HI-8598

Galvanically Isolated

INTEGRATED CIRCUITS

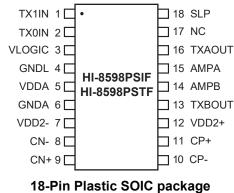
Single-Rail ARINC 429 Differential Line Driver

GENERAL DESCRIPTION

The HI-8598 is the world's first galvanically isolated ARINC 429 line driver, available in a compact 18-pin SOIC plastic package. Patented capacitive isolation and power regulation provide 800V galvanic isolation between the analog line driver and the logic interface, making this device ideal for systems that must tolerate different grounds.

Logic inputs feature built-in 4kV ESD input protection (HBM) as well 3.3V logic level compatibility.

37.5 Ohm or 5 Ohm resistors in series with each ARINC output are available to allow the use of external resistors for lightning protection.


The HI-8598 line driver is intended for use where logic signals must be converted to ARINC 429 levels (such as when using an FPGA or Holt's HI-3220 or HI-35860 ARINC 429 protocol ICs) and where it is important to fully isolate the ARINC 429 data bus from digital circuitry.

The part is available in Industrial -40° C to $+85^{\circ}$ C, or Extended, -55° C to $+125^{\circ}$ C temperature ranges. Optional burn-in is available on the extended temperature range.

FEATURES

- Airbus ABD0100H specification compliant
- Galvanically isolated ARINC 429 line driver providing 800V isolation between the analog line driver and the logic interface
- All ARINC 429 voltage levels generated on-chip
- · Digitally selectable rise and fall times
- 5 Ohm or 37.5 Ohm output resistance
- · Industrial and Extended temperature ranges
- Burn-in available

PIN CONFIGURATION (TOP VIEW)

Table	1.	Function	Table

TX1IN	TX0IN	SLP	TXAOUT	TXBOUT	SLOPE	
0	0	Х	0V	0V	N/A	
0	1	0	-5V	5V	10µs	
0	1	1	-5V	5V	1.5µs	
1	0	0	5V	-5V	10µs	
1	0	1	5V	-5V	1.5µs	
1	1	Х	Hi-Z	Hi-Z	N/A	

