

Is Now Part of

OR NEW DESIGN

IN Semiconductor®

To k an more about CH Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and safety requirements or standards, regardless of any support or application provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauth

January 2000 Revised June 2005 4VCX162373 Low Voltage 16-bit Transparent Latch

74VCX162373

FAIRCHILD

SEMICONDUCTOR

Low Voltage 16-Bit Transparent Latch with 3.6V Tolerant Inputs and Outputs and 26Ω Series Resistors in Outputs

General Description

The VCX162373 contains sixteen non-inverting latches with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. The flip-flops appear to be transparent to the data when the Latch enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the outputs are in a high impedance state.

The VCX162373 is also designed with 26Ω resistors in the outputs. This design reduces line noise in applications such as memory address drivers, clock drivers and h transceivers/transmitters.

The 74VCX162373 is designed for low voltage (1 \checkmark to 3.6V) V_{CC} applications with I/O compatibility 12.6.

The 74VCX162373 is fabricated with an adv. eu technology to achieve high speed ora. while naintaining low CMOS power dissipation

Features

- 1.4V–3.6V V_{CC} supply op
- 3.6V tolerant inpu and out_k
- 26Ω series r store outputs
- $\blacksquare t_{PD} (I_n \text{ to } O_n)$
- 3.3 . Sor V to 5.0 V VCC
- TP provide inputs and outputs

tion

- Sup, + live sertion and withdrawal (Note 7
- Static . 'e (I_{OH}/I_{O'})
- ±12 mA @ 2.0\/ (_{CC}
- Jses proprietary noise/E'vil reduction circulty
- Latci -up performance eliceds 300
- ESD ອຍາກorman :e: Human bony model > 2000\?
- Machine model > 200V

Note 1. To ensure the high impedance state during power up or power clum, \overline{OE} should be upd o V_{CC} through a pull-up resistor; the minimum v2 ue of the recistor is ditermined by the current-sourcing capability of the

Pru ring Jode:

Package ering Nur iber 0 Package Description Number 4VCX1.2373 ATD MT 2+8 48-Lized Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide cif, by cppending suffix letter "X" to the ordering code. Puvices also available in Logic Symbo **Pin Descriptions** Pin Names Description OEn Output Enable Input (Active LOW) LEn Latch Enable Input I₀-I₁₅ Inputs O₀-O₁₅ Outputs

© 2005 Fairchild Semiconductor Corporation DS500236

www.fairchildsemi.com

Connection Diagram						
Connection D	1 2 3 4 5 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
1		, r				

Truth Tables

oltag vel

mpe

Pre

	Inputs		Outputs
LE ₁	OE ₁	I ₀ –I ₇	0 ₀ -0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	н	н
L	L	х	O ₀
	Inputs		Jup
LE ₂	OE ₂	l- 5	0 ₈ -0 ₁₅
Х	н	x	Ţ
н			
н	L		H
	L	x	\mathcal{O}_0
GH Voi. Le			

ESIGN

Functional Description

The 74VCX162373 contains sixteen -typ atches with 3-STATE outputs. The device is b, with each byte functioning identic ino nden. the other. Control pins can be orted to the p obtain full 16-bit operation. The following descrip that applies to each byte. When the Lorin That (LE_n) inclusion in HIGH, late on the In enters the latches. In . ion the latches are transparent, i.e. a latch or " ut will change state each time


ts I input changes. When LE is LOW, the latches store information that was present on the 1 np its a setup time proceeding the HIGH-o-LOW transition on LE_n. The 2-STATE of the use of rolled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LCW the standard outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering navi data into the latches.

or LOW, inputs may r. it float)

Oo before HIGH-to '.O'W of Latch Ena

gic D'ag L THIS DEVICE 013 012 010 0₁ 015 Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

