Product Specification

Number: L-KLS9-1602E-YG-K/A	
-----------------------------	--

Name: Character LCD Module

Customer:

electronic

WWW.KLSELE.COM

Date: <u>2025-03-</u>26

Customer Signature:

NINGBO KLS ELECTRONIC CO; LTD

Tel : 0086-574-86828566

Fax : 0086-574-86824882

ADD: NO. 8-1, RONGXIA RD. XIAPU SHANQIAN INDUSTRIAL ZONE BEILUN NINGBO ZHEJIANG.

Compi	Check	Review	Approva
Compi	Oneck	IVENIEM	Αρριονά
Jenny	Jack.C		

Part number

catalogue

- 1 Revised records
- 2. summary
- 3. outline dimension
- 4. Hardware box diagram
- 5. electrical character
- 6. interface specification
- 7 Instructions
- 8. Description of the operation timing
- 9. Application routines
- 10. matters need attention

KLS electronic	Part name	Character LCD Module	Date	2025-03-26
	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
	Department		Page	3 / 28

1. Revised records

Edition	Date of issue	New system / revised content
V1.0	2020-8-12	Brand-new
		1

	Part name	Character LCD Module	Date	2025-03-26
KUS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	4 / 28

2. summary

character LCD display module is a point formation LCD display module specialized for displaying letters, digital elements, symbols, etc. In a 4bit and 8-bit data transmission mode. Provide 57 dot + cursor display mode. Provide display data buffer DDRAM, character generator CGROM and character, generator CGRAM, you can use CGRAM to store your own defined character model data of up to 858, dot matrix of graphical characters. Provide rich instruction settings: clear display; cursor back to the origin; display on / off; cursor on / off; display character flashing; cursor shift; display shift element, etc. Provide an internal power-on automatic reset circuit, automatically initialize the module, and set the module to the default display working state.

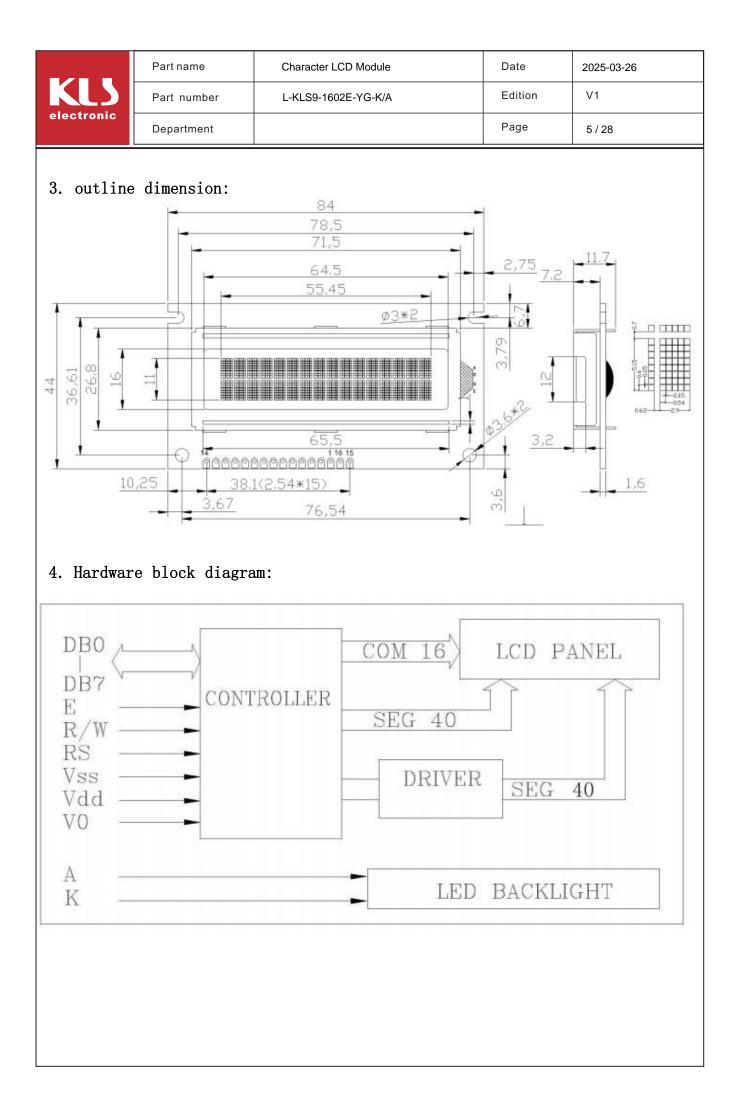
Number of characters displayed: 16 characters in X 2 lines

Character dot array: 5X7 word array + cursor

Display color and backlight color: STN blue, yellow green, gray; backlight black, white, yellow green

Polarized film: fully permeable / semi-permeable

Observation Angle: 6:00


Show duty cycle: 1 / 16 drive bias: 1 / 5

Control chip: SPLC780D or compatible IC (e. g. AIP31066) Character Generator ROM (CGROM): 10880 bits (192 character 5 * 8 dots) or (64 character 5 * 11 dots) Character Generator RAM (CGRAM): 64X8 bits (8 characters 5 * 8 dots) or (4 characters 5 * 11 dots)

Display Data RAM (DDRAM): 80X8 bits (80 characters max)

Dimensions (Unit: mm) Overall dimensions: 84X44X11.7

font: 5X7 Character Visual area: 64.5X16 dots + light-mark size: Character size: 55.45X11 0.54X0.6 Character Spacing: 3.52X5.85 Contrast: V0 external adjustment or internal fixed contrast weight: e Operating voltage: + 3.3V or + 5 default 5V