BLOCK DIAGRAM

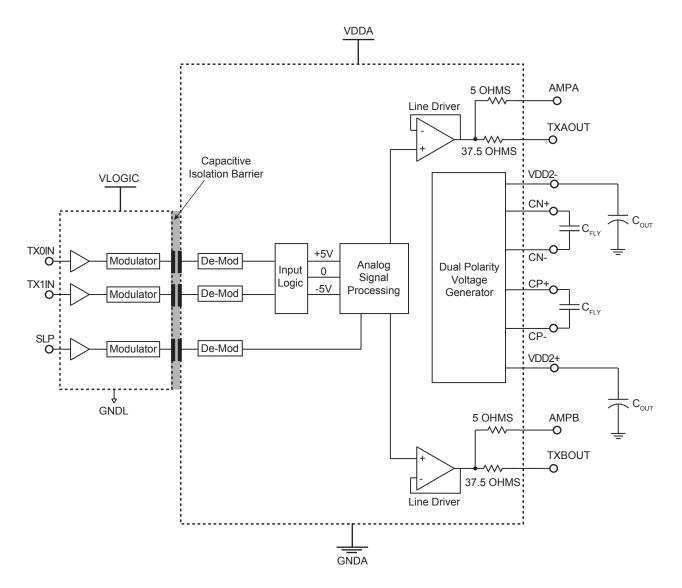


Figure 1. HI-8598 Functional Block Diagram

PIN DESCRIPTIONS

Table 2.	Pin Des	criptions
	1 111 200	

Pin #	Pin Name	Function	Description
1	TX1IN	INPUT	Data input one
2	TX0IN	INPUT	Data input zero
3	VLOGIC	POWER	3.3V power supply for digital logic
4	GNDL	POWER	Ground for digital logic
5	V_{dda}	POWER	3.3V power supply for analog line driver
6	GNDA	POWER	Ground for analog line driver
7	V _{DD2-}	OUTPUT	Voltage doubler negative output (~ -6.0V for 3.3V supply)
8	CN-	ANALOG	V _{DD2-} flyback capacitor, C _{FLY} ; negative terminal
9	CN+	ANALOG	V _{DD2-} flyback capacitor, C _{FLY} ; positive terminal
10	CP-	ANALOG	V _{DD2+} flyback capacitor, C _{FLY} ; negative terminal
11	CP+	ANALOG	V _{DD2+} flyback capacitor, C _{FLY} ; positive terminal
12	V _{DD2+}	OUTPUT	Voltage doubler positive output (~ +6.0V for 3.3V supply)
13	TXBOUT	OUTPUT	ARINC low output with 37.5 Ohms series resistance
14	AMPB	OUTPUT	ARINC low output with 5 Ohms series resistance
15	AMPA	OUTPUT	ARINC high output with 5 Ohms series resistance
16	TXAOUT	OUTPUT	ARINC high output with 37.5 Ohms series resistance
17	NC	No Connect	Do not connect.
18	SLP	INPUT	Output slew rate control. High selects ARINC 429 high-speed. Low selects ARINC 429 low-speed.

FUNCTIONAL DESCRIPTION

Figure 1 is a block diagram of the line driver. An integrated inverting / non-inverting voltage doubler generates the rail voltages (\pm 6.0V) which are then used to produce the \pm 5V ARINC 429 output levels. The analog circuitry is fully isolated from the digital logic.

The internal dual polarity charge pump circuit requires four external capacitors, two for each polarity generated by the doubler. CP+ and CP- connect the external charge transfer or "fly" capacitor, C_{FLY} , to the positive portion of the doubler, resulting in twice V_{DDA} at the V_{DD2+} pin. An output "hold" capacitor, C_{OUT} , is placed between V_{DD2+} and GND. C_{OUT} should be ten times the size of C_{FLY} . The inverting or negative portion of the converter works in a similar fashion, with C_{FLY} and C_{OUT} placed between CN+ / CN- and V_{DD2-} / GND respectively.

Currents for slope control are set by on-chip resistors.

The TX0IN and TX1IN inputs receive logic signals from a control transmitter chip such as Holt's HI-3210 or HI-3220. TXAOUT and TXBOUT hold each side of the ARINC bus at Ground until one of the inputs becomes a One. If for example TX1IN goes high, a charging path is enabled to 5V on an "A" side internal capacitor while the "B" side is enabled to -5V. The charging current is selected by the SLP pin. If the SLP pin is high, the capacitor is nominally charged from 10% to 90% in 1.5μ s. If SLP is low, the rise and fall times are 10 μ s.

A unity gain buffer receives the internally generated slopes and differentially drives the ARINC line. Current is limited by the series output resistors at each pin. There are no fuses at the outputs of the HI-8598.

The HI-8598 has 37.5 ohms in series with each TXOUT output and 5 ohms in series with each AMP output. The AMP outputs are for applications where external series resistance is required, typically for lightning protection devices. Holt Application Note AN-300 describes suitable lightning protection schemes.

Tri-stateable outputs allow multiple line drivers to be connected to the same ARINC 429 bus. Set TX1IN and TX0IN both to a logic "1" to force the outputs in the highimpedance state.

ABSOLUTE MAXIMUM RATINGS

Supply Voltages
V _{DDA} +7.0V
V _{LOGIC}
Junction Temperature (T _{JMAX}) 175°C
Common-mode input voltage +/- 1,000V
Solder Temperature (reflow)
Storage Temperature

RECOMMENDED OPERATING CONDITIONS

Supply Voltages					
V _{DDA}	+3.0V	to	+3.6V		
V _{LOGIC}	+3.0V	to	+3.6V		
Temperature Range					
Industrial Screening40°C to +85°C					
Hi-Temp Screening					

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

ELECTRICAL CHARACTERISTICS

Table 3. DC Electrical Characteristics

 $V_{DDA} = V_{LOGIC} = [+3.0V, +3.6], T_A = Operating Temperature Range (unless otherwise stated)$