www.fairchildsemi.com

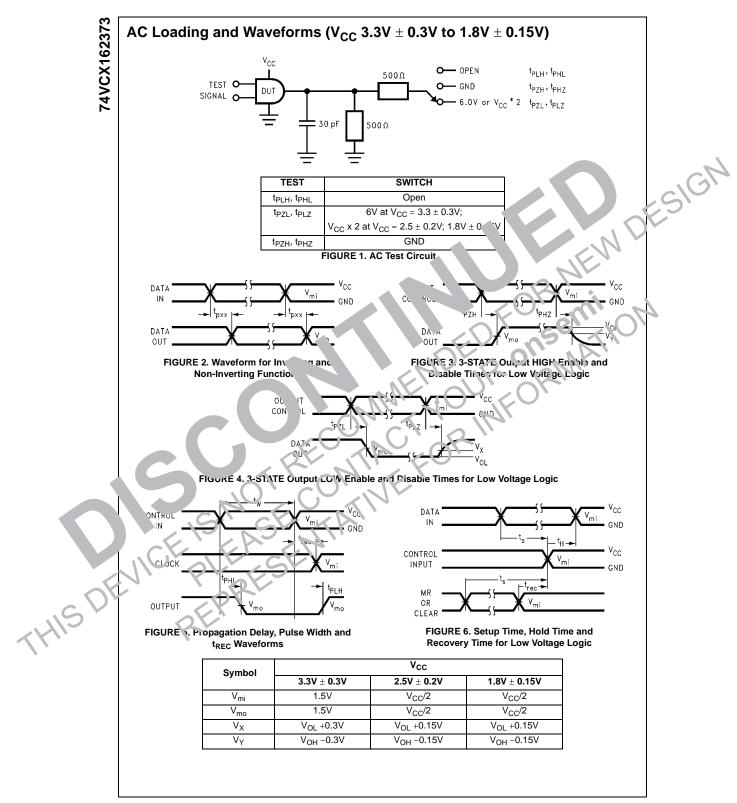
DC Electrical Characterist

Symbol	Parameter	Conditions		ivin	Max	Uni
VIH	HIGH Level In 'tage		2.7 - 3.6	2.0		
			2.3 • 2.7	1.6		v
			1.15-2.3	$0.65 \times V_{CC}$		v
		RV Nr C	1.4 - 1.6	$0.65 \times V_{CC}$		
VIL	LOW' Inp. Je		2.7 - 3.6		0.8	
			2.3 - 2.7		0.7	\
			1.65 - 2.3		$0.35 \text{ x V}_{\rm CC}$	v
			1.4 - 1.6		$0.35 \times V_{CC}$	
ν _c —	HIGH Level Outpul Voltage	$I_{OH} = -1.00 \mu$ x	2.7 - 3.6	V _{CC} - 0.2		
		I _{0.1} = - 6 mA	2.7	2.2		
		ч _{ОН}	3.0	2.4		
	N OLY	i _{OH} = -12 mA	3.0	2.2		
$\langle \rangle$		I _{OH} = -100 μA	2.3 - 2.7	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	2.3	2.0		\
Y		$I_{OH} = -6 \text{ mA}$	2.3	1.8		
)	24	$I_{OH} = -8 \text{ mA}$	2.3	1.7		
	K.	$I_{OH} = -100 \ \mu A$	1.65 - 2.3	V _{CC} - 0.2		
		$I_{OH} = -3 \text{ mA}$	1.65	1.25		
		$I_{OH} = -100 \ \mu A$	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -1 \text{ mA}$	1.4	1.05		

