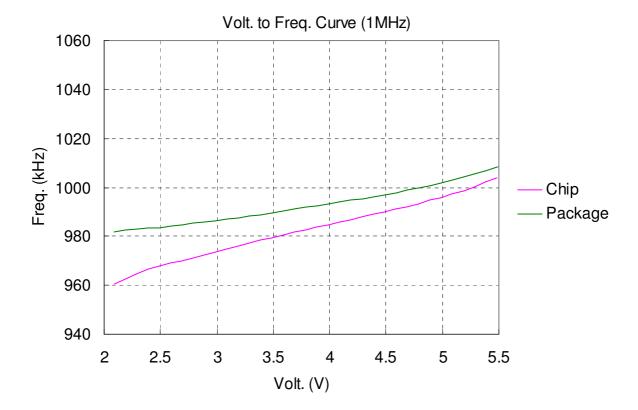
Note: These parameters are theoretical values and have not been tested.

The Watchdog Timer duration is determined by Option Code (Bit 6, Bit 5)

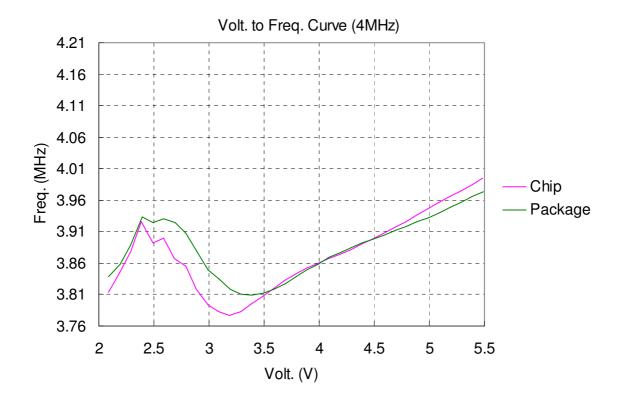
<sup>\*</sup>N = selected prescaler ratio

<sup>\*</sup>Twdt1: The Option word (SUT1, SUT0) is used to define the oscillator set-up time. In Crystal mode the WDT time-out length is the same as the set-up time (18 ms).

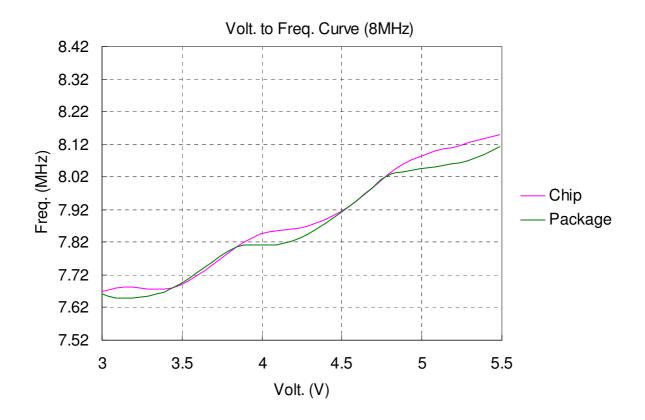
<sup>\*</sup>Twdt2: The Option word (SUT1, SUT0) is used to define the oscillator set-up time. In Crystal mode the WDT time-out length is the same as the set-up time (4.5 ms).


<sup>\*</sup>Twdt3: The Option word (SUT1, SUT0) is used to define the oscillator set-up time. In Crystal mode the WDT time-out length is the same as the set-up time (288 ms).

<sup>\*</sup>Twdt4: The Option word (SUT1, SUT0) is used to define the oscillator set-up time. In Crystal mode the WDT time-out length is the same as the set-up time (72 ms).




## 7.3 Device Characteristics


The graphs provided in the following pages were derived based on a limited number of samples and are shown here for reference only. The device characteristics illustrated herein are not guaranteed for its accuracy. In some graphs, the data may be out of the specified warranted operating range.

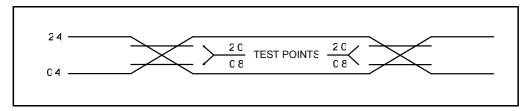

















# 8 Timing Diagrams

#### **AC Test Input/Output Waveform**



**Note:** AC Testing: Input are driven at 2.4V for logic "1," and 0.4V for logic "0" Timing measurements are made at 2.0V for logic "1," and 0.8V for logic "0"