Parameters	Symbol	Test Conditions	Min	Тур	Мах	Units
Input Voltage (TX1IN, TX0IN, SLP)						
High	V _{IH}		2.0	-	-	V
Low	V		-	-	0.3V _{DD}	V
Common Mode Offset	V_{DIFF}	GNDL w.r.t. GNDA, all pins	-800		+800	V
Input Current (TX1IN, TX0IN, SLP)		(73kΩ Internal Pulldown)				
	I _{IH}	V _{IN} = 3.3V	-	45	-	μA
	I _{IL}	$V_{IN} = 0V$	-	-	-0.1	μA
ARINC Output Voltage (Differential)						
one	V_{DIFF1}	no load; TXAOUT - TXBOUT	9	10	11	V
zero	V_{DIFF0}	no load; TXAOUT - TXBOUT	-11	-10	-9	V
null	V_{DIFFN}	no load; TXAOUT - TXBOUT	-0.5	0	0.5	V
ARINC Output Voltage (Ref. to GND)						
one or zero	V _{DOUT}	no load & magnitude at pin	4.5	5.0	5.5	V
null	V _{NOUT}	no load	-0.25	0	0.25	V
Operating Supply Current		$SLP = V_{LOGIC}$				
No Load (Logic)		TX1IN = TX0IN = V_{LOGIC} = 0V	-	0.6	1.0	mA
No Load (Analog)	I _{ddnla}	$TX1IN = TX0IN = V_{LOGIC} = 0V$	-	40	50	mA
Max. Load (Analog)	I _{DDLA}	100kHz, 400Ω load	-	65	-	mA
ARINC Outputs Shorted	I _{DDS}	See Note 1	-	165	-	mA
Power Dissipation in device ²		$SLP = V_{LOGIC}$				
No load (Analog)	P_{DDNLA}	$TX1IN = TX0IN = V_{LOGIC} = 0V$	-	132	180	mW
Max. Load (AMPA to AMPB)	P_{DDLA}	100kHz, 400 Ω load ³	-	264	-	mW
Max. Load (TXAOUT to TXBOUT)	P _{DDLT}	100kHz, 400 Ω load	-	294	-	mW
ARINC Outputs Shorted (AMP outputs)	P _{DDSA}	See Note 1	-	390	-	mW
ARINC Outputs Shorted (TXOUT outputs)	P _{DDST}	See Note 1		550	-	mW
ARINC Output Impedance	Z _{OUT}					
TXOUT pins				37.5		Ohms
AMP pins				5		Ohms
ARINC Output Tri-State Current	I _{oz}	TX0IN = TX1IN = V_{LOGIC} -5.5V < V_{OUT} < +5.5V	-1.0	0	+1.0	μA

Note 1: TXAOUT and/or TXBOUT shorted to each other or ground. AMPA and/or AMPB shorted to each other or ground (assumes external resistors are connected to AMPA and AMPB to comply with ARINC 429 37.5 Ohm output resistance requirement).

Note 2: Estimate junction temperature using Theta JB or Theta JA values available on Holt's website, www.holtic.com. $T_{J} \leq T_{JMAX}$.

Note 3: In addition, external resistors are connected to AMPA and AMPB to comply with ARINC 429 37.5 Ohm output resistance requirement

Table 4. Converter Characteristics

Parameters	Symbol	Test Conditions	Min	Тур	Мах	Units	
Start-up transient (V _{DD2+} , V _{DD2-})	t _{start}		-	-	10	ms	
Operating Switching Frequency	f _{sw}		-	650	-	kHz	
Worst case maximum voltage doubler output	$V_{DD2+(max)}$	$V_{DDA} = 3.6V. T = -55^{\circ}C. Open$ load.			6.6	V	
DC/DC convertor capacitor recommendations.							
For optimum performance use ty	pical (not min	.) values. For EMC compliance	e, see A	N-135.			
Ratio of bulk storage to fly-back capacitors	$\rm C_{_{OUT}}$ / $\rm C_{_{FLY}}$		2.2	10			
Fly-back capacitor (Recommend ceramic, preferably multilayer, dielectric XR7 caps, 10V min.).	C _{FLY} C _{FLY(ESR)}	C _{OUT} / C _{FLY} >= 10 [0.5, 1.0]Mhz	1.0	4.7	- 500	μF mΩ	
Bulk storage capacitor (Recommend ceramic, preferably multilayer, dielectric XR7 caps, 10V min.).	C _{OUT} C _{OUT(ESR)}	C _{OUT} / C _{FLY} >= 10 [0.5, 1.0]Mhz	2.2	47	- 300	μF mΩ	
By-pass capacitor C_SUPPLY C_SUPPLY COUT (connect from V_DDA to GND) (Recommend ceramic cap, 10V min.). (Recommend ceramic cap, 10V min.). (Recommend ceramic cap, 10V min.).							

