

SEMICONDUCTOR®

FS6S1265RE Fairchild Power Switch(FPS)

Features

- · Wide Operating Frequency Range Up to 150kHz
- Lowest Cost SMPS Solution
- Lowest External Components
- Low Start up Current (Max:170uA)
- · Low Operating Current (Max:15mA)
- Internal High Voltage SenseFET
- · Built-in Auto Restart Circuit
- Over Voltage Protection (Auto Restart Mode)
- Over Load Protection (Auto Restart Mode)
- Over Current Protection (Auto Restart Mode)
- Internal Thermal Protection (Auto Restart Mode)
- Pulse By Pulse Over Current Limiting
- · Internal Burst Mode Controller for Stand-by Mode
- Under Voltage Lockout With Hysteresis
- External Sync. Terminal

Description

The Fairchild Power Switch(FPS) product family is specially designed for an off line SMPS with minimal external components. The Fairchild Power Switch(FPS) consist of high voltage power SenseFET and current mode PWM IC. Included PWM controller features integrated fixed oscillator, under voltage lock out, optimized gate turn on/turn off driver, thermal shut down protection, over voltage protection, and temperature compensated precision current sources for loop compensation and fault protection circuitry. compared to discrete MOSFET and controller or R_{CC} switching converter solution, a Fairchild Power Switch(FPS) can reduce total component count, design size, and weight and at the same time increase efficiency, productivity, and system reliability. It has a basic platform well suited for cost effective monitor power supply.

Internal Block Diagram

Absolute Maximum Ratings

(Ta=25°C, unless otherwise specified)

Characteristic	Symbol	Value	Unit
Drain-Gate Voltage(R _{GS} =1MΩ)	Vdgr	650	V
Gate-Source(GND) Voltage	VGS	±30	V
Drain Current Pulsed ⁽¹⁾	IDM	48	ADC
Continuous Drain Current (Tc = 25°C)	ID	12	ADC
Continuous Drain Current (Tc = 100°C)	ID	8.4	ADC
Single Pulsed Avalanche Current ⁽³⁾ (Energy ⁽²⁾)	IAS(EAS)	30(950)	A(mJ)
Maximum Supply Voltage	VCC,MAX	35	V
Input Voltago Rango	VFB	-0.3 to VCC	V
	Vss	-0.3 to 10	V
Total Power Dissipation	PD (Watt H/S)	240	W
	Darting	1.92	W/°C
Operating Junction Temperature.	ТJ	+150	°C
Operating Ambient Temperature.	TA	-25 to +85	°C
Storage Temperature Range.	TSTG	-55 to +150	°C

Note:

1. Repetitive rating: pulse width limited by maximum junction temperature

2. L = 10mH, starting $T_j = 25^{\circ}C$

3. L = 13uH, starting $T_j = 25^{\circ}C$

Electrical Characteristics (SFET Part)

(Ta = 25° C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BVDSS	$V_{GS} = 0V$, $I_D = 50\mu A$	650	-	-	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} =Max, Rating, V _{GS} = 0V	-	-	200	μΑ
		V _{DS} = 0.8Max, Rating, V _{GS} = 0V, T _C = 125°C	-	-	300	μΑ
Static Drain-Source on Resistance ⁽¹⁾	RDS(on)	VGS = 10V, ID = 4.5A	-	0.7	0.9	Ω
Forward Transconductance ⁽²⁾	gfs	VDS = 50V, ID = 4.5A	-	-	-	S
Input Capacitance	Ciss	VGS = 0V, VDS = 25V, f = 1MHz	-	1820	-	рF
Output Capacitance	Coss		-	185	-	
Reverse Transfer Capacitance	Crss		-	32	-	
Turn on Delay Time	td(on)	VDD = 0.5BVDSS, ID = 12.0A (MOSFET switching time are essentially independent of operating temperature)	-	38	-	
Rise Time	tr		-	120	-	20
Turn Off Delay Time	td(off)		-	200	-	113
Fall Time	tf		-	100	-	
Total Gate Charge (Gate-Source+Gate-Drain)	Qg	VGS = 10V, ID = 12.0A, VDS = 0.5BVDSS(MOSFET Switching time are Essentially independent of Operating temperature)	-	60	-	
Gate-Source Charge	Qgs		-	10	-	nC
Gate-Drain (Miller) Charge	Qgd		-	30	-	