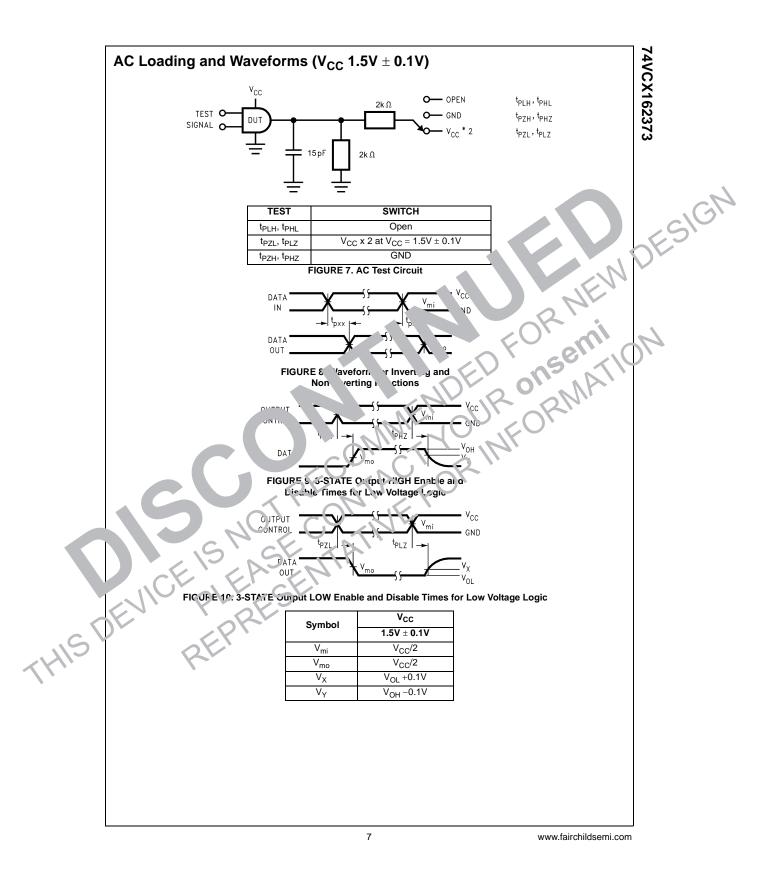
Symbol	Parameter	Conditions	Conditions		Min	Max	Units	
			-	(V)				
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA		2.7 - 3.6		0.2		
		$I_{OL} = 6 \text{ mA}$		2.7		0.4		
		$I_{OL} = 8 \text{ mA}$		3.0		0.55		
		$I_{OL} = 12 \text{ mA}$		3.0 2.3 - 2.7		0.8		
		$I_{OL} = 100 \ \mu A$				0.2 0.4	V	
		I _{OL} = 6 mA		2.3 2.3			v	
		I _{OL} = 8 mA I _{OL} = 100 μA		1.65 - 2.3		0.2		
		$I_{OL} = 3 \text{ mA}$		1.65		3	v	
		I _{OL} = 100 μA		1.4 - 1.6				
		$I_{OL} = 1 \text{ mA}$		1.		0.3ხ		
l _l	Input Leakage Current	$0 \le V_{I} \le 3.6V$		1.4 - 3.	-	0	uA	
I _{OZ}	3-STATE Output Leakage	$0 \le V_0 \le 3.6V, V_1 = V_{IH} \text{ or}$		1.4 - 3.6	— ·	±10.J	 μA	
IOFF	Power-OFF Leakage Current	$0 \le (V_I, V_O) \le 3.6V$		0		17.0	μA	
Icc	Quiescent Supply Current	$V_I = V_{CC}$ or GND		1. 76	0	20.0	μA	
		$V_{CC} \leq (V_{I}, V_{O}) \leq 3.6^{\prime\prime} (Notice that Notice that the second sec$	ы. <u> </u>	1.4 - 3.0		±20.0	μA	
ΔI_{CC}	Increase in I _{CC} per Input tputs disabled or 3-STATE only.	$V_{IH} = V_{CC} - 0.6$.7 - 3.6		750	μΑ	
Symbol	Parameter	nditions				Units	Figure	
				h.ºin	N av		Numbe	
tour	Propagation Delay	$\frac{1}{30 \text{ pE}}$ = 5000.	(V)		N.1x		Tumbe	
t _{PHL}	Propagation Delay	C_{L} 30 pF, $n_{L} = 500\Omega$	3.3 ± 0.5	0.8	36	_	Figures	
t _{PHL} t _{PLH}	Propagation Delay LE to O _n	$\frac{1}{C_L}$ 30 pF, $\mathbf{h}_L = 500\Omega$	$\frac{3.3\pm0.3}{2.5\pm0.2}$	0.8	<u>े 6</u> 4.9	ns		
		NIN NIN	3.3 ± 0.5	0.8	36	ns	Figures	
	LE to On	$C_L = 15 \ \rho \overline{r}, \ R_t = 2k\Omega$	3.3 ± 0.3 2.5 ± 0.2 1.8 ± 0.15 1.5 ± 0.4	0.8	3 6 4.9 9.8 19.6	ns	Figures 1, 2	
t _{PLH}	LE to On Prop. Tion Delay	NIN NIN	$ \begin{array}{r} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0 \\ 1.5 \pm 0 \\ 1.3 \pm 0.5 \\ \end{array} $	0.8 1.0 1.5 1.0 0.8	3 6 4.9 9.8 19.6 3.3	ns	Figures 1, 2 Figures 7, 8	
t _{PLH}	LE to On	$C_L = 15 \ \rho \overline{r}, \ R_t = 2k\Omega$	$ \begin{array}{c} 3.3 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.2 \\ 1.5 \pm 0.2 \\ \end{array} $	0.8 1.0 1.5 1.0 0.8 1.0	3 6 4.9 9.8 19.6 3.3 4.5	-	Figures 1, 2 Figures	
t _{PLH}	LE to On Prop. Tion Delay	$C_{L} = 15 \text{ pr}, R_{L} = 2k\Omega$ $C_{L} = 30 \text{ pF}, R_{L} = \sqrt{00}$	$\begin{array}{c} 3.3 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline 1.3 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline \end{array}$	0.8 1.0 1.0 1.0 1.0 0.8 1.0 1.5	3.6 4.9 9.8 9.8 19.6 3.3 4.5 9.0 9.0 10.6 <th 10.6<="" t<="" td=""><td>ns</td><td>Figures 1, 2 Figures 7, 8 Figures 1, 2</td></th>	<td>ns</td> <td>Figures 1, 2 Figures 7, 8 Figures 1, 2</td>	ns	Figures 1, 2 Figures 7, 8 Figures 1, 2
t _{PLH}	LE to On Prop. Tion Delay	$C_L = 15 \ \rho \overline{r}, \ R_t = 2k\Omega$	$ \begin{array}{c} 3.3 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.2 \\ 1.5 \pm 0.2 \\ \end{array} $	0.8 1.0 1.5 1.0 0.8 1.0	3 6 4.9 9.8 19.6 3.3 4.5	-	Figures 1, 2 Figures 7, 8 Figures 1, 2	
t _{PLH}	LE to On Prop. Tion Delay	$C_{L} = 15 \text{ pr}, R_{L} = 2k\Omega$ $C_{L} = 30 \text{ pF}, R_{L} = \sqrt{00}$	$ \begin{array}{r} 3.3 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline 1.3 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \end{array} $	0.8 1.0 1.0 1.0 1.0 0.8 1.0 1.5	3.6 4.9 9.8 9.8 19.6 3.3 4.5 9.0 9.0 10.6 <th 10.6<="" t<="" td=""><td>-</td><td>Figures 1, 2 Figures 7, 8 Figures 1, 2 Figures 7, 8</td></th>	<td>-</td> <td>Figures 1, 2 Figures 7, 8 Figures 1, 2 Figures 7, 8</td>	-	Figures 1, 2 Figures 7, 8 Figures 1, 2 Figures 7, 8