	Part name	Character LCD Module	Date	2025-03-26	
KUS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1	
electronic	Department		Page	6 / 28	

5. electrical character 5.1 absolute rating

The parameter name	Symbol	Condition	Representa Least va- lue	tive value Crest va- lue	Unit
Supply voltage	Vdd		-0.3	7.0	V
LCD driving voltage	V5		Vdd-10.0	Vdd+0.3	V
Input voltage	Vi		-0.3	Vdd+0.3	V
Working temperature (T)	Тор	-	-20	70	°C
Storage temperature (T)	Tstg	-	-30	80	°C

5.2.1 DC parameter 1 (Ta=25oC, Vdd=4.5V⁵.5V)

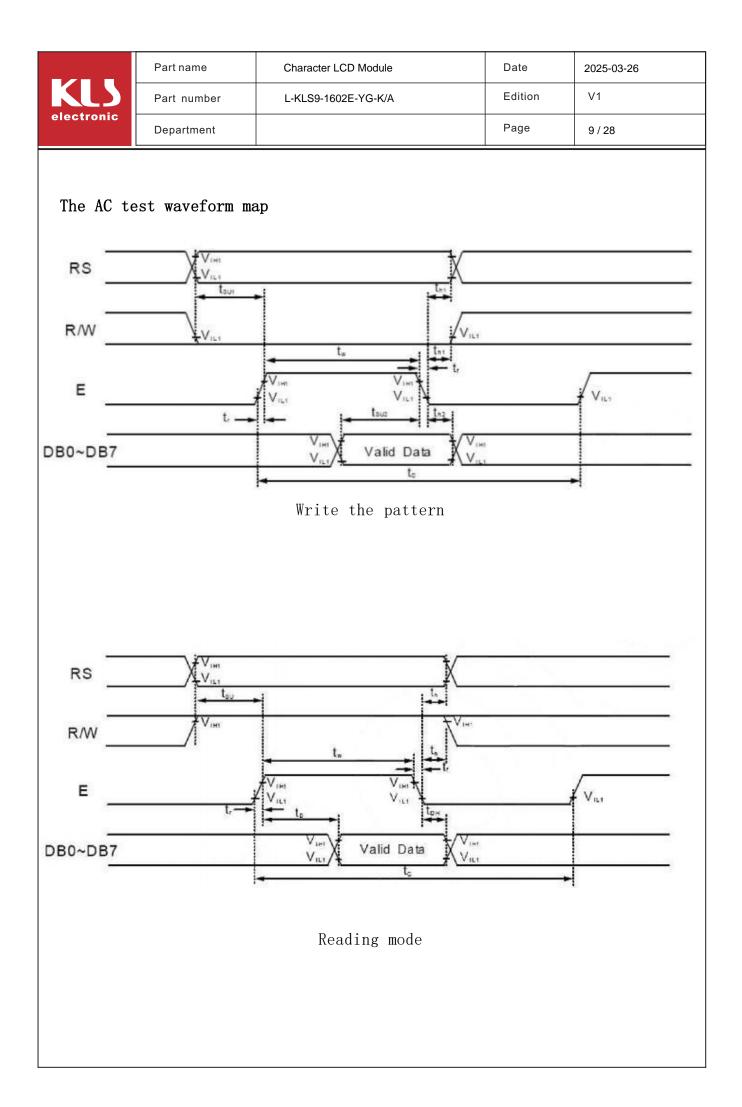
The parame-	Symbol	Condi		Nominal	value	Uni
ter name	5911001	tion	Minimum	Typical case	Maximum	t
Supply voltage	VDD-GND	-	4.5	5.0	5.5	V
Operating current (excluding backli- ght)	Idd	Vd d=5 V	0.9	1.5	1.7	mA
LCD drive current	Iee		_	0.6	_	mA
LCD driving volt- age	Vdd-v5		4.2	4.5	4.8	V
LED backlight ope- rating current	If	Vf=3.0~	17	18	20	mA
LED backlight power consumption	Pd	3.2V	90	100	110	mW
Enter a high level	Vih		2.5	-	Vdd	V
Enter a low level	Vil		-0.3	-	0.6	V
Output high level	Voh	Ioh=-0.205mA	2.4	_	-	V
Output low level	olV	Io1=1.2mA		_	0.4	V

5.2.2 DC parameter 2(Ta=25oC, Vdd=2.7V[~]4.5V)

The parame-	Symbol	Condi	N	ominal value	1	Uni
ter name	Symbol	tion	Minimum	Typical case	Maximum	t
Supply voltage	Vdd-GND	-	2.7	3.3	4.5	V
Operating current (excluding backli- ght)	Idd	Vdd= 3.3V	0.45	0.9	1.0	mA
LCD drive current	Iee		-	0.6	-	mA
LCD driving volt- age	Vdd-V5		4.2	4.5	4.8	V
LED backlight ope- rating current	If	Vf=3.0~	17	18	20	mA
LED backlight power consumption	Pd	3.2V	55	60	66	mW

	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	7 / 28

Enter a high level	Vih		0.7Vdd	-	Vdd	V
Enter a low level	Vil		-0.3	-	0.55	V
Output high level	Voh	Ioh=-0.1mA	0.75Vdd	-	-	V
Output low level	olV	Iol=0.1mA	-	-	0.2Vdd	V


	Part name	Character LCD Module	Date	2025-03-26
KUS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	8 / 28