$V_{_{DDA}} = V_{_{LOGIC}} = [+3.0V, +3.6], T_{_{A}} = Operating Temperature Range (unless otherwise stated)$

Table 5. AC Electrical Characteristics

 $V_{DDA} = V_{LOGIC} = [+3.0V, +3.6], T_A = Operating Temperature Range (unless otherwise stated)$

Parameters	Symbol	Test Conditions	Min	Тур	Мах	Units
Line Driver Propogation Delay		defined in Figure 2, no load				
Output high to low	t _{phlx}		-	500	-	ns
Output low to high	t _{plhx}		-	500	-	ns
Line Driver Transition Times						
High Speed		$SLP = V_{LOGIC}$				
Output high to low	t _{fx}		1.0	1.5	2.0	μs
Output low to high	t _{rx}		1.0	1.5	2.0	μs
Low Speed		SLP = GNDL				
Output high to low	t _{fx}		5.0	10.0	15.0	μs
Output low to high	t _{rx}		5.0	10.0	15.0	μs
Input Capacitance (Logic) ¹	C _{IN}		-	-	10	pF
Output Capacitance (Tri-state) ¹	C _{OUT}	TX0IN = TX1IN = V_{LOGIC}	-	-	10	pF

Note 1: Guaranteed but not tested

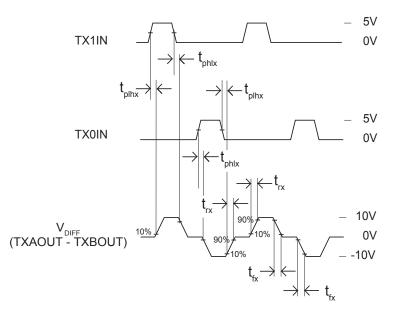
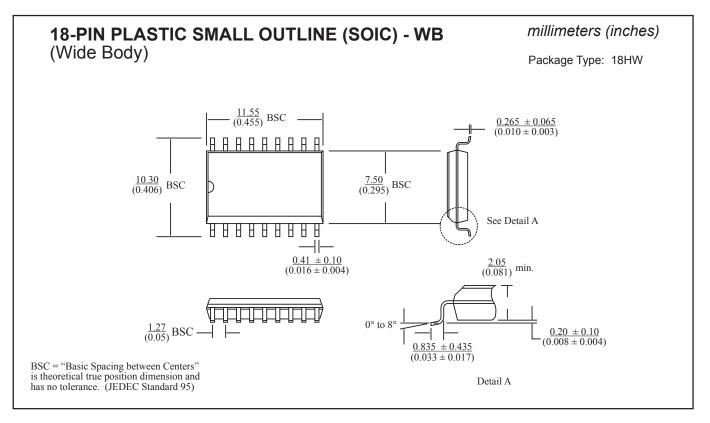


Figure 2. Line Driver Timing

ORDERING INFORMATION

HI - 8598<u>Px x x</u> (Plastic)


PART NUMBER	LEAD FINISH			
F	100% Matte Tin (Pb-free, RoHS compliant)			
PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN	
Ι	-40°C to +85°C	I	No	
Т	-55°C to +125°C	Т	No	
			ĺ	

 PART NUMBER	PACKAGE DESCRIPTION
8598PS	18 PIN PLASTIC SMALL OUTLINE - WB SOIC (18HW)

REVISION HISTORY

Revision	Date	Description of Change
DS8598, Rev. New	09/01/2021	Initial Release.
Rev. A	12/01/2023	Clarify Input Current values on TX1IN, TX0IN and SLP pins.

PACKAGE DIMENSIONS