t _{PLH} t _{PHL} t _{PL}	LE to On Prop. tion Delay	$\overline{C_{L} = 15, p\overline{r}, \overline{R_{L}} = 2k\Omega}$ $C_{L} = 30 \text{ pF}, \overline{R_{L}} = \sqrt{000}$ $\overline{C_{L} = 15, p\overline{r}, \overline{R_{L}} = 2!\Omega}$	$\begin{array}{c} 3.3 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline \end{array}$	0.8 1.0 1.5 1.0 1.0 0.8 1.0 1.5 1.0	2.6 4.9 9.8 19.6 3.3 4.5 9.0 18.0	-	Figures 1, 2 Figures 7, 8 Figures 1, 2 Figures 7, 8 Figures	
tр _L н tрнL tрнL tрцн tрцн	LE to On Prop. tion Delay	$\overline{C_{L} = 15 \text{ pr}, \text{P}, \text{P}, \text{P} = 2k\Omega}$ $C_{L} = 30 \text{ pF}, \text{R}_{L} = \sqrt{005}$ $\overline{C_{L} = 15 \text{pF}, \text{R}_{L} = 2!\Omega}$ $C_{L} = 30 \text{pF}, \text{R}_{L} = 500\Omega$	$\begin{array}{c} 3.3 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.15 \\ 1.5 \pm 0.15 \\ 1.5 \pm 0.1 \\ 3.3 \pm 0.3 \end{array}$	0.8 1.0 1.0 1.0 1.0 1.0 1.5 1.0 0.8	2.6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.3 3.9	-	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures	
tр _L н tрнL tрнL tрцн tрцн	LE to On Prop. tion Delay	$\overline{C_{L} = 15, p\overline{r}, \overline{R_{L}} = 2k\Omega}$ $C_{L} = 30 \text{ pF}, \overline{R_{L}} = \sqrt{000}$ $\overline{C_{L} = 15, p\overline{r}, \overline{R_{L}} = 2!\Omega}$	$\begin{array}{c} 3.3 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.4 \\ \hline 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ \hline 2.5 \pm 0.2 \\ \hline \end{array}$	0.8 1.0 1.0 1.0 0.8 1.0 1.5 1.0 0.8 1.0 0.8 1.0	2 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 </td <td>ns</td> <td>Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 1, 3, 4 Figures</td>	ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 1, 3, 4 Figures	
tpLH tpHL tpLF tpz pZH	LE to On Prop. *ion Delat In to On Output Enable Time	$\overline{C_{L} = 15 \text{ pF}, R_{L} = 2k\Omega}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = \sqrt{000}}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = 2k\Omega}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = 500\Omega}$ $\overline{C_{L} = 15 \text{ pF}, R_{L} = 2k\Omega}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline \end{array}$	0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 1.0 1.5 1.0	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6	ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 1, 3, 4 Figures	
tpLH tpHL tpLF tpz pZH	LE to On Prop. *ion Delat In to On Output Enable Time	$\overline{C_{L} = 15 \text{ pr}, \text{P}, \text{P}, \text{P} = 2k\Omega}$ $C_{L} = 30 \text{ pF}, \text{R}_{L} = \sqrt{005}$ $\overline{C_{L} = 15 \text{pF}, \text{R}_{L} = 2!\Omega}$ $C_{L} = 30 \text{pF}, \text{R}_{L} = 500\Omega$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ \hline 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ \hline \end{array}$	0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 0.8	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0	ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 7, 9, 10	
tpLH tpHL tpLF tpz pZH	LE to On Prop. *ion Delat In to On Output Enable Time	$\overline{C_{L} = 15 \text{ pF}, R_{L} = 2k\Omega}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = \sqrt{000}}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = 2k\Omega}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = 500\Omega}$ $\overline{C_{L} = 15 \text{ pF}, R_{L} = 2k\Omega}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5 \pm 0.1 \\ \hline \end{array}$	0.8 1.0 1.0 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.0 0.8 1.0 1.0 1.5 1.0	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6	ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 7, 9, 10	