5.3.1 AC parameter 1 (Ta=25oC, Vdd=4.5V[~]5.5V)

参 数名称	符号	测试条件	最小	典型	最大	单位
E周期	tc		500	-	-	
E上升/下降时间	t _R ,t _F		120		20	
E脉冲宽度(1,0)	tw	写模式	230	144		
R/W和RS建立时间	t _{su1}	与侠式	40	-	-	ns
R/W和RS保持时间	t _{H1}		10	(1)	1	
数据建立时间	t _{su2}		80	-		
数据保持时间	t _{H2}		10	5 .		
E周期	tc		500		-	8
E上升/下降时间	t _R , t _F		-	19 4 0.	20	
E脉冲宽度(1,0)	tw	读模式	230	-	-	
R/W和RS建立时间	t _{su}	以俟八	40		-	ns
R/W和RS保持时间	t _H		10	8 4 8		
数据输出延迟时间	t _D		-	9 .	120	
数据保持时间	t _{DH}		5	-	-	Ĩ.

5.3.2 AC parameter 2(Ta=25oC, Vdd=2.7V[~]4.5V)

参 数名称	符号	测试条件	最小	典型	最大	单位
E周期	tc		1000	-	-	
E上升/下降时间	t _R ,t _F		-	-	25	1
E脉冲宽度(1,0)	t _w	行战中	450	((2)	-	
R/W和RS建立时间	t _{su1}	写模式	60	(-	ns
R/W和RS保持时间	t _{H1}		20	-	-	
数据建立时间	t _{su2}		195		~	
数据保持时间	t _{H2}		10	(4)	-	
E周期	tc		1000	-	-	
E上升/下降时间	t _R , t _F		-	-	25	1
E脉冲宽度(1,0)	t _w	生 出 志	450	-	-	
R/W和RS建立时间	t _{su}	读模式	60	-		ns
R/W和RS保持时间	t _H		20	-	-	
数据输出延迟时间	t _D				360	
数据保持时间	t _{DH}		5	-	-	

	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	10 / 28

6. interface specification

	-								
Subscript	Symbol	Func	tion	Remarks					
1	Vss								
2	Vdd	Power suppl	+5V						
3	Vo	- Tower Suppr	Contrast co- ntrol						
4	RS	Data / instruction s L: instruction)	Data / instruction selection (H: Data L: instruction)						
5	R/W	Read / Write Selecti - te)	ion (H: Read L: wri						
6	E	Enable							
7	DB0	Data							
8	DB1	Data	bit l						
9	DB2	Data	bit 2						
10	DB3	Data	bit 3						
11	DB4	Data	bit 4						
12	DB5	Data	bit 5						
13	DB6	Data							
14	DB7	Data	bit 7						
15	K	LED, backlig	ght negative						
16	A	LED, backlig	ght positive						

7. Instructions

The module has a 4 bit / 8 bit MCU parallel communication mode, and the 4 bit / 8 bit bus is selected through the DL bit of the instruction register.

In read and write operations, two 8-bit registers are used, one is data register DR and the other is instruction register IR. The data register DR is stored as a temporary place for writing and reading DDRAM / CGRAM data, the target RAM is selected through the RAM address setting instruction, and any internal operation of reading and writing the RAM is automatically completed. When the MCU reads the data in the DR, the DDRAM / CGRAM data is automatically transferred to the DR. Similarly, when the MCU writes the data to the DR, the data in the DR is automatically transmitted to DDRAM / CGRAM. Instruction register IR is used to store the instruction code from MCU. MCU cannot read the instruction data and can switch the register through the RS pin.

Various	actions	by	setting	the	RS	/	RW	bit:	
---------	---------	----	---------	-----	----	---	----	------	--

RS	RW	Operate								
L	L	Write instruction operation (MCU write instruction code to IR)								
L	Н	Read the busy flag (DB7) and the address counter (DB 0 to DB 6)								
Н	L	Write data operation (MCU write data to DR)								
Н	Н	Read data operation (MCU reads out data from the DR)								
		· · · · · · · · · · · · · · · · · · ·								

7.1 Busy Sign (BF)

Bishigh, indicating that the internal operation isongoing, so at this time

 $the next instruction will not be executed. \\ When RS = "0" and R/W = "1" (read instruction operation),$

the value of BF can be read from the DB7 port, and the next instruction must be confirmed that the BF is not "1".

7.2 Address counter (AC)

 $\label{eq:WhentheDDRAM/CGRAM} When the DDRAM/CGRAM address from the instruction registeris stored in the address counter, the data in the address counter increases or decreases after writing or reading out DDRAM / CGRAM, and when RS= "0" and R / W= "1", the data in the address counter can be read out from DBO to DB6.$

7.3 Display Data RAM (DDRAM)

	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	11 / 28

Instructions for use of the LCD display module

The DDRAM address of the module ranges from 00 H to 27 H and 40 H to 67 H.

7.4 Character Generation ROM (CGROM)

The character generation ROM has 5X8 dot matrix, 192 characters, and 5x11 dot matrix, 64 character patterns

7.5 Character Generation RAM (CGRAM)

Character generation RAM has a 5 * 8 dot matrix, 8 character space, each consisting of 85-bit bytes, by writing custom character data to CGRAM, this 8 character space users can write to DDRAM data 00 H to 07 H to call custom characters.