Figure 8-1a AC Test Input/Output Waveform Timing Diagram

#### Reset Timing (CLK = "0")

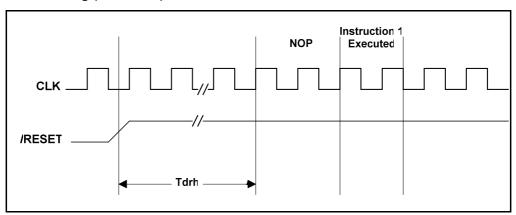



Figure 8-1b Reset Timing Diagram

#### TCC Input Timing (CLKS = "0")

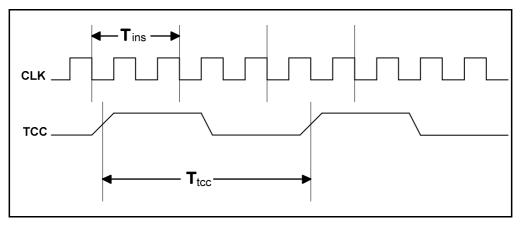
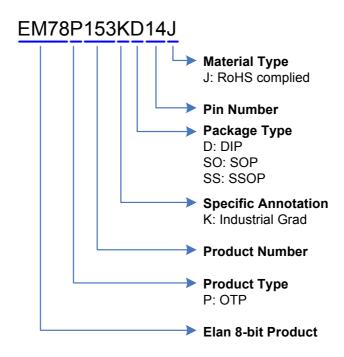
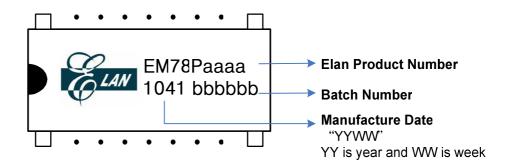




Figure 8-1c TCC Input Timing Diagram



### **APPENDIX**


# **A** Ordering and Manufacturing Information



For example:

## EM78P153KSO14J

is EM78P153K with OTP program memory, industrial grade product, in 14-pin SOP 300mil package with RoHS complied





# Package Type

| OTP MCU        | Package Type | Pin Count | Package Size |
|----------------|--------------|-----------|--------------|
| EM78P153KD14J  | DIP          | 14        | 300 mil      |
| EM78P153KSO14J | SOP          | 14        | 150 mil      |
| EM78P153KSS10J | SSOP         | 10        | 150 mil      |

For product code "J".

These are Green products and comply with RoHS specifications

| Part No.                       | EM78P153KD14J/SO14J/SS10J |
|--------------------------------|---------------------------|
| Electroplate type              | Pure Tin                  |
| Ingredient (%)                 | Sn: 100%                  |
| Melting point (°C)             | 232°C                     |
| Electrical resistivity (μΩ-cm) | 11.4                      |
| Hardness (hv)                  | 8~10                      |
| Elongation (%)                 | >50%                      |



# C Package Information

■ 14-Lead Plastic Dual in-line (DIP) — 300 mil

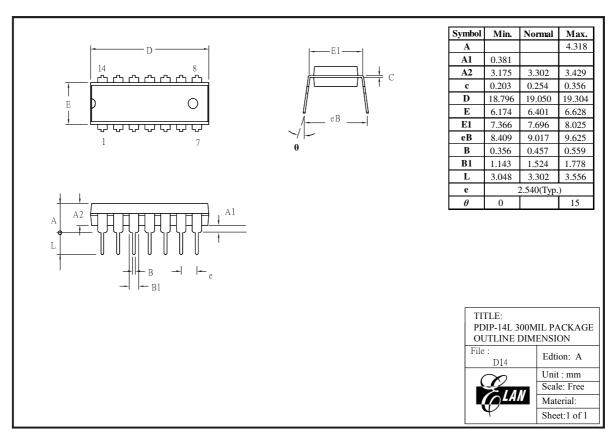



Figure B-1a EM78P153K 14-Lead DIP Package Type



#### ■ 14-Lead Small-Outline Package (SOP) — 150 mil

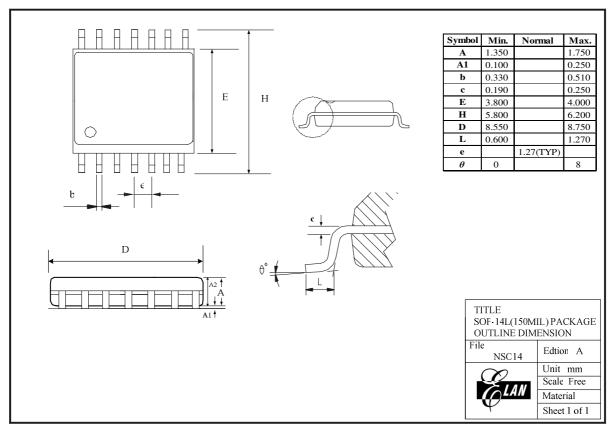



Figure B-1b EM78P153K 14-Lead SOP Package Type



#### lacktriangleq 10-Lead Shrink Small-Outline Package (SSOP) - 150 mil

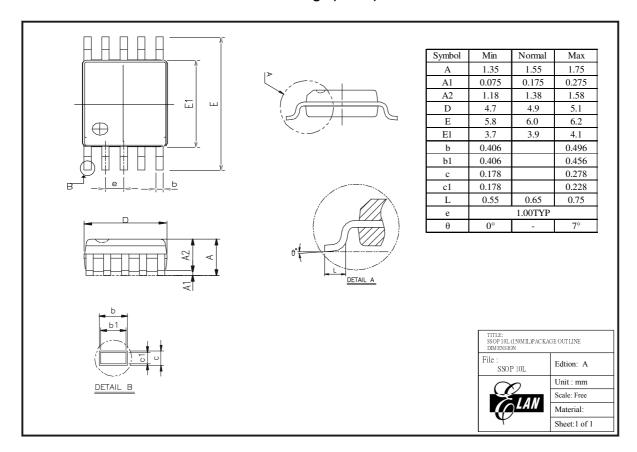



Figure B-1c EM78P153K 10-Lead SSOP Package Type