tpLH tpHL tpLF tpz pZH	LE to On Prop. *ion Delat In to On Output Enable Time	$\overline{C_{L} = 15 \text{ pF}, R_{L} = 2k\Omega}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = \sqrt{000}}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = 2k\Omega}$ $\overline{C_{L} = 30 \text{ pF}, R_{L} = 500\Omega}$ $\overline{C_{L} = 15 \text{ pF}, R_{L} = 2k\Omega}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ \hline 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ \hline 2.5 \pm 0.2 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ \hline 2.5 \pm 0.2 \\ \hline \end{array}$	0.8 1.0 1.0 1.0 0.8 1.0 1.5 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 1, 3, 4 Figures 7, 9, 10 Figures 1, 3, 4	
tpLH tpHL tpLF tpz pZH	LE to On Prop. tion Delay JIn to On Output Enable 1tme	$\begin{tabular}{ c_L = 15\ pF, \ R_L = 2k\Omega \\ \hline C_L = 30\ pF, \ R_L = \sqrt{000} \\ \hline C_L = 30\ pF, \ R_L = 2k\Omega \\ \hline C_L = 30\ pF, \ R_L = 2h\Omega \\ \hline C_L = 30\ pF, \ R_L = 2k\Omega \\ \hline C_L = 30\ pF, \ R_L = 2k\Omega \\ \hline C_L = 15\ pF, \ R_L = 2k\Omega \\ \hline \end{array}$	$\begin{array}{c} 3.3 \pm 0.5 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.1 $	0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns	Figures 1, 2 Figures 7, 8 Figures 1, 2 Figures 7, 8 Figures 7, 9, 10 Figures 7, 9, 10 Figures 7, 9, 10 Figures	
tpLH tpHL tpLF tpz pZH	LE to On Prop. *ion Delat In to On Output Enable Time	$\begin{tabular}{ c_{L} = 15 \ pF, \ R_{L} = 2k\Omega \\ \hline \hline C_{L} = 30 \ pF, \ R_{L} = \sqrt{000} \\ \hline \hline C_{L} = 30 \ pF, \ R_{L} = 2k\Omega \\ \hline \hline C_{L} = 30 \ pF, \ R_{L} = 200\Omega \\ \hline \hline C_{L} = 30 \ pF, \ R_{L} = 2k\Omega \\ \hline \hline C_{L} = 30 \ pF, \ R_{L} = 500\Omega \\ \hline \end{tabular}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.1 \\ 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.1 \\ 3.3 \pm 0.3 \\ 1.5 \pm 0.1 \\ 1.5 \pm 0.1$	0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 7, 9, 10 Figures 7, 9, 10	
tpLH tpHL tpLF tp2, pZH	LE to On Prop. tion Delay JIn to On Output Enable 1tme	$\begin{tabular}{ c_L = 15\ pF, \ R_L = 2k\Omega \\ \hline C_L = 30\ pF, \ R_L = \sqrt{000} \\ \hline C_L = 30\ pF, \ R_L = 2k\Omega \\ \hline C_L = 30\ pF, \ R_L = 2h\Omega \\ \hline C_L = 30\ pF, \ R_L = 2k\Omega \\ \hline C_L = 30\ pF, \ R_L = 2k\Omega \\ \hline C_L = 15\ pF, \ R_L = 2k\Omega \\ \hline \end{array}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.1 $	0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.5 1.5 1.5 1.5	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns ns ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 7, 9, 10 Figures 7, 9, 10	
tpLH tpHL tpLF tpz pZH	LE to On Prop. tion Delay JIn to On Output Enable 1tme	$\begin{tabular}{ c c c c c }\hline \hline C_L &= 15\ pF, \ \hline R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF, \ R_L &= 2k\Omega \\\hline \hline C_L &= 15\ pF, \ R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF, \ R_L &= 500\Omega \\\hline \hline C_L &= 30\ pF, \ R_L &= 500\Omega \\\hline \hline C_L &= 15\ pF, \ R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF, \ R_L &= 500\Omega \\\hline \hline \end{tabular}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.1 \\ \hline \\ 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ 1.5 \pm 0.1 \\ \hline \\ 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ 1.5 \pm 0.1 \\ \hline \\ 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ 1.5 \pm 0.1 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ \end{array}$	0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.5 1.5 1.5 2.5	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns	Figures 1, 2 Figures 7, 8 Figures 1, 2 Figures 7, 8 Figures 7, 9, 10 Figures 7, 9, 10 Figures 7, 9, 10 Figures 7, 9, 10 Figures 1, 3, 4	