DDRAM / CGRAM address map:

				ter Co M dat					C	GRAN	1 addre	ess				0	GRA	M Dal	ta			Pattern	
07	D6	D5	D4	D3	D2	D1	D0	A5	A4	A3	A2	A1	A0	P 7	P6	P5	P4	P3	P2	P1 P0		number	
1				1						10	0	0	0				0	1	1	1	0		
											0	0	1				0	0	1	0	0		
											0	1	0				0	0	1	0	0		
0	0	0	0	×	0	0	0	0	0	0	0	1	1	×	×	×	0	0	1	0	0	pattern	
×	~				×.						1	0	0	-	-		0	0	1	0	0	patient	
						1200					1	0	1				0	0	1	0	0		
											1	1	0				0	1	1	1	0		
											1	1	1				0	0	0	0	0		
		· · · ·		1		1.2.0					0	0	0				0	1	1	1	0		
											0	0	1				1	0	0	0	1		
											0	1	0				1	0	0	0	0		
0	0	0	0		0	0	1	0	0	1	1	0	1	1	×	×	×	1	0	0	0	0	pattern
			-			-						1	0	0				1	0	0	0	0	Partera
					1.1.2.2.11						1	0	1				1	0	0	0	1		
											1	1	0				0	1	1	1	0		
-3		5 - 12									1	1	1				0	0	0	0	0		
																		*					
						-					0	0	0				1	1	1	1	1		
								PALALIA.			0	0	1			1.0	1	0	0	0	0		
											0	1	0				1	0	0	0	0		
0	0	0	0	×	1	1	1	1	1	1	0	1	1	×	×	×	1	1	1	1	0	pattern	
	5		0	-							1	0	0	0	1	1	1	0	0	0	0	patterns	
						1000		st limit			1	0	1				1	0	0	0	1		
						1					1	1	0				1	1	1	1	0		
											1	1	1				0	0	0	0	0		

7.6 Instructions described

code r	reper	tory										
Instruct	RS	R/ W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	E-time	Descri ption
Clean up Show	0	0	0	0	0	0	0	0	0	1	1.53ms	Write 20H to DDRAM and set the address counter address to 00H
Return	0	0	0	0	0	0	0	0	1	-	1.53ms	Set the address counter address to OOH and res- tore the cursor to the initial position, leav- ing the DDRAM content unchanged
Input mode Type sett-	0	0	0	0	0	0	0	1	I/D	SH	39us	Set the cursor movement direction, and allow the

		Part na	ame		Cha	aracter L	.CD Moo	dule			Date		2025-03-26
KLS					L-KLS9-1602E-YG-K/A						Edition		V1
electronic		Depart	ment								Page		12 / 28
ing												entir	e display to move
Show open / close	0	0	0	0	0	0	1	D	С	В	39us		the display, the r, and the flicker ol bit of the cur-
Gression	0	0	0	0	0	1	S/C	R/L	-	-	39us		the cursor movement display the movement tion

	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	13 / 28

												Control bit, the DDRA data remained unchanged
Function Set up	0	0	0	0	1	DL	N	F	-	-	39us	Set the interface dat width (DL: 8 bit / 4 bit), Displays the number o rows (N: 2 rows / 1 row) and displays the rows Font (F: 5x11 dot matrix / 5x8 dot matrix)
Set up the CGRAM add- ress	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	39us	Set the CGRAM address within the address counter
Set up the DDRAM add- ress	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	39us	Set the DDRAM address i the address counter
Read the busy flag & address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	0 us	Read the busy flag bi BF, and the content i the address counter i read out simultaneously
WD	1	0	D7	D6	D5	D4	D3	D2	D1	D0	43 us	Write the data to th internal RAM (DDRAM/CGRAM)
Read data	1	1	D7	D6	D5	D4	D3	D2	D1	D0	43 us	Data were read from t internal RAM (DDRAM CGRAM)

Note: "-" is not considered

7.6.1 clear display

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 0 0 0 1 (space code) to and By writing 20H all DDRAM addresses setting the address counter to OOH, you can clear the display data, place the cursor in the initial state position,

and set the input mode to increment (I / D is high).

7.6.2 return

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	0	0	1	-	
1										

consider

'-" is not an exam

The return instruction is to return the cursor back to the starting position, set the DDRAM address to OOH and write to the address counter, and change the display to the initial state, leaving the data in DDRAM unchanged.

7.6 3 input pattern

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

	0	0	0	0	0	0	0	1	I/D	SH
Sets the	moveme	ent dir	ection	of th	e curs	or and	l the	display	7	

I / D: Increase or decrease of the DDRAM address (cursor or flicker)

When I / D is 1, the cursor flashes to the right and the DDRAM address is increasing;

when I / D is O, the cursor flashes to the left and the DDRAM address

decreases when read out or written to CGRAM.

SH: Display the shift

When SH is 0, the entire display does not shift for the DDRAM or CGRAM read / write operations. When SH is 1, the operation to DDRAM write is that the shift of the entire display will shift according to the direction set by I / D.

7.6.4 Display switch control DB0 RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 0 ____0 1 0 0 0 0 D С В Display / cursor and flicker control Display the switch control position D Display is on when D is 1, and off when D is 0, but the display data in DDRAM remains unchanged. Čursor switch control position

	Part name	Character LCD Module	Date	2025-03-26
KUS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	14 / 28

Instructions for use

When C is 1 the cursor is open; when C is 0 the cursor disappears, but the I / D register holds its data.

B: the cursor flicker switch control position

When B is 1, the cursor flashes open, and when B is 0.

