

Current Transducer LT 300-T/SP7

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 300 A$

Electrical data

$egin{aligned} oldsymbol{I}_{PN} \ oldsymbol{I}_{P} \ oldsymbol{R}_{M} \end{aligned}$	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		300 0 ± 500 $R_{M min} R_{M max}$		A A
	with ± 12 V	@ ± 300 A _{max}	0	30	Ω
		@ ± 500 A max	0	5	Ω
	with ± 18 V	@ ± 300 A _{max}	20	70	Ω
		@ $\pm 500 A_{max}$	20	25	Ω
I _{SN}	Secondary nominal r.m.s. current		150		mΑ
K _N	Conversion ratio		1:2000)	
V _C	Supply voltage (± 5 %)		± 12 ′	18	V
I _C	Current consumption		28 (@ ±1	8V)+ I s	mA
V _d	R.m.s. voltage for AC isola	ation test, 50 Hz, 1 mn	6	_	kV

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{G}}{\boldsymbol{e}_{L}}$	Overall accuracy @ $\mathbf{I}_{\rm PN}$, $\mathbf{T}_{\rm A}$ = 25°C Linearity		± 0.5 < 0.1		% %
I _о	Offset current @ $\mathbf{I}_{\rm P}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C	Typ ± 0.4	± 0.3	
t _, di/dt f	Response time $^{1)}$ @ 90 % of $\mathbf{I}_{\text{p max}}$ di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

T_{A}	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	35	Ω
m	Mass	480	g
	Standards 2)	EN 50155	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $T_A = -25^{\circ}C ... + 70^{\circ}C$
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) With a di/dt of 100 A/µs

²⁾ A list of corresponding tests is available

061013/3

Dimensions LT **300-T/SP7** (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Connection of primary

• Connection of secondary

 \pm 0.3 mm

2 holes \varnothing 5.5 mm or by the primary bar

2 holes Ø 8.5 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.