tpLH tpHL tpLF tpz pZH	LE to On Prop. tion Delay JIn to On Output Enable 1tme	$\begin{tabular}{ c_L = 15 \ \mbox{pF}, \ \mbox{R}_L = 2k\Omega \\ \hline C_L = 30 \ \mbox{pF}, \ \mbox{R}_L = 2k\Omega \\ \hline C_L = 30 \ \mbox{pF}, \ \mbox{R}_L = 2k\Omega \\ \hline C_L = 30 \ \mbox{pF}, \ \mbox{R}_L = 500\Omega \\ \hline C_L = 30 \ \mbox{pF}, \ \mbox{R}_L = 2k\Omega \\ \hline C_L = 15 \ \mbox{pF}, \ \mbox{R}_L = 2k\Omega \\ \hline \end{array}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.5 \pm 0.1 $	0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.5 1.5 1.5 1.5	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns ns ns	Figures 1, 2 Figures 7, 8 Figures 1, 2 Figures 7, 8 Figures 1, 3, 4 Figures 7, 9, 10 Figures 7, 9, 10 Figures 7, 9, 10 Figures 1, 6	
tpLH tpHL tpLF tpz pZH	LE to On Prop. tion Delay JIn to On Output Enable 1tme	$\begin{tabular}{ c c c c c }\hline \hline C_L &= 15\ pF, \ \hline R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF, \ R_L &= 2k\Omega \\\hline \hline C_L &= 15\ pF, \ R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF, \ R_L &= 500\Omega \\\hline \hline C_L &= 30\ pF, \ R_L &= 500\Omega \\\hline \hline C_L &= 15\ pF, \ R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF, \ R_L &= 500\Omega \\\hline \hline \end{tabular}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ 1.5 \pm 0.1 \\ \hline \\ 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ 1.5 \pm 0.1 \\ \hline \\ 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ 1.5 \pm 0.1 \\ \hline \\ 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ 1.5 \pm 0.1 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ 1.8 \pm 0.15 \\ \hline \\ \end{array}$	0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.5 1.5 1.5 2.5	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns ns ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 1, 3, 4 Figures 7, 9, 10 Figures 7, 9, 10 Figures 1, 3, 4 Figures 6, 7	
tpLH tpLL tpL pZH tpL tpL s	LE to On Prop. tion Delat I n to On Output Finable 1, me Output Disable Time Setup Time	$\begin{tabular}{ c c c c c }\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF,\ R_L &= \sqrt{000} \\\hline \hline C_L &= 15\ pF,\ R_L &= 2l\Omega \\\hline \hline C_L &= 30\ pF,\ R_L &= 500\Omega \\\hline \hline C_L &= 30\ pF,\ R_L &= 500\Omega \\\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF,\ R_L &= 500\Omega \\\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline \end{array}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 1.5$	0.8 1.0 1.5 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.5 2.5 3.0	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns ns ns	Figures 1,2 Figures 7,8 Figures 1,2 Figures 7,8 Figures 7,8 Figures 7,8 Figures 7,9,10 Figures 7,9,10 Figures 1,6 Figures 6,7 Figures 6,7 Figures	
tpLH tpLL tpL pZH tpL tpL s	LE to On Prop. tion Delat I n to On Output Finable 1, me Output Disable Time Setup Time	$\begin{tabular}{ c c c c c }\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF,\ R_L &= \sqrt{000} \\\hline \hline C_L &= 15\ pF,\ R_L &= 2l\Omega \\\hline \hline C_L &= 30\ pF,\ R_L &= 500\Omega \\\hline \hline C_L &= 30\ pF,\ R_L &= 500\Omega \\\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline C_L &= 30\ pF,\ R_L &= 500\Omega \\\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline C_L &= 15\ pF,\ R_L &= 2k\Omega \\\hline \hline \end{array}$	$\begin{array}{c} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ \hline 1.8 \pm 0.15 \\ \hline 1.5 \pm 0.1 \\ \hline 3.3 \pm 0.3 \\ \hline \end{array}$	0.8 1.0 1.5 1.0 1.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.5 2.5 3.0 1.0	3 6 4.9 9.8 19.6 3.3 4.5 9.0 18.0 3.9 5.4 9.8 19.6 4.0 4.4	ns	Figures 1, 2 Figures 7, 8 Figures 7, 8 Figures 7, 8 Figures 1, 3, 4 Figures 7, 9, 10 Figures 7, 9, 10 Figures 1, 3, 4 Figures 6, 7	