Note:

1. Pulse test: pulse width \leq 300us, duty 2%

 $2. S = \frac{1}{R}$

Electrical Characteristics (Control Part) (Continued)

(V_{CC}=16V, Tamb = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
UVLO SECTION						
Start Threshold Voltage	VSTART	VFB=GND	14	15	16	V
Stop Threshold Voltage	VSTOP	V _{FB} =GND	8	9	10	V
OSCILLATOR SECTION	L					
Initial Frequency	Fosc	-	22	25	28	kHz
Voltage Stability	FSTABLE	$12V \le VCC \le 23V$	0	1	3	%
Temperature Stability (Note2)	∆Fosc	-25°C ≤ Ta ≤ 85°C	0	±5	±10	%
Maximum Duty Cycle	DMAX	-	92	95	98	%
Minimum Duty Cycle	DMIN	-	-	-	0	%
FEEDBACK SECTION			•			
Feedback Source Current	IFB	VFB=GND	0.7	0.9	1.1	mA
Shutdown Feedback Voltage	Vsd	VFB ≥ 6.9V	6.9	7.5	8.1	V
Shutdown Delay Current	IDELAY	VFB=5V	1.6	2.0	2.4	μA
SYNC. & SOFTSTART SECTION			-			
Softstart Voltage	Vss	VFB=2V	4.7	5.0	5.3	V
Softstart Current	Iss	V _{SS} =0V	0.8	1.0	1.2	mA
Sync High Threshold Voltage(Note3)	VSYNCH	VCC=16V, VFB=5V	-	7.2	-	V
Sync Low Threshold Voltage(Note3)	VSYNCL	VCC=16V, VFB=5V	-	5.8	-	V
BURST MODE SECTION			-			
Burst Mode Low Threshold Voltage	VBURL	VFB=0V	10.4	11.0	11.6	V
Burst Mode High Threshold Voltage	Vburh	VFB=0V	11.4	12.0	12.6	V
Burst Mode Enable Feedback Voltage	VBEN	VCC=10.5V	0.7	1.0	1.3	V
Burst Mode Peak Current Limit(Note4)	IBURPK	-	0.45	0.6	0.75	Α
Burst Mode Freqency	FBUR	VCC=10.5V, VFB=0V	40	50	60	kHz
CURRENT LIMIT(SELF-PROTECTION	I)SECTION					
Peak Current Limit (Note4)	IOVER	-	7.04	8.0	8.96	Α
PROTECTION SECTION						
Over Voltage Protection	Vovp	$V_{CC} \ge 27V$	27	30	33	V
Over Current Latch voltage(Note3)	Vocl	-	0.9	1.0	1.1	V
Thermal Shutdown Tempature(Note2)	T _{SD}	-	140	160	-	°C
TOTAL DEVICE SECTION						
Start-Up Current	ISTART	$V_{FB} = GND, V_{CC} = 14V$	-	0.1	0.17	mA
	IOP	$V_{FB} = GND, V_{CC} = 16V$				
Operating Supply Current(Note1)	IOP(MIN)	$V_{FB} = GND, V_{CC} = 12V$	-	10	15	mA
	IOP(MAX)	$V_{FB} = GND, V_{CC} = 30V$				

Notes:

1. These parameters are the Current Flowing in the Control IC.

2. These parameters, although guaranteed, are not 100% tested in production

3. These parameters, although guaranteed, are tested in EDS(wafer test) process

4. These parameters are indicated Inductor Current.

[mA]

1.1

Typical Performance Characteristics (Continued)

[V] 12.2

Package Dimensions

TO-3P-5L

TO-3P-5L (Forming)

Ordering Information

Product Number	Package	Marking Code	BVdss	Rds(on)
FS6S1265RETU	TO-3P-5L	6S1265R	650V	0.7Ω
FS6S1265REYDTU	TO-3P-5L(Forming)	E		

TU : Non Forming Type YDTU : Forming Type

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com