Current Transducer LT 300-T/SP7 For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). # $I_{PN} = 300 A$ #### **Electrical data** | $egin{aligned} oldsymbol{I}_{PN} \ oldsymbol{I}_{P} \ oldsymbol{R}_{M} \end{aligned}$ | Primary nominal r.m.s. current Primary current, measuring range Measuring resistance | | 300 0 ± 500 $R_{M min} R_{M max}$ | | A
A | |---|--|--------------------------|---|-----------------|--------| | | with ± 12 V | @ ± 300 A _{max} | 0 | 30 | Ω | | | | @ ± 500 A max | 0 | 5 | Ω | | | with ± 18 V | @ ± 300 A _{max} | 20 | 70 | Ω | | | | @ $\pm 500 A_{max}$ | 20 | 25 | Ω | | I _{SN} | Secondary nominal r.m.s. current | | 150 | | mΑ | | K _N | Conversion ratio | | 1:2000 |) | | | V _C | Supply voltage (± 5 %) | | ± 12 ′ | 18 | V | | I _C | Current consumption | | 28 (@ ±1 | 8V)+ I s | mA | | V _d | R.m.s. voltage for AC isola | ation test, 50 Hz, 1 mn | 6 | _ | kV | ## Accuracy - Dynamic performance data | $\overset{\boldsymbol{x}_{G}}{\boldsymbol{e}_{L}}$ | Overall accuracy @ $\mathbf{I}_{\rm PN}$, $\mathbf{T}_{\rm A}$ = 25°C Linearity | | ± 0.5 < 0.1 | | %
% | |--|--|---------------|---------------------|-------|-------------------| | I _о | Offset current @ $\mathbf{I}_{\rm P}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$ | - 25°C + 70°C | Typ
± 0.4 | ± 0.3 | | | t _,
di/dt
f | Response time $^{1)}$ @ 90 % of $\mathbf{I}_{\text{p max}}$ di/dt accurately followed Frequency bandwidth (- 1 dB) | | < 1
> 50
DC 1 | 150 | μs
A/μs
kHz | #### General data | T_{A} | Ambient operating temperature | - 25 + 70 | °C | |------------------|---|-----------|----| | T _s | Ambient storage temperature | - 40 + 85 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 70°C | 35 | Ω | | m | Mass | 480 | g | | | Standards 2) | EN 50155 | | | | | | | #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0. ## Special features - $T_A = -25^{\circ}C ... + 70^{\circ}C$ - Railway equipment. ## **Advantages** - Excellent accuracy - Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capability. ### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. Notes: 1) With a di/dt of 100 A/µs ²⁾ A list of corresponding tests is available 061013/3 ## **Dimensions** LT **300-T/SP7** (in mm. 1 mm = 0.0394 inch) ### **Mechanical characteristics** • General tolerance Fastening • Connection of primary • Connection of secondary \pm 0.3 mm 2 holes \varnothing 5.5 mm or by the primary bar 2 holes Ø 8.5 mm Faston 6.3 x 0.8 mm ### **Remarks** - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C.