7.6.5 The cursor flashes / shifts

	R/W	221	220	220		220			220
0	0	0	0	0	1	S/C	R/L	-	_

Without read or write the display data, move the cursor position or display left or right. This instruction is used to correct and find the display data, and move the cursor after the 40th character in row 1 to line 2. Note that in all rows, the display shift is performed simultaneously when the data is displayed repeatedly, each bit is independently shifted, and when the display shift, the content in the address counter remains unchanged

Shift format table

S/C	R/L	Operate
0	0	The cursor moves to the left and the address counter decreases by 1
0	1	The cursor moves to the right and the address counter increases by 1
1	0	So the display moves to the left, and the cursor follows the display shift
1	1	All displays move to the right and the cursor follows the display shift

7.6.6 Function Settings

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	Ν	F	-	-

DL: Interface data width control bit

When the DL is 1, it means that the 8-bit bus is connected to the MCU

When the DL is 0, it means that the 4-bit bus is connected to the MCU. In the 4-bit bus mode, the 8-bit data needs to be completed two times by transmitting the 4-bit data.

N: Display row number control bits

1 line when N is O; 2 lines when N is 1.

F: Display the font settings

When F is O, the font is 5x8 matrix mode; when F is 1, the font is 5x11 matrix mode.

7.6.7 Set the CGRAM address

R	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Place the CGRAM addresses into the address counter to make the CGRAM data from the MCU valid.

7.6.8 Set the DDRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

The DDRAM address is placed into the address counter to make DDRAM data from the MCU valid, with 1 row address 00 H to 4 FH, row 1 DDRAM address from 00 H to 27 H and row 2 DDRAM address from 40 H to 67 H.

7.6.9 Read the busy logo and the address

RSR/WDB7DB6DB5DB4DB3DB2DB1DB001BFAC6AC5AC4AC3AC2AC1AC0

	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	15 / 28

This instruction shows whether the module is in internal operation. If the BF is 1, the internal work is in progress, and you need to wait until the next instruction is set 0 before the BF can be executed. In this instruction, the value in the address counter can also be read.

7.6.10 Write the data to the RAM

	R/W								
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write the 8-bit data to DDRAM / CGRAM. The selection between DDRAM and CGRAM is determined by the address setting instruction (DDRAM address setting instruction and CGRAM address setting instruction), where the address counter increases or decreases according to the RAM setting instruction.

7.6.11 Read the data from the RAM

1

RS R/W DB6 DB2 DB1 DB7 DB5 DB4 DB3 DB0 D5 1 D7 D6 D4 D3 D2 D1 D0

8-bit data were read from DDRAM / CGRAM, The choice between DDRAM and CGRAM is determined by the address setting instruction, If the address setting instruction is not written before reading the data, The data readout is invalid; If the RAM address setting instruction is not written before the read operation, And read out the data multiple times, Starting with the second data is valid, The first data is incorrect, Because there is no timing coupled with the RAM data output, In DDRAM, The cursor transfer instruction plays the same role as the DDRAM address setting instruction, Also send RAM data to the output register, After reading the operation, The address counter increments or decreases according to the input mode instruction, After the CGRAM reading operation, Show that the shift may not perform correctly.

7.6.12 initialise

When powered on, the module will be initialized, during which the following instructions will be executed, and the busy flag bit will remain high until the end of the initialization.

1. Clear display instruction: All DDRAM is written to 20H

2.	Set function	instructions:	DL=1,	8-bit bus mode
			N=0,	1-row displaymode
			F=0,	5x8 font

3. Display function instructions: D=0, display off C=0, Cursor Off B=0, blinking off

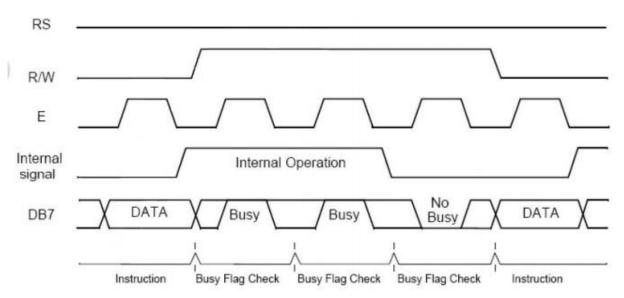
I/D=1, incremental 4. Set return command: SH=0, display does not shift

	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	16 / 28

$7.\,7$ Display the location table corresponding to the RAM addresses

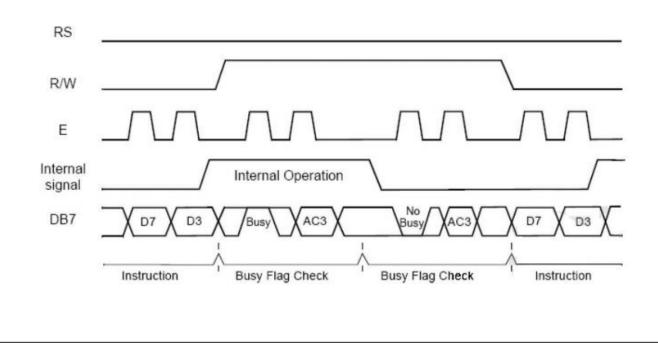
Display position	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
DDRAM address	00	01	02	03	04	05	06	07	08	09
Display position	1-11	1-12	1-13	1-14	1-15	1-16	1-17	1-18	1-19	1-20
DDRAM address	0A	0B	0C	0D	0E	0F	10	11	12	13
Display position	1-21	1-22	1-23	1-24	1-25	1-26	1-27	1-28	1-29	1-30
DDRAM address	14	15	16	17	18	19	1A	1B	1C	1D
Display position	1-31	1-32	1-33	1-34	1-35	1-36	1-37	1-38	1-39	1-40
DDRAM address	1E	1F	20	21	22	23	24	25	26	27
Display position	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10
DDRAM address	40	41	42	43	44	45	46	47	48	49
Display position	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20
DDRAM address	4A	4B	4C	4D	4E	4F	50	51	52	53
Display position	2-21	2-22	2-23	2-24	2-25	2-26	2-27	2-28	2-29	2-30
DDRAM address	54	55	56	57	58	59	5A	5B	5C	5D
Display position	2-31	2-32	2-33	2-34	2-35	2-36	2-37	2-38	2-39	2-40
DDRAM address	5E	5F	60	61	62	63	64	65	66	67

1-1 indicates the first character of the first line


	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	17 / 28

Instructions for use of the LCD display module

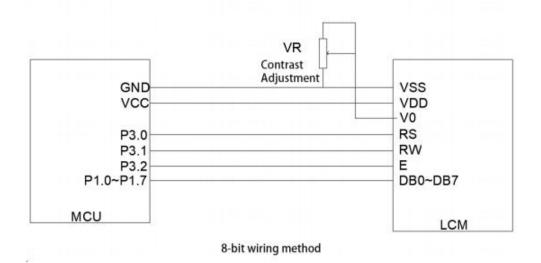
8. time sequential routine


8.1 The 8-bit MCU interface

When the interface data width is set to 8 bits, the data is read and written from the 8-bit port (DB0 $^{\circ}$ DB7) simultaneously, and the time sequence is shown in the figure below:

8.2 The 4-bit MCU interface

When the interface data width is set to 4 bits, the data is only read and written from the high 4 bits (DB4 $^{\circ}$ DB7) of the 8-bit port, first transmitting high 4 bits and then transmitting low 4 bits. The timing is shown in the figure below:



Part number L-KLS9-1602E-YG-K/A Edition V1 Department Page 18/28		Part name	Character LCD Module	Date	2025-03-26
		Part number	L-KLS9-1602E-YG-K/A	Edition	V1
		Department		Page	18 / 28

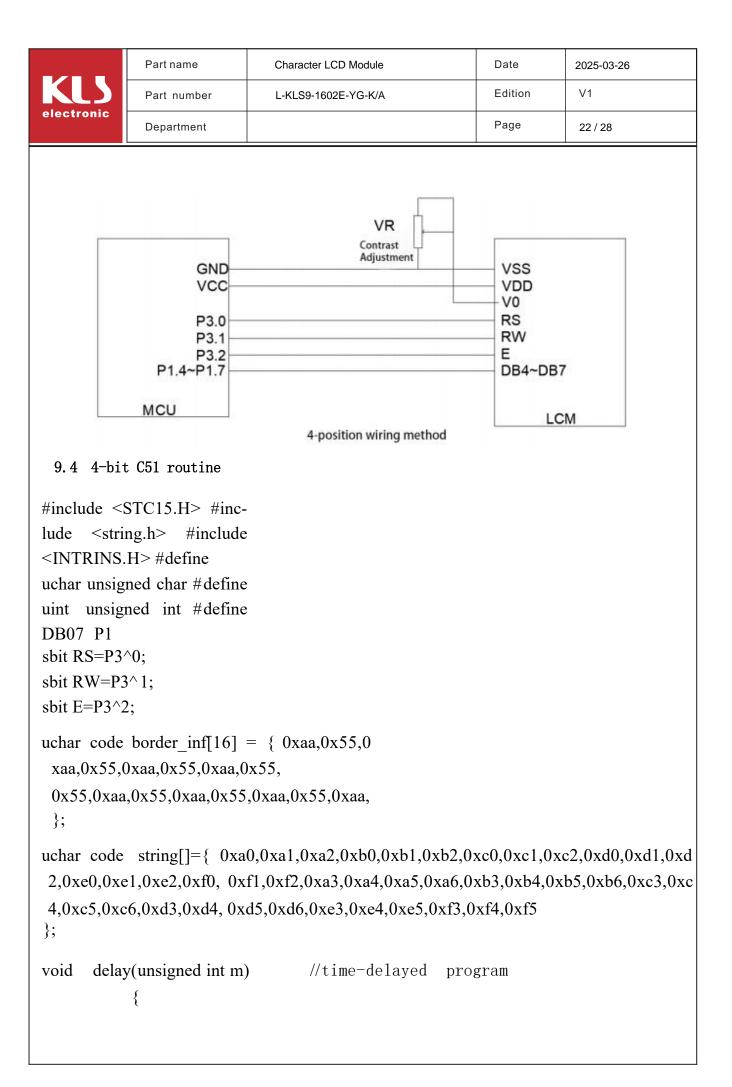
Instructions for use

9. Application routines

9.1 8-bit wiring diagram

DB zone uchar code border _ inf [16] = {

```
0xaa,0x55,0xaa,0x55,0xaa,0x55,0xaa,0x55,
0x55,0xaa,0x55,0xaa,0x55,0xaa,0x55,0xaa,
};
uchar code string[]={ 0xa0,0xa1,0xa2,0xb0,0xb1,0xb2,0xc0,0xc1,0xc2,0xd0,0xd1,0xd
2,0xe0,0xe1,0xe2,0xf0, 0xf1,0xf2,0xa3,0xa4,0xa5,0xa6,0xb3,0xb4,0xb5,0xb6,0xc3,0xc
4,0xc5,0xc6,0xd3,0xd4, 0xd5,0xd6,0xe3,0xe4,0xe5,0xf3,0xf4,0xf5
};
```


```
Part name
                                  Character LCD Module
                                                                  Date
                                                                              2025-03-26
                                                                  Edition
                                                                               V1
              Part number
                                  L-KLS9-1602E-YG-K/A
electronic
                                                                  Page
              Department
                                                                               19/28
          delay(unsigned int m)
   void
                                       //time-delayed program
                 {
                  unsigned int i,j;
                  for(i=0;i<m;i++)
                    for(j=0;j<20;j++);
                }
          delayms(unsigned int n)
                                         //latency10×n millisecond program {
   void
                  unsigned int i,j;
                  for(i=0;i<n;i++)
                     {
                    for(j=0;j<800;j++);
                      }
                }
   void LcdWriteCom(uchar com) {
      E=0;
      RW=0;
      RS=0;
      DB07=com;
      E=1;
    delay(10);
    E=0;
   }
   void LcdWriteData(uchar dat) {
      E=0;
      RW=0;
      RS=1;
      DB07=dat;
      E=1;
      delay(10);
      E=0;
   }
```

```
Part name
                                              Date
                                                       2025-03-26
                        Character LCD Module
                                              Edition
                                                       V1
                        L-KLS9-1602E-YG-K/A
          Part number
electronic
                                              Page
                                                       20/28
          Department
void LcdInit()
{
  LcdWriteCom(0x38);
  LcdWriteCom(0x0c);
  LcdWriteCom(0x06);
  LcdWriteCom(0x01);
  delayms(5);
}
void Show string1(uchar a[])
{
  uchar i;
  LcdWriteCom(0x80);
  for(i=0;a[i]!='\0';i++)
  { LcdWriteData(a[i]);
  }
}
void Show_string2(uchar *a)
{
  uchar i;
  LcdWriteCom(0x80+0X40);
  for(i=0;i<16;i++)
  { LcdWriteData(a[i]);
  }
}
* Name: Main ()
* Function: Main function
* Input: None
* Output:
no
  ***/
     main(void)
void
  {
```

	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
lectronic	Department		Page	21 / 28

```
uchar i,j;
           LcdInit();
    LcdWriteCom(0x40);
      for(i=0;i<16;i++)
       { LcdWriteData(border_inf
       [i]); }
               while(1)
       {
                 for(j=0;j<2;j++)
     { LcdWriteCom(0x
  80);
  for(i=0;i<16;i++)
   { LcdWriteData(j);
   }
LcdWriteCom(0xC0);
  for(i=0;i<16;i++)
   { LcdWriteData(j);
   }
  delayms(500);
   }
 Show_string1(" 12345abcefg!@#$%");
   Show_string2(string);
delayms(600);
    }
   }
9.3 4-bit wiring diagram
```

el

	Part name	Character LCD Module	Date	2025-03-26			
KUS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1			
electronic	Department		Page	23 / 28			
Instructions	for use						
	unsigned int i,j	;					
	for(i=0;i <m;i+< td=""><td>+)</td><td></td><td></td></m;i+<>	+)					
	for(j=0;j<20;	;j++);					
	}						
void dela	yms(unsigned int	n) //latency10×n mil	lisecond	program			
	{						
	unsigned int i,j						
	for(i=0;i <n;i+-< td=""><td>+)</td><td></td><td></td></n;i+-<>	+)					
	{						
	for(j=0;j<80	0;J++);					
	}						
	}						
· 1 T 1337)					
	riteCom(uchar co	om)					
{	m1						
	om1, com2;						
	com&0xf0; com<<4)&0xf0;						
	$\cos(11/\sqrt{4})$						
E=0; RW=0;							
RW-0, RS=0;							
DB07=0	com1.						
E=1;	comi,						
delay(10)							
E=0;	,						
RW=0;							
RV-0, RS=0;							
DB07=com2;							
E=1;	,						
delay(10)							
E=0;	, ,						
}							
-	riteData(uchar da)					
	The Data (denar da	(1)					
-	at1,dat2;						
	ut&0xf0;						
	at<<4)&0xf0;						

	Part name	Character LCD Module	Date	2025-03-26
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
electronic	Department		Page	24 / 28
Instructions	for use			·
E=0;				
RW=0; RS=1;				
NS-1, DB07=d	ot1.			
E=1;	lat1,			
delay(10);				
E=0;				
RW=0;				
RS=1;				
DB07=d	at2;			
E=1;	,			
delay(10);				
E=0;				
}				
void LcdIni	t()			
	Com(0x28);			
	eCom(0x0c);			
	eCom(0x06);			
	eCom(0x01);			
delayms	(5);			
}				
void Show_	string1(uchar a[])			
{				
uchar i;				
LcdWrit	eCom(0x80);			
([i]!='(0';i++)			
{				
LcdW1	riteData(a[i]);			
}				
}				
void Show	string2(uchar *a)			
{	sumg2(uchai a)			
uchar i;				
	eCom(0x80+0X40)):		
	<16;i++)	<i>,</i> ,,,		
{	- , ,			
× ×				

	Part name	Character LCD Module	Date	2025-03-26					
KLS	Part number	L-KLS9-1602E-YG-K/A	Edition	V1					
electronic	Department		Page	25 / 28					
т	C			<u></u>					
Instructions LcdW	tor use riteData(a[i]);								
}	(u[1]),								
}									
	****	****	****	* * * * * * * * *					
* Name: Ma									
	n: Main functi	on							
* Input:									
* Output:									
no *****	*****	*****	*****	*****					
***/									
void mair	n(void)								
{									
	uchar i,j;								
	LcdInit();								
LcdWr	iteCom(0x40);								
for(i=	=0;i<16;i++)								
{									
Lcd	WriteData(border	:_inf[i]);							
}									
	while(1)								
{									
	for(j=0;j<2	2;j++)							
{ Lcd	WriteCom(0x								
80);									
	<16;i++)								
{ LcdW	riteData(j);								
}	}								
LcdWriteCo	. ,								
	<16;i++)								
{ LcdW1	riteData(j);								
}	(500)								
delayms	(500);								
}									
	ng1(" 12345abcet	fg!@#\$%");							
	tring2(string);								
delayms(60	0);								

	F	Part na	me		C	Charact	er LCD) Modu	le			Da	ate		2025-	03-26
	F	Part nu	mber		L	-KLS9	-1602E	-YG-K	/A			Ec	lition		V1	
lectronic	C	Departr	nent									Pa	age		26/2	28
Instruction	ns fo	or us	е													
}																
9.5																
word sto							-						-			
67-64 63-60		0001	0010	0011	0100	0101	0110	00000	1000	1001	1010	1011			1110	1111
0000	CG RAM (1)				a							•••••				p
0001	(2)				A		-	-							ä	q
0010	(3)			2	В		ю								8	8
0011	(4)				0	5								12		88
0100	(5)		\$	4	D		d							12		Ω
0101	(6)		24										*			ü
0110	(7)		8	6			£					11				2
0111	(8)				6		9									π
1000	(1)			8		X							*			8
1001	(2)				1		1									
1010	(3)		***													al a
1011	(4)				K		k									Ħ
1100	(5)					-	1				12				4.	m
1101	(6)			•••••												
1110	(7)											12				
1111	(8)														Ö	

10. matters need attention

	Part name	Character LCD Module	Date	2025-03-26
electronic	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
	Department		Page	27 / 28

Instructions for use

1. LCD Display (LCD)

LCDs are made of glass, organic sealant, organic fluid, and polymer-based polarizer. The following matters should be paid attention to when handling:, (1). Keep the temperature within the use and storage range. Excessive temperature and humidity can cause polarization degradation, polarizer stripping, or air bubbles. (2). Do not touch the exposed polarizer with something harder than the HB pencil lead. Remove dust from the display surface and gently wipe with cotton and soak deer tamkins or other soft materials in cleaning oil.

(3) Immediately erase the saliva or water droplets. Excessive ITO contact with water can deform or change the liquid crystal display surface.

 $\left(4\right)$ Glass is easily broken by rough operation. Especially in the corners and at the edges.

(5) . Do not use a DC voltage to drive the LCD display.

2. LCD display module

2.1 Mechanical precautions

LCM assembly and adjustment with high accuracy. Avoid excessive vibration and make no changes or modifications. The following points should be noted.

(1) . Do not change the lugs on the metal frame in any way.

(2) . Do not modify the PCB by drilling additional holes, changing its profile, moving its components, or modifying its pattern.

(3) . Do not touch the elastomer connector, especially insert the backlight panel (e. g., EL).

(4) . When installing the LCM, ensure that the PCB plate is not under any pressure, such as bending or twisting. The elastomer contact is very fine and any slight misalignment of any element can result in missing pixels.

(5) . Avoid pressing on the metal baffle, otherwise the elastomer connector may deform and lose contact, resulting in the loss of pixels.

2.2. static electricity

The LCM contains CMOS LSI and the same precautions should be taken for such equipment, i. e

(1) . When the operator contact the module. Do not use any body with any conductive part, such as the LSI pad, copper wires on the PCB, and interface terminals.

 $\left(2\right)$. The modules shall be stored in antistatic bags or other antistatic containers.

(3) . Only a properly grounded flipping iron can be used.

 $\left(4\right)$. If an electric screwdriver is used, be well grounded and prevent sparks from commutators.

(5) The work clothes and workstations shall be subject with normal anti-static measures; for the latter, conductive (rubber) pads are recommended.

(6) . Because dry air senses static electricity, the relative humidity is recommended to be 50-60%.

2.3. weld

(1) . Weld only to the I / 0 terminals.

(2) . Only use the correct grounding and no leakage of the flipping iron.

(3) . Welding temperature: $280^\circ\!\!\mathrm{C}\pm~10^\circ\!\!\mathrm{C}$

(4) . Welding time: 3 to 4 seconds.

(5) . Low ogenic solder filled with resin flux.

(6) . If flux is used, the LCD surface shall be covered to avoid flux splash. The flux residues shall be removed after protection.

2.4. operate

	Part name	Character LCD Module	Date	2025-03-26
electronic	Part number	L-KLS9-1602E-YG-K/A	Edition	V1
	Department		Page	28 / 28

(1) The viewing angle can be adjusted by changing the LCD drive voltage VO.

(2) The drive voltage shall be kept within the specified range, too high voltage will shorten the life of the display. (3) The response time increases with the decrease of the temperature.

(4) . At temperatures above its operating range, the display may turn black or dark blue; this (but do not press the display area) may cause part of the display segment to "break".

(5) . Mechanical damage during operation (such as pressing the display area) may cause "breakage" in the line segment.

2.5. lay in

If any liquid leaks from the damaged glass battery, rinse any contact body parts with soap and water. Do not swallow the liquid. The toxicity is extremely low, but you should always be careful.

2.6. Limited warranty

Unless otherwise agreed with the Customer, within one year from the date of shipment, when its electrical and cosmetic defects are found under the acceptance criteria, the confirmation of the date shall be based on freight documents and the warranty liability shall be limited to the above clause

Instructions for use Repair and / or replacement performed. Will not be responsible for any subsequent or consequential events.