4

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Figure
Symbol			(V)	Min	Max	Units	Number
/	Pulse Width	$C_L = 30 \text{ pF}, R_L = 500\Omega$	$\textbf{3.3}\pm\textbf{0.3}$	1.5			
			$\textbf{2.5}\pm\textbf{0.2}$	1.5			Figures 1, 5
			$\textbf{1.8}\pm\textbf{0.15}$	4.0		ns	., 0
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	4.0			Figures 5, 7
OSHL	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	$\textbf{3.3}\pm\textbf{0.3}$		0.5		
t _{OSLH}	(Note 7)		$\textbf{2.5}\pm\textbf{0.2}$		0.5		
			$\textbf{1.8}\pm\textbf{0.15}$		0.75		
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1		1.5		


Dynamic Switching Characteristics

Symbol	Parameter	Condition $(V) = \begin{bmatrix} T_A = +2 \psi^2 C \\ \hline T_{YF} = cal \end{bmatrix}$ Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 30 \text{ pF}, V = V V_{L} V = V V_{L} V = V V_{L} V = V V_{L} V = V V $
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$= 30 \text{ pF, V} V_{CC}, V_{IL} = 0V \qquad 1.8 1 -0.15 \\ 2.1 -0.25 V \\ 3.3 -1.55 V \\ \end{bmatrix}$
V _{OHV}	Quiet Output Dynamic Valle	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


			2.00	
Сара	citance	CO'NC' R		
Symbo	r .meter	Conditions	T _A = +25°C Typical	Units
Ch	, at Cap tance	$V_{CC} = 1.8V, 2.V \approx 3.3V, V_I = 0V \text{ or } V_{CC}$	6	pF
Cout	Or tout C acitance	$V_{1} = 0V$ or v_{CC}^{\prime} , $V_{CC} = 1.8V$, 2.5V or 3.3V	7	pF
	Power Dissipation Capacitance	$V_{I} = cV \text{ or } V_{CC}, f = 10 \text{ MHz},$	20	pF
	<u> </u>	V _{CC} = 1.8V, 2.5V or 3.3V		
THISDEN	CE PLEASE REPRESE			

www.fairchildsemi.com

The N

www.fairchildsemi.com

NOT RECONNENDED FOR MENDESIGN ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC