48-MHz, 32-bit RX MCUs, on-chip FPU, 204 Coremark, up to 256-KB flash memory, up to 36 pins capacitive touch sensing unit, up to 9 comms channels, 12-bit A/D, D/A, RTC, IEC60730 compliance, $1.8-\mathrm{V}$ to $5.5-\mathrm{V}$ single supply, Encryption functions (optional)

Features

- 32-bit RXv2 CPU core

- Max. operating frequency: 48 MHz Capable of 204 Coremark in operation at 48 MHz
- Enhanced DSP instructions: 32-bit multiply-accumulate instructions, and 16-bit multiply-subtract instructions are supported.
- On-chip FPU: 32-bit single-precision floating point compliant with IEEE-754
- On-chip divider that operated at the fastest of two clock cycles
- Fast interrupt
- CISC Harvard architecture with 5-stage pipeline
- Variable-length instructions, ultra-compact code
- On-chip debugging circuit

- Low power design and architecture

- Operation from a single $1.8-\mathrm{V}$ to $5.5-\mathrm{V}$ supply
- Four low power consumption modes
- Low power timer (LPT) that operates during the software standby state
- Supply current

High-speed operating mode: $58 \mu \mathrm{~A} / \mathrm{MHz}$
Supply current in software standby mode: $0.25 \mu \mathrm{~A}$ (typ.) $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

- Recovery time from software standby mode: $6.2 \mu \mathrm{~s}$ (typ.) (Clock Source: HOCO $32 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)
- On-chip flash memory for code
- 64 K/128 K/256 Kbytes size capacities
- User code is programmable by on-board programming.
- Programmable at 1.8 V
- For instructions and operands
- On-chip data flash memory
- 4K/8 Kbytes (1,000,000 program/erase cycles (typ.))
- BGO (Background Operation)
- On-chip SRAM, no wait states
- 16 K/32 K/64 Kbytes size capacities
- DTC
- Five transfer modes
- ELC
- Module operation can be initiated by event signals without using interrupts.
- Linked operation between modules is possible while the CPU is sleeping.
- Reset and supply management
- Seven types of reset, including the power-on reset (POR)
- Low voltage detection (LVD) with voltage settings
- Clock functions
- External clock input frequency: Up to 20 MHz
- Main clock oscillator frequency: 1 to 20 MHz
- Sub clock oscillator frequency: 32.768 kHz
- PLL circuit input: 4 MHz to 12 MHz
- Low-speed on-chip oscillator: 4 MHz
- High-speed on-chip oscillator: $24 / 32 / 48 \mathrm{MHz} \pm 1 \%$
- IWDT-dedicated on-chip oscillator: 15 kHz
- Generate a 32.768 kHz clock for the real-time clock
- On-chip clock frequency accuracy measurement circuit (CAC)
- Realtime clock
- Adjustment functions (30 seconds, leap year, and error)
- Calendar count mode or binary count mode selectable
- Independent watchdog timer
- $15-\mathrm{kHz}$ on-chip oscillator produces a dedicated clock signal to drive IWDT operation.
- Useful functions for IEC60730 compliance
- Self-diagnostic and disconnection-detection assistance functions for the A/D converter, clock frequency accuracy measurement circuit, independent watchdog timer, RAM test assistance functions using the DOC, etc.

- MPC

- Input/output functions selectable from multiple pins
- Up to 9 communication functions
- One channel of CAN module compliant with ISO11898-1: Transfer at up to 1 Mbps
- SCI with many useful functions (up to 6 channels)

Asynchronous mode (Fine adjustable baud rate: 0 to 255/255), clock
synchronous mode, smart card interface mode

- I ${ }^{2} \mathrm{C}$ bus interface: Transfer at up to 400 kbps, capable of SMBus operation (one channel)
- RSPI (one channel): Transfer at up to 16 Mbps

■ Up to 12 extended-function timers

- 16-bit MTU: input capture, output compare, complementary PWM output, phase counting mode (six channels)
- 8-bit TMR (four channels)
- 16-bit compare-match timers (two channels)
- 12-bit A/D converter
- Capable of conversion within $0.67 \mu \mathrm{~s}$
- 17 (external pin input) +1 (internal input) channels
- Sampling time can be set for each channel
- Conversion results compare features
- Self-diagnostic function and analog input disconnection detection assistance function
- Double trigger (data duplication) function for motor control
- DIA converter
- Two channels
- Capacitive touch sensing unit
- Self-capacitance method: A single pin configures a single key, supporting up to 36 keys
- Mutual capacitance method: Matrix configuration with 8×8, supporting up to 64 keys
- Comparator B
- Two channels
- General I/O ports
- 5-V tolerant, open drain, input pull-up
- Encryption functions (optional)
- AES (key lengths: 128 and 256 bits)
- RNG (True random number generator)
- Temperature sensor
- Unique ID
- 32-byte ID code for the MCU

■ Operating temperature range

- -40 to $+85^{\circ} \mathrm{C}$
- -40 to $+105^{\circ} \mathrm{C}$
- Applications
- General industrial and consumer equipment

1. Overview

1.1 Outline of Specifications

Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages.
Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different Packages in the RX140 Group.

Table 1.1 Outline of Specifications (1/4)

Classification	Module/Function	Description
CPU	CPU	- Maximum operating frequency: 48 MHz - 32-bit RX CPU (RX v2) - Minimum instruction execution time: One instruction per clock cycle - Address space: 4-Gbyte linear - Register set General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers - Basic instructions: 75 (variable-length instruction format) - Floating point instructions: 11 - DSP instructions: 23 - Addressing modes: 11 - Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian - On-chip 32 -bit multiplier: 32 -bit $\times 32$-bit $\rightarrow 64$-bit - On-chip divider: 32 -bit $\div 32$-bit $\rightarrow 32$ bits - Barrel shifter: 32 bits
	FPU	- Single precision (32-bit) floating point - Data types and exceptions in conformance with the IEEEF754 standard
Memory	ROM	- Capacity: 64 K/128 K/256 Kbytes - 32 MHz s: No-wait cycle access - 32 MHz to 48 MHz : One-wait cycle access - Programming/erasing method: Serial programming (asynchronous serial communication), self-programming
	RAM	- Capacity: 16 K/32 K/64 Kbytes - No-wait memory access
	E2 DataFlash	- Capacity: 4 K/8 Kbytes - Number of erase/write cycles: 1,000,000 (typ.)
MCU operating mode		Single-chip mode
Clock	Clock generation circuit	- Main clock oscillator, sub-clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator - Oscillation stop detection: Available - Clock frequency accuracy measurement circuit (CAC) - Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 48 MHz (at max.) Peripheral modules run in synchronization with the PCLKB: 32 MHz (at max.) The flash peripheral circuit runs in synchronization with the FCLK: 48 MHz (at max.) - ADCLK in the S12AD runs in synchronization with PCLKD: Up to 48 MHz - The ICLK frequency can only be set to FCLK, PCLKB, or PCLKD multiplied by n ($\mathrm{n}: 1,2,4,8,16,32$, 64)
Resets		RES\# pin reset, power-on reset, voltage monitoring reset, independent watchdog timer reset, and software reset
Voltage detection	Voltage detection circuit (LVDAb)	- When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 0 is capable of selecting the detection voltage from 4 levels Voltage detection circuit 1 is capable of selecting the detection voltage from 14 levels Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels

Table 1.1 Outline of Specifications (2/4)
$\left.\begin{array}{lll}\hline \text { Classification } & \text { Module/Function } & \text { Description } \\ \hline \text { Low power } \\ \text { consumption } \\ & \text { Low power consumption } \\ \text { functions } & \text { - Module stop function } \\ & & \text { - Four low power consumption modes } \\ & \text { Sleep mode, deep sleep mode, software standby mode, and snooze mode }\end{array}\right]$

Table 1.1 Outline of Specifications (3/4)

Classification	Module/Function	Description
Communication functions	Serial communications interfaces (SCIg, SCIh, SCIk)	- 6 channels (channel 1, 5: SCIk, 6, 8, 9: SCIg, channel 12: SCIh) - SClg Serial communications modes: Asynchronous, clock synchronous, and smart-card interface On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Average transfer rate clock can be input from TMR timers for SCI5, SCI6, and SCI12 Start-bit detection: Level or edge detection is selectable. Simple $\mathrm{I}^{2} \mathrm{C}$ Simple SPI 7, 8, or 9-bit transfer mode Bit rate modulation Event linking by the ELC (only on SCI5) - SCIk (the following functions are added) Data matching detection Adjustment function of the asynchronous RXD sampling - SCIh (the following functions are added to SClg) Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format
	$1^{2} \mathrm{C}$ bus interface (RIICa)	- 1 channel - Communications formats: ${ }^{12} \mathrm{C}$ bus format/SMBus format - Master mode or slave mode selectable - Supports fast mode
Communication functions	Serial peripheral interface (RSPIc)	- 1 channel - Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) signals enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) - Capable of handling serial transfer as a master or slave - Data formats - Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to $8,9,10,11,12,13,14,15,16,20,24$, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) - Transit/receive data can be swapped in byte units - Double buffers for both transmission and reception - RSPCK can be stopped with the receive buffer full for master reception.
	CAN module (RSCAN)	- 1 channel - Compliance with the ISO11898-1 specification (standard frame and extended frame) - 16 mailboxes
12-bit A/D converter (S12ADE)		- 12 bits (18 channels $\times 1$ unit*1) - 12-bit resolution - Minimum conversion time: $0.67 \mu \mathrm{~s}$ per channel when the ADCLK is operating at 48 MHz - Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) Group A priority control (only for group scan mode) - Sampling variable Sampling time can be set up for each channel. - Self-diagnostic function - Double trigger mode (A/D conversion data duplicated) - Detection of analog input disconnection - Conversion results compare features - A/D conversion start conditions A software trigger, a trigger from a timer (MTU), an external trigger signal, or ELC - Event linking by the ELC
Temperature sensor (TEMPSA)		- 1 channel - The voltage output from the temperature sensor is converted into a digital value by the 12 -bit A/D converter.
D/A converter (DA)		- 2 channels - 8 -bit resolution - Output voltage: OV to AVCCO
CRC calculator (CRC)		- CRC code generation for arbitrary amounts of data in 8-bit units - Select any of three generating polynomials: $x^{8}+x^{2}+x+1, x^{16}+x^{15}+x^{2}+1, \text { or } x^{16}+x^{12}+x^{5}+1$ - Generation of CRC codes for use with LSB-first or MSB-first communications is selectable.
Comparator B (C	PBa)	- 2 channels - Function to compare the reference voltage and the analog input voltage - Window comparator operation or standard comparator operation is selectable

Table 1.1 Outline of Specifications (4/4)

Classification	Module/Function	Description
Capacitive touch sensing unit	• CTSU2L (CTSU2SL, CTSU2L)	
	Self-capacitance method: A single pin configures a single key, supporting up to 36 keys Mutual capacitance method: Matrix configuration with 8×8, supporting up to 64 keys	
	- CTSU2SL (The following functions are added to CTSU2L) Automatic correction	
	Automatic judgment	

Note 1. The 12-bit A/D converter has 17 external input channels and a single internal input channel. For details, refer to section $35,12-$ Bit A/D Converter (S12ADE) in the User's Manual: Hardware.

Table 1.2 Comparison of Functions for Different Packages in the RX140 Group

Module/Functions		Products with 128-Kbyte or larger ROM			Products with 64-Kbyte ROM		
		80 Pins	64 Pins	48 Pins	64 Pins	48 Pins	32 Pins
Interrupts	External interrupts	NMI, IRQ0 to IRQ7	NMI, IRQ0 to IRQ2, IRQ4 to IRQ7	NMI, IRQ0 to IRQ2 IRQ5 to IRQ7			
DTC	Data transfer controller	Available			Available		
Timers	Multi-function timer pulse unit 2	6 channels			6 channels		
	Port output enable 2	POE0\# to POE3\#, POE8\#			POE0\# to POE3\#, POE8\#		POEO\#, POE8\#
	8-bit timer	2 channels $\times 2$ units			2 channels $\times 2$ units		
	Compare match timer	2 channels $\times 1$ unit			2 channels $\times 1$ unit		
	Low power timer	1 channel			1 channel		
	Realtime clock	Available		Not supported	Available	Not supported	
	Independent watchdog timer	Available			Available		
Communicat ion functions	Serial communications interfaces (SCIk)	2 channels (SCl1, 5)			2 channels (SCI1, 5)		
	Serial communications interfaces (SClg)	3 channels(SCI6, 8, 9)		2 channels (SCl6, 8)	Not supported		
	Serial communications interfaces (SCIh)	1 channel (SCl12)			1 channel (SCl12)		
Communicat ion functions	${ }^{2} \mathrm{C}$ c bus interface	1 channel			1 channel		
	Serial peripheral interface	1 channel			1 channel		
	CAN module	1 channel			Not supported		
Capacitive touch sensing unit (CTSU2SL)		36 channels	32 channels	24 channels	Not supported		
Capacitive touch sensing unit (CTSU2L)		Not supported			12 channels	12 channels	12 channels
12-bit A/D converter		$18 \underset{\star 1}{\text { channels }}$	$15{\underset{\star 1}{ } \text { channels }}^{\text {s. }}$	$11 \text { channels }$	$15 \underset{\star 1}{\text { channels }}$	$11 \text { channels }$	$8 \text { channels }$
Temperature sensor		Available			Available		
D/A converter		2 channels		Not supported	2 channels	Not sup	ported
CRC calculator		Available			Available		
Event link controller		Available			Available		
Comparator B		2 channels			2 channels		
Encryption function	Advanced encryption standard hardware accelerator (AESA)	Available/Not supported			Not supported		
	True random number generator (RNGA)	Available/Not supported			Not supported		
Packages		$\begin{array}{\|l} \text { 80-pin LFQFP } \\ (0.5 \mathrm{~mm}) \end{array}$	$\begin{gathered} \text { 64-pin LQFP } \\ \text { (0.8 mm) } \\ \text { 64-pin LFQFP } \\ (0.5 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline \text { 48-pin LFQFP } \\ (0.5 \mathrm{~mm}) \\ 48-\mathrm{pin} \\ \text { HWQFN } \\ (0.5 \mathrm{~mm}) \end{gathered}$	$\begin{array}{\|l} \text { 64-pin LQFP } \\ \text { (0.8 mm) } \\ \text { 64-pin LFQFP } \\ (0.5 \mathrm{~mm}) \end{array}$	$\begin{gathered} \text { 48-pin LFQFP } \\ (0.5 \mathrm{~mm}) \\ 48 \text {-pin } \\ \text { HWQFN } \\ (0.5 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 32-pin LQFP } \\ (0.8 \mathrm{~mm}) \\ 32-\mathrm{pin} \\ \text { HWQFN } \\ (0.5 \mathrm{~mm}) \end{gathered}$

Note 1. This number includes a single internal input channel. For details, refer to section 35, 12-Bit A/D Converter (S12ADE) in the User's Manual: Hardware.

1.2 List of Products

Table 1.3 is a lists of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type.

Table $1.3 \quad$ List of Products (1/2)

Group	Part No.	Part No. (for Orders)	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Operating Frequency (Мах.)	Encryption Module	Operating Temperature
RX140	R5F51406ADFN	R5F51406ADFN\#30	PLQP0080KB-B	$\begin{aligned} & 256 \\ & \text { Kbytes } \end{aligned}$	64 Kbytes	8 Kbytes	48 MHz	Not supported	-40 to $+85^{\circ} \mathrm{C}$
	R5F51406ADFM	R5F51406ADFM\#30	PLQP0064KB-C						
	R5F51406ADFK	R5F51406ADFK\#30	PLQP0064GA-A						
	R5F51406ADFL	R5F51406ADFL\#30	PLQP0048KB-B						
	R5F51406ADNE	R5F51406ADNE\#30	PWQN0048KC-A						
	R5F51406AGFN	R5F51406AGFN\#30	PLQP0080KB-B						
	R5F51406AGFM	R5F51406AGFM\#30	PLQP0064KB-C						
	R5F51406AGFK	R5F51406AGFK\#30	PLQP0064GA-A						-40 to $+105^{\circ} \mathrm{C}$
	R5F51406AGFL	R5F51406AGFL\#30	PLQP0048KB-B						
	R5F51406AGNE	R5F51406AGNE\#30	PWQN0048KC-A						
	R5F51405ADFN	R5F51405ADFN\#30	PLQP0080KB-B	$\begin{aligned} & 128 \\ & \text { Kbytes } \end{aligned}$	32 Kbytes				-40 to $+85^{\circ} \mathrm{C}$
	R5F51405ADFM	R5F51405ADFM\#30	PLQP0064KB-C						
	R5F51405ADFK	R5F51405ADFK\#30	PLQP0064GA-A						
	R5F51405ADFL	R5F51405ADFL\#30	PLQP0048KB-B						
	R5F51405ADNE	R5F51405ADNE\#30	PWQN0048KC-A						
	R5F51405AGFN	R5F51405AGFN\#30	PLQP0080KB-B						-40 to $+105^{\circ} \mathrm{C}$
	R5F51405AGFM	R5F51405AGFM\#30	PLQP0064KB-C						
	R5F51405AGFK	R5F51405AGFK\#30	PLQP0064GA-A						
	R5F51405AGFL	R5F51405AGFL\#30	PLQP0048KB-B						
	R5F51405AGNE	R5F51405AGNE\#30	PWQN0048KC-A						
	R5F51403ADFM	R5F51403ADFM\#30	PLQP0064KB-C	64 Kbytes	16 Kbytes	4 Kbytes			-40 to $+85^{\circ} \mathrm{C}$
	R5F51403ADFK	R5F51403ADFK\#30	PLQP0064GA-A						
	R5F51403ADFL	R5F51403ADFL\#30	PLQP0048KB-B						
	R5F51403ADNE	R5F51403ADNE\#30	PWQN0048KC-A						
	R5F51403ADFJ	R5F51403ADFJ\#30	PLQP0032GB-A						
	R5F51403ADNH	R5F51403ADNH\#30	PWQN0032KE-A						
	R5F51403AGFM	R5F51403AGFM\#30	PLQP0064KB-C						-40 to $+105^{\circ} \mathrm{C}$
	R5F51403AGFK	R5F51403AGFK\#30	PLQP0064GA-A						
	R5F51403AGFL	R5F51403AGFL\#30	PLQP0048KB-B						
	R5F51403AGNE	R5F51403AGNE\#30	PWQN0048KC-A						
	R5F51403AGFJ	R5F51403AGFJ\#30	PLQP0032GB-A						
	R5F51403AGNH	R5F51403AGNH\#30	PWQN0032KE-A						

Table $1.3 \quad$ List of Products (2/2)

Group	Part No.	Part No. (for Orders)	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Operating Frequency (Max.)	Encryption Module	Operating Temperature
RX140	R5F51406BDFN	R5F51406BDFN\#30	PLQP0080KB-B	$\begin{aligned} & 256 \\ & \text { Kbytes } \end{aligned}$	64 Kbytes	8 Kbytes	48 MHz	Available	-40 to $+85^{\circ} \mathrm{C}$
	R5F51406BDFM	R5F51406BDFM\#30	PLQP0064KB-C						
	R5F51406BDFK	R5F51406BDFK\#30	PLQP0064GA-A						
	R5F51406BDFL	R5F51406BDFL\#30	PLQP0048KB-B						
	R5F51406BDNE	R5F51406BDNE\#30	PWQN0048KC-A						
	R5F51406BGFN	R5F51406BGFN\#30	PLQP0080KB-B						
	R5F51406BGFM	R5F51406BGFM\#30	PLQP0064KB-C						
	R5F51406BGFK	R5F51406BGFK\#30	PLQP0064GA-A						-40 to $+105^{\circ} \mathrm{C}$
	R5F51406BGFL	R5F51406BGFL\#30	PLQP0048KB-B						
	R5F51406BGNE	R5F51406BGNE\#30	PWQN0048KC-A						
	R5F51405BDFN	R5F51405BDFN\#30	PLQP0080KB-B	$\begin{aligned} & 128 \\ & \text { Kbytes } \end{aligned}$	32 Kbytes				
	R5F51405BDFM	R5F51405BDFM\#30	PLQP0064KB-C						
	R5F51405BDFK	R5F51405BDFK\#30	PLQP0064GA-A						-40 to $+85^{\circ} \mathrm{C}$
	R5F51405BDFL	R5F51405BDFL\#30	PLQP0048KB-B						
	R5F51405BDNE	R5F51405BDNE\#30	PWQN0048KC-A						
	R5F51405BGFN	R5F51405BGFN\#30	PLQP0080KB-B						
	R5F51405BGFM	R5F51405BGFM\#30	PLQP0064KB-C						
	R5F51405BGFK	R5F51405BGFK\#30	PLQP0064GA-A						-40 to $+105^{\circ} \mathrm{C}$
	R5F51405BGFL	R5F51405BGFL\#30	PLQP0048KB-B						
	R5F51405BGNE	R5F51405BGNE\#30	PWQN0048KC-A						

Note: \quad The part numbers for orders above are used for products in mass production or under development when this manual is issued. Refer to the Renesas Electronics Corporation website for the latest part numbers.


```
Production identification code
Packing
\#1, \#3: Tray (LFQFP, LQFP, HWQFN)
\#5: Embossed Tape (LFQFP, LQFP, HWQFN)
Package type, number of pins, and pin pitch
FN: LFQFP/80/0.50
FM: LFQFP/64/0.50
FK: LQFP/64/0.80
FL: LFQFP/48/0.50
NE: HWQFN/48/0.50
FJ: LFQFP/32/0.80
NH: HWQFN/32/0.50
D: Operating ambient temperature \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
G: Operating ambient temperature \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+105^{\circ} \mathrm{C}\right)\)
A: Encryption module not included
B: Encryption module included
ROM, RAM, and E2 DataFlash capacity
6: 256 Kbytes/64 Kbytes/8 Kbytes
5: 128 Kbytes/32 Kbytes/8 Kbytes
3: 64 Kbytes/16 Kbytes/4 Kbytes
Group name
40: RX140 Group
Series name
RX100 Series
Type of memory
F: Flash memory version
Renesas MCU
```

Figure 1.1
How to Read the Product Part Number

1.3 Block Diagram

Figure 1.2 shows a block diagram.

Figure 1.2 Block Diagram

1.4 Pin Functions

Table 1.4 lists the pin functions.

Table 1.4 Pin Functions (1/3)

Classifications	Pin Name	1/0	Description
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply.
	VCL	-	Connect this pin to the VSS pin via the $4.7 \mu \mathrm{~F}$ smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).
Clock	XTAL	Output	Pins for connecting a crystal. An external clock can be input through the EXTAL pin.
	EXTAL	Input	
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal between XCIN and XCOUT.
	XCOUT	Output	
	CLKOUT	Output	Clock output pin.
Operating mode control	MD	Input	Pin for setting the operating mode. For usage, refer to section 3.1, Operating Mode Types and Selection in the User's Manual: Hardware.
System control	RES\#	Input	Reset pin. This MCU enters the reset state when this signal goes low.
Voltage detection circuit	CMPA2	Input	Detection target voltage pin for voltage detection 2.
Clock frequency accuracy measurement circuit	CACREF	Input	Input pin for the clock frequency accuracy measurement circuit.
On-chip emulator	FINED	I/O	FINE interface pin.
Interrupts	NMI	Input	Non-maskable interrupt request pin.
	IRQ0 to IRQ7	Input	Interrupt request pins.
Multi-function timer pulse unit 2	MTIOCOA, MTIOCOB, MTIOCOC, MTIOCOD	I/O	The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins.
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins.
	MTIOC2A, MTIOC2B	I/O	The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins.
	MTIOC3A, MTIOC3B, MTIOC3C, MTIOC3D	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins.
	MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D	I/O	The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins.
	MTIC5U, MTIC5V, MTIC5W	Input	The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins.
	MTCLKA, MTCLKB, MTCLKC, MTCLKD	Input	Input pins for the external clock.
Port output enable 2	POE0\# to POE3\#, POE8\#	Input	Input pins for request signals to place the MTU pins in the high impedance state.
Realtime clock	RTCOUT	Output	Output pin for the 1-Hz/64-Hz clock.
8-bit timer	TMO0 to TMO3	Output	Compare match output pins.
	TMCIO to TMCI3	Input	Input pins for the external clock to be input to the counter.
	TMRIO to TMRI3	Input	Counter reset input pins.
Low power timer	LPTO	Output	PWM output pin

Table 1.4 Pin Functions (2/3)

Classifications	Pin Name	I/O	Description
Serial communications interface (SCIg, SCIk)	- Asynchronous mode/clock synchronous mode		
	$\begin{aligned} & \text { SCK1, SCK5, SCK6, SCK8, } \\ & \text { SCK9 } \end{aligned}$	I/O	Input/output pins for the clock.
	RXD1, RXD5, RXD6, RXD8, RXD9	Input	Input pins for received data.
	TXD1, TXD5, TXD6, TXD8, TXD9	Output	Output pins for transmitted data.
	CTS1\#, CTS5\#, CTS6\#, CTS8\#, CTS9\#	Input	Input pins for controlling the start of transmission and reception.
	RTS1\#, RTS5\#, RTS6\#, RTS8\#, RTS9\#	Output	Output pins for controlling the start of transmission and reception.
	- Simple ${ }^{2} \mathrm{C}$ mode		
	$\begin{aligned} & \text { SSCL1, SSCL5, SSCL6, } \\ & \text { SSCL8, SSCL9 } \end{aligned}$	I/O	Input/output pins for the $\mathrm{I}^{2} \mathrm{C}$ clock.
	$\begin{aligned} & \text { SSDA1, SSDA5, SSDA6, } \\ & \text { SSDA8, SSDA9 } \end{aligned}$	I/O	Input/output pins for the $\mathrm{I}^{2} \mathrm{C}$ data.
	- Simple SPI mode		
	SCK1, SCK5, SCK6, SCK8, SCK9	I/O	Input/output pins for the clock.
	SMISO1, SMISO5, SMISO6, SMISO8, SMISO9	I / O	Input/output pins for slave transmit data.
	SMOSI1, SMOSI5, SMOSI6, SMOSI8, SMOSI9		Input/output pins for master transmit data.
	$\begin{aligned} & \text { SS1\#, SS5\#, SS6\#, SS8\#, } \\ & \text { SS9\# } \end{aligned}$	Input	Slave-select input pins.
Serial communications interface (SClh)	- Asynchronous mode/clock synchronous mode		
	SCK12	I/O	Input/output pin for the clock.
	RXD12	Input	Input pin for receiving data.
	TXD12	Output	Output pin for transmitting data.
	CTS12\#	Input	Input pin for controlling the start of transmission and reception.
	RTS12\#	Output	Output pin for controlling the start of transmission and reception.
	- Simple ${ }^{2} \mathrm{C}$ mode		
	SSCL12	I/O	Input/output pin for the $1^{2} \mathrm{C}$ clock.
	SSDA12	I/O	Input/output pin for the ${ }^{2} \mathrm{C}$ data.
	- Simple SPI mode		
	SCK12	I/O	Input/output pin for the clock.
	SMISO12	I/O	Input/output pin for slave transmit data.
	SMOSI12	I/O	Input/output pin for master transmit data.
	SS12\#	Input	Slave-select input pin.
	- Extended serial mode		
	RXDX12	Input	Input pin for data reception by SCIf.
	TXDX12	Output	Output pin for data transmission by SCIf.
	SIOX12	I/O	Input/output pin for data reception or transmission by SCIf.
$1^{2} \mathrm{C}$ bus interface	SCLO	I/O	Input/output pin for $I^{2} \mathrm{C}$ bus interface clocks. Bus can be directly driven by the N -channel open drain output.
	SDA0	I/O	Input/output pin for $\mathrm{I}^{2} \mathrm{C}$ bus interface data. Bus can be directly driven by the N -channel open drain output.

Table 1.4 Pin Functions (3/3)

Classifications	Pin Name	1/0	Description
Serial peripheral interface	RSPCKA	I/O	Input/output pin for the RSPI clock.
	MOSIA	I/O	Input/output pin for transmitting data from the RSPI master.
	MISOA	I/O	Input/output pin for transmitting data from the RSPI slave.
	SSLAO	I/O	Input/output pin to select the slave for the RSPI.
	SSLA1 to SSLA3	Output	Output pins to select the slave for the RSPI.
CAN module	CRXD0	Input	Input pin
	CTXD0	Output	Output pin
12-bit A/D converter	AN000 to AN007, ANO16 to AN021, AN024 to AN026	Input	Input pins for the analog signals to be processed by the A/D converter.
	ADTRG0\#	Input	Input pin for the external trigger signal that start the A/D conversion.
D/A converter	DA0, DA1	Output	Analog output pins of the D/A converter.
Comparator B	CMPB0, CMPB1	Input	Input pin for the analog signal to be processed by comparator B.
	CVREFB0, CVREFB1	Input	Analog reference voltage supply pin for comparator B.
	CMPOB0, CMPOB1	Output	Output pin for comparator B.
Capacitive touch sensing unit	TS0 to TS35	I/O	Electrostatic capacitance measurement pins (touch pins).
	TSCAP	-	Connect to the VSS via a decoupling capacitor (10 nF) for stabilizing the internal voltage
Analog power supply	AVCCO	Input	Analog voltage supply pin for the 12-bit A/D converter and D/A converter. Connect this pin to VCC when not using the 12-bit A/D converter and D/A converter.
	AVSS0	Input	Analog ground pin for the 12-bit A/D converter and D/A converter. Connect this pin to VSS when not using the 12-bit A/D converter and D/A converter.
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter.
	VREFL0	Input	Analog reference ground pin for the 12-bit A/D converter.
I/O ports	P03 to P07	I/O	5-bit input/output pins.
	P12 to P17	I/O	6-bit input/output pins.
	P20, P21, P26, P27	I/O	4-bit input/output pins.
	P30 to P32, P34 to P37	I/O	7-bit input/output pins (P35 input pin).
	P40 to P47	I/O	8-bit input/output pins.
	P54, P55	I/O	2-bit input/output pins.
	PA0 to PA6	I/O	7-bit input/output pins.
	PB0 to PB7	I/O	8-bit input/output pins.
	PC2 to PC7	I/O	6-bit input/output pins.
	PD0 to PD2	I/O	3-bit input/output pins.
	PE0 to PE5	I/O	6-bit input/output pins.
	PG7	I/O	1-bit input/output pin.
	PH0 to PH3, PH6*1, PH7*1	I/O	6-bit input/output pins (PH6, PH7: input pins).
	PJ1, PJ6, PJ7	I/O	3-bit input/output pins.

Note 1. This is not supported by products with 64 Kbytes of ROM.

1.5 Pin Assignments

1.5.1 80-pin LFQFP

Note: This figure indicates the power supply pins and I/O ports.
For the pin configuration, see the table "List of Pins and Pin Functions (80-Pin LFQFP)".

Figure 1.3
Pin Assignments of the 80-Pin LFQFP

1.5.2 64-pin LFQFP, 64-pin LQFP

Note: This figure indicates the power supply pins and I/O ports.
For the pin configuration, see the table "List of Pins and Pin Functions (64-Pin LFQFP, 64-Pin LQFP)".
Note 1. This is not supported by products with 64 Kbytes of ROM.

Figure 1.4
Pin Assignments of the 64-Pin LFQFP, 64-Pin LQFP

1.5.3 48-pin LFQFP

Figure 1.5 Pin Assignments of the 48-Pin LQFP

1.5.4 48-pin HWQFN

Note: It is recommended to connect an exposed die pad to VSS.
Note: This figure indicates the power supply pins and I/O ports.
For the pin configuration, see the table "List of Pins and Pin Functions (48-Pin LFQFP, 48-Pin HWQFN)".
Figure 1.6
Pin Assignments of the 48-Pin HWQFN

1.5.5 32-pin LQFP

Note: This figure indicates the power supply pins and I/O ports.
For the pin configuration, see the table "List of Pins and Pin Functions (32-Pin LQFP, 32-Pin HWQFN)".

Figure 1.7 Pin Assignments of the 32-Pin LQFP

1.5.6 32-pin HWQFN

Note: It is recommended to connect an exposed die pad to VSS
Note: This figure indicates the power supply pins and I/O ports.
For the pin configuration, see the table "List of Pins and Pin Functions (32-Pin LQFP, 32-Pin LQFPHWQFN)".

Figure 1.8
Pin Assignments of the 32-Pin HWQFN

1.6 List of Pins and Pin Functions

1.6.1 80-pin LFQFP

Table 1.5 List of Pins and Pin Functions (80-Pin LFQFP) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE, LPT)	Communications (SClg, SClh, SCIk, RSPI, RIIC, RSCAN)	Touch sensing	Others
1		P06*1				
2		P03*1				DAO
3		P04*1				
4	VCL					
5		PJ1	MTIOC3A			
6	MD	PG7				FINED
7	XCIN	PH7				
8	XCOUT	PH6				
9	RES\#					
10	XTAL	P37				IRQ4
11	VSS					
12	EXTAL	P36				IRQ2
13	VCC					
14		P35				NMI
15		P34	MTIOCOA/TMCI3/POE2\#	SCK6		IRQ4
16		P32	MTIOC0C/TMO3	TXD6/SMOSI6/SSDA6	TS0	IRQ2/RTCOUT
17		P31	MTIOC4D/TMCI2	CTS1\#/RTS1\#/SS1\#	TS1	IRQ1
18		P30	MTIOC4B/TMRI3/POE8\#	RXD1/SMISO1/SSCL1	TS2	IRQ0
19		P27	MTIOC2B/TMCI3	SCK1	TS3	
20		P26	MTIOC2A/TMO1/LPTO	TXD1/SMOSI1/SSDA1	TS4	
21		P21	MTIOC1B/TMCIO			
22		P20	MTIOC1A/TMRI0			
23	(5V tolerant)	P17	MTIOC3A/MTIOC3B/TMO1/ POE8\#	SCK1/MISOA/SDA0		IRQ7
24	(5V tolerant)	P16	MTIOC3C/MTIOC3D/TMO2	TXD1/SMOSI1/SSDA1/MOSIA/SCL0		IRQ6/RTCOUT/ ADTRGO\#
25		P15	MTIOCOB/MTCLKB/TMCI2	RXD1/SMISO1/SSCL1/CRXD0	TS5	IRQ5
26		P14	MTIOC3A/MTCLKA/TMRI2	CTS1\#/RTS1\#/SS1\#/CTXD0	TS6	IRQ4
27	(5V tolerant)	P13	MTIOCOB/TMO3	SDAO		IRQ3
28	(5V tolerant)	P12	TMCI1	SCLO		IRQ2
29		PH3	MTIOC4D/TMCIO		TS7	
30		PH2	MTIOC4C/TMRIO		TS8	IRQ1
31		PH1	MTIOC3D/TMO0		TS9	IRQ0
32		PH0	MTIOC3B		TS10	CACREF
33		P55	MTIOC4A/MTIOC4D/TMO3	CRXD0	TS11	
34		P54	MTIOC4B/TMCI1	CTXD0	TS12	
35		PC7	MTCLKB/MTIOC3A/TMO2/ LPTO	MISOA/TXD8/SMOSI8/SSDA8	TS13	CACREF
36		PC6	MTIOC3C/MTCLKA/TMCI2	MOSIA/RXD8/SMISO8/SSCL8	TS14	
37		PC5	MTIOCOC/MTIOC3B/ MTCLKD/TMRI2	RSPCKA/SCK8	TS15	
38		PC4	MTIOCOA/MTIOC3D/ MTCLKC/TMCI1/POEO\#	SCK5/CTS8\#/RTS8\#/SS8\#/SSLA0	TSCAP	
39		PC3	MTIOC4D	TXD5/SMOSI5/SSDA5	TS16	
40		PC2	MTIOC4B	RXD5/SMISO5/SSCL5/SSLA3	TS17	
41		$\begin{array}{\|l\|} \hline \text { PB71 } \\ \text { PC1*2 } \end{array}$	MTIOC3B	TXD9/SMOSI9/SSDA9	TS18	
42		$\begin{array}{\|l\|} \hline \text { PB6/ } \\ \text { PC0*2 } \end{array}$	MTIOC3D	RXD9/SMISO9/SSCL9	TS19	
43		PB5	MTIOC2A/MTIOC1B/TMRI1/ POE1\#	SCK9	TS20	
44		PB4		CTS9\#/RTS9\#/SS9\#	TS21	

Table 1.5 List of Pins and Pin Functions (80-Pin LFQFP) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE, LPT)	Communications (SCIg, SClh, SCIk, RSPI, RIIC, RSCAN)	Touch sensing	Others
45		PB3	MTIOC0A/MTIOC4A/TMOO/ POE3\#LPTO	SCK6	TS22	
46		PB2		CTS6\#/RTS6\#/SS6\#	TS23	
47		PB1	MTIOC0C/MTIOC4C/TMCIO	TXD6/SMOSI6/SSDA6	TS24	IRQ4/CMPOB1
48	VCC					
49		PB0	MTIOC3D/MTIC5W	RXD6/SMISO6/SSCL6/RSPCKA	TS25	
50	VSS					
51		PA6	MTIOC3D/MTIC5V/ MTCLKB/TMCI3/POE2\#	CTS5\#/RTS5\#/SS5\#/MOSIA	TS26	
52		PA5		RSPCKA	TS27	
53		PA4	MTIOC4C/MTIC5U/ MTCLKA/TMRIO	TXD5/SMOSI5/SSDA5/SSLA0	TS28	IRQ5/CVREFB1
54		PA3	MTIOCOD/MTIOC4D/ MTIC5V/MTCLKD	RXD5/SMISO5/SSCL5	TS29	IRQ6/CMPB1
55		PA2		RXD5/SMISO5/SSCL5/SSLA3	TS30	
56		PA1	MTIOCOB/MTIOC3B/ MTCLKC	SCK5/SSLA2	TS31	
57		PA0	MTIOC4A	SSLA1	TS32	CACREF
58		PE5	MTIOC4C/MTIOC2B			IRQ5/AN021/CMPOB0
59		PE4	MTIOC4D/MTIOC1A/ MTIOC4A		TS33	ANO20/CMPA2I CLKOUT
60		PE3	MTIOC1B/MTIOC4B/POE8\#	CTS12\#/RTS12\#/SS12\#	TS34	AN019/CLKOUT
61		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	TS35	IRQ7/AN018/CVREFB0
62		PE1	MTIOC4C	$\begin{aligned} & \hline \text { TXD12/TXDX12/SIOX12/SMOSI12/ } \\ & \text { SSDA12 } \end{aligned}$		AN017/CMPB0
63		PE0		SCK12		AN016
64		PD2	MTIOC4D	SCK6		IRQ2/AN026
65		PD1	MTIOC4B	RXD6/SMISO6/SSCL6		IRQ1/AN025
66		PD0		TXD6/SMOSI6/SSDA6		IRQ0/AN024
67		P47*1				AN007
68		P46*1				AN006
69		P45*1				AN005
70		P44*1				AN004
71		P43*1				AN003
72		P42*1				AN002
73		P41*1				AN001
74	VREFLO	PJ7*1				
75		P40*1				AN000
76	VREFH0	PJ6*1				
77	AVCC0					
78		P07*1				ADTRG0\#
79	AVSS0					
80		P05*1				DA1

Note 1. The power source of the I/O buffer for these pins is AVCC0.
Note 2. PC0 and PC1 are valid only when the port switching function is selected.

1.6.2 64-pin LFQFP, 64-pin LQFP

Table $1.6 \quad$ List of Pins and Pin Functions (64-Pin LFQFP, 64-Pin LQFP) (1/2)
$\left.\begin{array}{l|l|l|l|l|l|l}\hline \begin{array}{l}\text { Pin } \\ \text { No. }\end{array} & \begin{array}{l}\text { Power Supply, Clock, } \\ \text { System Control }\end{array} & \text { I/O Port }\end{array} \begin{array}{l}\text { Timers } \\ \text { (MTU, TMR, POE, LPT) }\end{array}\right)$

Table 1.6 List of Pins and Pin Functions (64-Pin LFQFP, 64-Pin LQFP) (2/2)
$\left.\left.\begin{array}{l|l|l|l|l|l|l}\hline \begin{array}{l}\text { Pin } \\ \text { No. }\end{array} & \begin{array}{l}\text { Power Supply, Clock, } \\ \text { System Control }\end{array} & \text { I/O Port }\end{array} \begin{array}{l}\text { Timers } \\ \text { (MTU, TMR, POE, LPT) }\end{array}\right) \begin{array}{l}\text { Communications } \\ \text { (SCIg, SCIh, SCIk, RSPI, RIIC, } \\ \text { RSCAN) }\end{array}\right)$

Note 1. The power source of the I/O buffer for these pins is AVCC0.
Note 2. PC0 and PC1 are valid only when the port switching function is selected.
Note 3. This is not supported by products with 64 Kbytes of ROM.

1.6.3 48-pin LFQFP, 48-pin HWQFN

Table 1.7 List of Pins and Pin Functions (48-Pin LFQFP, 48-Pin HWQFN) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE, LPT)	Communications (SCIg, SClh, SCIk, RSPI, RIIC, RSCAN)	Touch sensing	Others
1	VCL					
2	MD	PG7				FINED
3	RES\#					
4	XTAL	P37				IRQ4
5	VSS					
6	EXTAL	P36				IRQ2
7	VCC					
8		P35				NMI
9		P31	MTIOC4D/TMCI2	CTS1\#/RTS1\#/SS1\#	TS1*3	IRQ1
10		P30	MTIOC4B/TMRI3/POE8\#	RXD1/SMISO1/SSCL1	TS2*3	IRQ0
11		P27	MTIOC2B/TMCI3	SCK1	TS3	
12		P26	MTIOC2A/TMO1/LPTO	TXD1/SMOSI1/SSDA1	TS4	
13	(5V tolerant)	P17	MTIOC3A/MTIOC3B/TMO1/POE8\#	SCK1/MISOA/SDA0		IRQ7
14	(5V tolerant)	P16	MTIOC3C/MTIOC3D/TMO2	TXD1/SMOSI1/SSDA1/MOSIA/SCL0		IRQ6/ ADTRGO\#I RTCOUT
15		P15	MTIOCOB/MTCLKB/TMCI2	RXD1/SMISO1/SSCL1/CRXD0*3	TS5*3	IRQ5
16		P14	MTIOC3A/MTCLKA/TMRI2	CTS1\#/RTS1\#/SS1\#/CTXD0*3	TS6*3	IRQ4
17		PH3	MTIOC4D/TMCIO		TS7*3	
18		PH2	MTIOC4C/TMRIO		TS8*3	IRQ1
19		PH1	MTIOC3D/TMO0		TS9*3	IRQ0
20		PH0	MTIOC3B		TS10*3	CACREF
21		PC7	MTIOC3A/TMO2/MTCLKB/LPTO	TXD8*3/SMOSI8*3/SSDA8*3/MISOA	TS13	CACREF
22		PC6	MTIOC3C/MTCLKA/TMCI2	RXD8*3/SMISO8*3/SSCL8*3/MOSIA	TS14	
23		PC5	MTIOC0C/MTIOC3B/MTCLKD/ TMRI2	SCK8*3/RSPCKA	TS15	
24		PC4	MTIOCOA/MTIOC3D/MTCLKC/ TMCI1/POEO\#	$\begin{aligned} & \text { SCK5/CTS8\#*3/RTS8\#*3/SS8\#*3/ } \\ & \text { SSLA0 } \end{aligned}$	TSCAP	
25		PB5/PC3*1	MTIOC2A/MTIOC1B/TMRI1/POE1\#		TS20*3	
26		PB3/PC2*1	MTIOC0A/MTIOC4A/TMOO/POE3\#I LPTO	SCK6*3	TS22*3	
27		PB1/PC1*1	MTIOC0C/MTIOC4C/TMCIO	TXD6*3/SMOSI6*3/SSDA6*3	TS24*3	IRQ4/CMPOB1
28	VCC					
29		PB0/PC0*1	MTIOC3D/MTIC5W	$\begin{array}{\|l} \text { RXD6*3/SMISO6*3/SSCL6*3/ } \\ \text { RSPCKA } \end{array}$	TS25	
30	VSS					
31		PA6	MTIOC3D/MTIC5V/MTCLKB/TMCI3/ POE2\#	CTS5\#/RTS5\#/SS5\#/MOSIA	TS26*3	
32		PA4	MTIOC4C/MTIC5U/MTCLKA/TMRIO	TXD5/SMOSI5/SSDA5/SSLA0	TS28	IRQ5/ CVREFB1
33		PA3	MTIOCOD/MTIOC4D/MTIC5V/ MTCLKD	RXD5/SMISO5/SSCL5	TS29	IRQ6/CMPB1
34		PA1	MTIOCOB/MTIOC3B/MTCLKC	SCK5/SSLA2	TS31	
35		PE4	MTIOC4D/MTIOC1A/MTIOC4A		TS33	
36		PE3	MTIOC1B/MTIOC4B/POE8\#	CTS12\#/RTS12\#	TS34	ANO19/ CLKOUT
37		PE2	MTIOC4A	RXD12/RXDX12/SSCL12	TS35	IRQ7/AN018/ CVREFBO
38		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SSDA12		AN017/CMPB0
39		P47*2				AN007
40		P46*2				AN006
41		P45*2				AN005
42		P42*2				AN002
43		P41*2				AN001

Table 1.7 List of Pins and Pin Functions (48-Pin LFQFP, 48-Pin HWQFN) (2/2)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE, LPT)	Communications (SCIg, SClh, SClk, RSPI, RIIC, RSCAN)	Touch sensing	Others
44	VREFLO	PJ7*2				
45		P40*2				AN000
46	VREFH0	PJ6*2				
47	AVCCO					
48	AVSSO					

Note 1. PC0 to PC3 are valid only when the port switching function is selected.
Note 2. The power source of the I/O buffer for these pins is AVCCO
Note 3. This is not supported by products with 64 Kbytes of ROM.

1.6.4 32-pin LQFP, 32-pin HWQFN

Table $1.8 \quad$ List of Pins and Pin Functions (32-Pin LQFP, 32-Pin HWQFN)

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Power Supply, Clock, System Control	I/O Port		Communications (SCIg, SClh, SCIk, RSPI, RIIC)	$\begin{aligned} & \hline \text { Touch } \\ & \text { sensing } \end{aligned}$	Others
1	MD	PG7				FINED
2	RES\#					
3	VSS					
4	EXTAL	P36				IRQ2
5	VCC					
6		P35				NMI
7		P31	MTIOC4D/TMCI2	CTS1\#/RTS1\#/SS1\#		IRQ1
8		P30	MTIOC4B/TMRI3/POE8\#	RXD1/SMISO1/SSCL1		IRQ0
9		P27	MTIOC2B/TMCI3	SCK1	TS3	
10		P26	MTIOC2A/TMO1/LPTO	TXD1/SMOSI1/SSDA1	TS4	
11	(5V tolerant)	P17	MTIOC3A/MTIOC3B/TMO1/ POE8\#	SCK1/MISOA/SDA0		IRQ7
12	(5V tolerant)	P16	MTIOC3C/MTIOC3D/TMO2	$\begin{aligned} & \text { TXD1/SMOSI1/SSDA1/MOSIA/ } \\ & \text { SCL0 } \end{aligned}$		IRQ6/ADTRG0\#I RTCOUT
13		PC7	MTIOC3A/MTCLKB/TMO2/ LPTO	MISOA	TS13	CACREF
14		PC6	MTIOC3C/MTCLKA/TMCI2	MOSIA	TS14	
15		PC5	MTIOC0C/MTIOC3B/ MTCLKD/TMRI2	RSPCKA	TS15	
16		PC4	MTIOC0A/MTIOC3D/ MTCLKC/TMCI1/POEO\#	SCK5/SSLA0	TSCAP	
17	VCC					
18		PB0	MTIOC3D/MTIC5W	RSPCKA	TS25	
19	VSS					
20		PA4	$\begin{aligned} & \text { MTIOC4C/MTIC5U/MTCLKA/ } \\ & \text { TMRIO } \end{aligned}$	TXD5/SMOSI5/SSDA5/SSLA0	TS28	IRQ5/CVREFB1
21		PA3	MTIOCOD/MTIOC4D/ MTIC5V/MTCLKD	RXD5/SMISO5/SSCL5	TS29	IRQ6/CMPB1
22		PA1	MTIOCOB/MTIOC3B/ MTCLKC	SCK5/SSLA2	TS31	
23		PE4	MTIOC1A/MTIOC4A/ MTIOC4D		TS33	ANO20/CMPA2/ CLKOUT
24		PE3	MTIOC1B/MTIOC4B/POE8\#	CTS12\#/RTS12\#	TS34	AN019/CLKOUT
25		PE2	MTIOC4A	RXD12/SSCL12/RXDX12	TS35	IRQ7/AN018/CVREFB0
26		PE1	MTIOC4C	TXD12/SSDA12/TXDX12/SIOX12		AN017/CMPB0
27		P42*1				AN002
28		P41*1				AN001
29		P40*1				ANOOO
30	AVCC0/VREFH0					
31	AVSS0/VREFLO					
32	VCL					

Note 1. The power source of the I/O buffer for these pins is AVCCO.

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 2.1 Absolute Maximum Ratings
Conditions: VSS $=$ AVSSO $=$ VREFLO $=0 \mathrm{~V}$

Item		Symbol	Value	Unit
Power supply voltage		VCC	-0.3 to +6.5	V
Input voltage	Ports for 5 V tolerant*1	$\mathrm{V}_{\text {in }}$	-0.3 to +6.5	V
	$\begin{aligned} & \text { P03 to P07, } \\ & \text { P40 to P47, } \\ & \text { PJ6, PJ7 } \end{aligned}$		-0.3 to AVCCO + 0.3	V
	Ports other than above		-0.3 to VCC +0.3	
Reference power supply voltage		VREFH0	-0.3 to AVCCO + 0.3	V
Analog power supply voltage		AVCCO	-0.3 to +6.5	V
Analog input voltage	When AN000 to AN007 used	V_{AN}	-0.3 to AVCCO + 0.3	V
	When AN016 to AN021, AN024 to AN026 used		-0.3 to VCC +0.3	
Junction temperature	D-version	T_{j}	-40 to +105	${ }^{\circ} \mathrm{C}$
	G-version		-40 to +112	
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.
To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCCO and AVSSO pins, and between the VREFHO and VREFLO pins. Place capacitors of about $0.1 \mu F$ as close as possible to every power supply pin and use the shortest and heaviest possible traces.
Connect the VCL pin to a VSS pin via a $4.7 \mu \mathrm{~F}$ capacitor. The capacitor must be placed close to the pin, refer to section 2.15 .1 , Connecting VCL Capacitor and Bypass Capacitors.
Do not input signals or an I/O pull-up power supply to ports other than 5-V tolerant ports while the device is not powered.
The current injection that results from input of such a signal or I/O pull-up may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.
Even if -0.3 to +6.5 V is input to $5-\mathrm{V}$ tolerant ports, it will not cause problems such as damage to the MCU
Note 1. P12, P13, P16, and P17 are 5 V tolerant.

2.2 Recommended Operating Conditions

Table 2.2 Recommended Operating Conditions (1)

Item	Symbol	Symbol	Min.	Typ.	Max.	Unit
Power supply voltages		VCC $^{* 1, ~ * 2 ~}$	1.8	-	5.5	V
		VSS	-	0	-	
Analog power supply voltages		AVCC0*1	1.8	-	5.5	V
		AVSS0	-	0	-	
		VREFH0	1.8	-	AVCCO	
		VREFLO	-	0	-	
Input voltage	Ports for 5 V tolerant: P12, P13, P16, P17	$\mathrm{V}_{\text {in }}$	-0.3	-	5.8	V
	$\begin{aligned} & \text { P03 to P07, } \\ & \text { P40 to P47, } \\ & \text { PJ6, PJ7 } \end{aligned}$		-0.3	-	AVCCO + 0.3	
	Ports other than above		-0.3	-	$\mathrm{VCC}+0.3$	
Operating temperature*3	D version	$\mathrm{T}_{\text {opr }}$	-40	-	85	${ }^{\circ} \mathrm{C}$
	G version		-40	-	105	

Note 1. When powering on the VCC and AVCCO pins, power them on at the same time or the VCC pin first and then the AVCCO pin.
Note 2. When VCC $<2.4 \mathrm{~V}$, normal operating mode functions of the CTSU are restricted. For details, refer to section 32, Capacitive Touch Sensing Unit (CTSU2SL, CTSU2L) in the User's Manual: Hardware.
Note 3. The upper limit of operating temperature is $85^{\circ} \mathrm{C}$ or $105^{\circ} \mathrm{C}$, depending on the product. For details, refer to section 1.2 , List of Products.

Table 2.3 Recommended Operating Conditions (2)

Item	Symbol	Value
Decoupling capacitance to stabilize the internal voltage	$\mathrm{C}_{\mathrm{VCL}}$	$4.7 \mu \mathrm{~F} \pm 30 \%^{* 1}$

Note 1. Use a multilayer ceramic capacitor whose nominal capacitance is $4.7 \mu \mathrm{~F}$ and a capacitance tolerance is $\pm 30 \%$ or better.

2.3 DC Characteristics

Table 2.4 DC Characteristics (1)
Conditions: $2.7 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMBus)	V_{IH}	$0.7 \times$ VCC	-	-	V	
		$\mathrm{V}_{\text {IL }}$	-	-	$0.3 \times$ VCC		
		$\Delta \mathrm{V}_{\mathrm{T}}$	$0.05 \times$ VCC	-	-		
	IRQ input pin, MTU2 input pin, POE2 input pin, TMR input pin, SCI input pin, RSPI input pin, CAC input pin, CAN input pin, ADTRGO\# input pin*1, RES\#, NMI, MD	V_{IH}	$0.8 \times \mathrm{VCC}$	-	-		
		$\mathrm{V}_{\text {IL }}$	-	-	$0.2 \times \mathrm{VCC}$		
		ΔV_{T}	$0.1 \times$ VCC	-	-		
	ADTRG0\# input pin*2	V_{IH}	$0.8 \times$ AVCCO	-	-		
		$\mathrm{V}_{\text {IL }}$	-	-	$0.2 \times$ AVCCO		
		$\Delta \mathrm{V}_{\mathrm{T}}$	$0.1 \times$ AVCCO	-	-		
Input level voltage (except for schmitt trigger input pins)	EXTAL (external clock input)	V_{IH}	$0.8 \times$ VCC	-	-	V	
		$\mathrm{V}_{\text {IL }}$	-	-	$0.2 \times$ VCC		
	RIIC input pin (SMBus)	$\mathrm{V}_{\text {IH }}$	2.2	-	-		$\begin{array}{\|l} \mathrm{VCC}=3.6 \\ \text { to } 5.5 \mathrm{~V} \end{array}$
			2.0	-	-		$\begin{aligned} & \mathrm{VCC}=2.7 \\ & \text { to } 3.6 \mathrm{~V} \end{aligned}$
		$\mathrm{V}_{\text {IL }}$	-	-	0.8		$\begin{aligned} & \mathrm{VCC}=3.6 \\ & \text { to } 5.5 \mathrm{~V} \end{aligned}$
			-	-	0.5		$\begin{aligned} & \mathrm{VCC}=2.7 \\ & \text { to } 3.6 \mathrm{~V} \end{aligned}$
	```P12 to P17, P20, P21, P26, P27, P30 to P32, P34 to P37, P54, P55, PA0 to PA6, PB0 to PB7, PC2 to PC7, PD0 to PD2, PE0 to PE5, PH0 to PH3, PH6*3, PH7*3 PJ1, PG7```	$\mathrm{V}_{\mathrm{IH}}$	$0.8 \times \mathrm{VCC}$	-	-		
		$\mathrm{V}_{\text {IL }}$	-	-	$0.2 \times$ VCC		
	$\begin{aligned} & \text { P03 to P07, } \\ & \text { P40 to P47, } \\ & \text { PJ6, PJ7 } \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}$	$0.8 \times \mathrm{AVCC}$	-	-		
		$\mathrm{V}_{\text {IL }}$	-	-	$0.2 \times$ AVCC		

Note 1. The ADTRG0\# input pin is assigned to P16.
Note 2. The ADTRG0\# input pin is assigned to P07.
Note 3. This pin function is not provided for products with 64 Kbytes of ROM.

Table 2.5 DC Characteristics (2)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC}<2.7 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO}<2.7 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	IRQ input pin, MTU2 input pin, POE2 input pin, TMR input pin, SCI input pin, RSPI input pin, CAC input pin, CAN input pin, ADTRGO\# input pin*1, RES\#, NMI, MD	$\mathrm{V}_{\mathrm{IH}}$	$0.8 \times \mathrm{VCC}$	-	-	V	
		$\mathrm{V}_{\mathrm{IL}}$	-	-	$0.2 \times$ VCC		
		$\Delta \mathrm{V}_{\mathrm{T}}$	$0.01 \times$ VCC	-	-		
	ADTRG0\# input pin*2	$\mathrm{V}_{\mathrm{IH}}$	$0.8 \times$ AVCCO	-	-		
		$\mathrm{V}_{\text {IL }}$	-	-	$0.2 \times$ AVCC0		
		$\Delta \mathrm{V}_{\mathrm{T}}$	$0.01 \times$ AVCC0	-	-		
Input level voltage (except for schmitt trigger input pins)	EXTAL (external clock input)	$\mathrm{V}_{\mathrm{IH}}$	$0.8 \times$ VCC	-	-	V	
		$\mathrm{V}_{\text {IL }}$	-	-	$0.2 \times \mathrm{VCC}$		
	```P12 to P17, P20, P21, P26, P27, P30 to P32, P34 to P37, P54, P55, PA0 to PA6, PB0 to PB7, PC2 to PC7, PD0 to PD2, PE0 to PE5, PH0 to PH3, PH6*3, PH7*3 PJ1, PG7```	$\mathrm{V}_{\mathrm{IH}}$	$0.8 \times \mathrm{VCC}$	-	-		
		$\mathrm{V}_{\text {IL }}$	-	-	$0.2 \times$ VCC		
	$\begin{aligned} & \text { P03 to P07, } \\ & \text { P40 to P47, } \\ & \text { PJ6, PJ7 } \end{aligned}$	V_{IH}	$0.8 \times$ AVCC	-	-		
		V_{IL}	-	-	$0.2 \times$ AVCC		

Note 1. The ADTRG0\# input pin is assigned to P16.
Note 2. The ADTRG0\# input pin is assigned to P07.
Note 3. This pin function is not provided for products with 64 Kbytes of ROM.

Table 2.6 DC Characteristics (3)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Input leakage current	RES\#, P35, PH6*1, PH7*1	$\left\|l_{\text {in }}\right\|$	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{VCC}$
Three-state leakage current (off-state)	Ports for 5-V tolerant	$\left\|\mathrm{I}_{\text {TSI }}\right\|$	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, 5.8 \mathrm{~V}$
	PJ6, PJ7		-	-	1.0		$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{VCC}$
	Other than ports for 5 V tolerant and PJ6, PJ7		-	-	0.2		$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{VCC}$
Input capacitance	All input pins (except for P35)	$\mathrm{C}_{\text {in }}$	-	-	15	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=0 \mathrm{mV}, \\ & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$
	P35		-	-	30		

Note 1. This pin function is not provided for products with 64 Kbytes of ROM.

Table 2.7 DC Characteristics (4)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC}<5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO}<5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Input pull-up resistor	All ports (except for $\mathrm{P} 35, ~ \mathrm{PH} 6 * 1, ~ P H 7 * 1)$	R_{U}	10	20	50	$\mathrm{k} \Omega$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$

Note 1. This pin function is not provided for products with 64 Kbytes of ROM.
[Products with 64-Kbyte ROM]

Table 2.8 DC Characteristics (5)

Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item					Symbol	$\underset{* 4}{\text { Typ. }}$	Max.		Test Conditions
Supply current*1	High-speed operating mode	Normal operating mode	No peripheral operation*2	$\mathrm{ICLK}=48 \mathrm{MHz}$	I_{CC}	2.5	-	mA	
				ICLK = 32 MHz		1.8	-		
				ICLK $=16 \mathrm{MHz}$		1.3	-		
				ICLK $=8 \mathrm{MHz}$		1.0	-		
			All peripheral	ICLK $=48 \mathrm{MHz}$		9.0	-		
				ICLK $=32 \mathrm{MHz}$		7.4	-		
				ICLK $=16 \mathrm{MHz}$		4.2	-		
				ICLK $=8 \mathrm{MHz}$		2.5	-		
			All peripheral operation: Max.*3	$\mathrm{ICLK}=48 \mathrm{MHz}$		-	20.1		
		Sleep mode	No peripheral	ICLK $=48 \mathrm{MHz}$		1.4	-		
				ICLK $=32 \mathrm{MHz}$		1.1	-		
				ICLK $=16 \mathrm{MHz}$		0.8	-		
				ICLK $=8 \mathrm{MHz}$		0.7	-		
			All peripheral	$\mathrm{ICLK}=48 \mathrm{MHz}$		4.0	-		
			operation: Norma\|*3	ICLK $=32 \mathrm{MHz}$		4.0	-		
				ICLK $=16 \mathrm{MHz}$		2.3	-		
				ICLK $=8 \mathrm{MHz}$		1.5	-		
		Deep sleep	No peripheral	ICLK $=48 \mathrm{MHz}$		1.0	-		
				ICLK $=32 \mathrm{MHz}$		0.8	-		
				ICLK $=16 \mathrm{MHz}$		0.7	-		
				ICLK $=8 \mathrm{MHz}$		0.6	-		
			All peripheral	ICLK $=48 \mathrm{MHz}$		3.1	-		
			operation: Norma\| ${ }^{\text {³ }}$	ICLK $=32 \mathrm{MHz}$		3.1	-		
				ICLK $=16 \mathrm{MHz}$		1.9	-		
				ICLK $=8 \mathrm{MHz}$		1.2	-		
		Increase during flas	ash rewrite*5			2.1	-		
	Middle-speed operating mode	Normal operating mode	No peripheral operation*6	ICLK $=24 \mathrm{MHz}$		1.6	-		
				ICLK $=8 \mathrm{MHz}$		0.8	-		
				ICLK $=4 \mathrm{MHz}$		0.3	-		
				ICLK $=1 \mathrm{MHz}$		0.2	-		
			All peripheral operation: Norma\|*7	ICLK $=24 \mathrm{MHz}$		5.8	-		
				ICLK $=8 \mathrm{MHz}$		2.3	-		
				ICLK $=4 \mathrm{MHz}$		1.5	-		
				ICLK $=1 \mathrm{MHz}$		0.8	-		
			All peripheral operation: Max.*7	ICLK $=24 \mathrm{MHz}$		-	13.1		
		Sleep mode	No peripheral operation*6	ICLK $=24 \mathrm{MHz}$		1.1	-		
				ICLK $=8 \mathrm{MHz}$		0.6	-		
				ICLK $=4 \mathrm{MHz}$		0.2	-		
				ICLK $=1 \mathrm{MHz}$		0.2	-		

Item					Symbol	Typ. *4	Max.		Test
Supply current*1	Middle-speed operating mode	Sleep mode	All peripheral operation: Normal*7	ICLK $=24 \mathrm{MHz}$	I_{CC}	3.3	-	mA	
				ICLK $=8 \mathrm{MHz}$		1.5	-		
				ICLK $=4 \mathrm{MHz}$		1.0	-		
				ICLK = 1 MHz		0.7	-		
		Deep sleep mode	No peripheral operation*6	ICLK $=24 \mathrm{MHz}$		0.8	-		
				ICLK $=8 \mathrm{MHz}$		0.5	-		
				ICLK $=4 \mathrm{MHz}$		0.1	-		
				ICLK $=1 \mathrm{MHz}$		0.1	-		
			All peripheral operation: Normal*7	ICLK $=24 \mathrm{MHz}$		2.6	-		
				ICLK $=8 \mathrm{MHz}$		1.3	-		
				ICLK $=4 \mathrm{MHz}$		0.9	-		
				ICLK $=1 \mathrm{MHz}$		0.7	-		
		Increase during flash rewrite*5				2.1	-		
	Middle-speed operating mode 2	Normal operating mode	No peripheral operation*8	ICLK $=1 \mathrm{MHz}$		0.1	-		
			All peripheral operation: Normal*9	$\mathrm{ICLK}=1 \mathrm{MHz}$		0.8	-		
			All peripheral operation: Max.*9	$\mathrm{ICLK}=1 \mathrm{MHz}$		-	3.0		
		Sleep mode	No peripheral operation*8	ICLK $=1 \mathrm{MHz}$		0.1	-		
			All peripheral operation: Normal*9	ICLK $=1 \mathrm{MHz}$		0.7	-		
		Deep sleep mode	No peripheral operation*8	$\mathrm{ICLK}=1 \mathrm{MHz}$		0.1	-		
			All peripheral operation: Norma\|*9	ICLK $=1 \mathrm{MHz}$		0.7	-		
		Increase during flash rewrite*5				1.4	-		
	Low-speed operating mode	Normal operating mode	No peripheral operation*10	ICLK $=32.768 \mathrm{kHz}$		2.4	-	$\mu \mathrm{A}$	
			All peripheral operation: Normal*11, *12	ICLK $=32.768 \mathrm{kHz}$		7.5	-		
			All peripheral operation: Max. *11, *12	ICLK $=32.768 \mathrm{kHz}$		-	88.4		
		Sleep mode	No peripheral operation*10	ICLK $=32.768 \mathrm{kHz}$		1.4	-		
			All peripheral operation: Normal*11	ICLK $=32.768 \mathrm{kHz}$		3.8	-		
		Deep sleep mode	No peripheral operation*10	ICLK $=32.768 \mathrm{kHz}$		1.0	-		
			All peripheral operation: Normal*11	ICLK $=32.768 \mathrm{kHz}$		2.8	-		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.
Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.
Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK is set to the same frequency as ICLK and PCLK is set to divided by 2 when ICLK is 48 MHz . FCLK and PCLK are set to the same frequency as ICLK when ICLK is 32 MHz or less.
Note 4. Values when VCC $=3.3 \mathrm{~V}$.

Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.
Note 6. Clock supply to the peripheral function is stopped. The clock source is PLL when ICLK is 24 MHz , HOCO when ICLK is 8 MHz , and LOCO otherwise. FCLK and PCLK are set to divided by 64.
Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK is $24 \mathrm{MHz}, \mathrm{HOCO}$ when ICLK is (MHz, and LOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.
Note 8. Clock supply to the peripheral function is stopped. The clock source is LOCO when ICLK is 1 MHz , FCLK and PCLK are set to divided by 64.
Note 9. Clocks are supplied to the peripheral functions. The clock source is LOCO when ICLK is 1 MHz , FCLK and PCLK are set to the same frequency as ICLK.
Note 10. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.
Note 11. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.
Note 12. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{ICLK}=48 \mathrm{MHz}{ }^{*}$	
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, ICLK $=32 \mathrm{MHz}{ }^{*}$	
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, ICLK $=16 \mathrm{MHz}{ }^{*}$	$=-\mathrm{T}_{\mathrm{a}}=105^{\circ} \mathrm{C}$, ICLK $=16 \mathrm{MHz}{ }^{* 2}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{ICLK}=8 \mathrm{MHz}^{*}$	$=\mathrm{T}_{\mathrm{a}}=105^{\circ} \mathrm{C}, \mathrm{ICLK}=8 \mathrm{MHz}{ }^{*}$

Note 1. All peripheral operation is normal. This does not include BGO operation. Average value of the tested middle samples during product evaluation.
Note 2. All peripheral operation is maximum. This does not include BGO operation. Average value of the tested upper-limit samples during product evaluation.

Figure 2.1 Voltage Dependency in High-Speed Operating Mode (Reference Data for Products with 64-Kbyte ROM)

Note 1. All peripheral operation is normal. This does not include BGO operation. Average value of the tested middle samples during product evaluation.
Note 2. All peripheral operation is maximum. This does not include BGO operation. Average value of the tested upper-limit samples during product evaluation.

Figure 2.2 Voltage Dependency in Middle-Speed Operating Mode (Reference Data for Products with 64Kbyte ROM)

Note 1. All peripheral operation is normal. This does not include BGO operation. Average value of the tested middle samples during product evaluation.
Note 2. All peripheral operation is maximum. This does not include BGO operation. Average value of the tested upper-limit samples during product evaluation.

Figure 2.3 Voltage Dependency in Middle-Speed Operating Mode 2 (Reference Data for Products with 64Kbyte ROM)

Note 1. All peripheral operation is normal. This does not include BGO operation. Average value of the tested middle samples during product evaluation.
Note 2. All peripheral operation is maximum. This does not include BGO operation. Average value of the tested upper-limit samples during product evaluation.

Figure 2.4 Voltage Dependency in Low-Speed Operating Mode (Reference Data for Products with 64-Kbyte ROM)
[Products with 128-Kbyte or larger ROM]

Table $2.9 \quad$ DC Characteristics (5)

Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item					Symbol	Typ.	Max.	Unit	Test Conditions
Supply current*1	High-speed operating mode	Normal operating mode	No peripheral operation*2	$\mathrm{ICLK}=48 \mathrm{MHz}$	I_{CC}	2.6	-	mA	
				ICLK $=32 \mathrm{MHz}$		1.9	-		
				ICLK $=16 \mathrm{MHz}$		1.3	-		
				ICLK $=8 \mathrm{MHz}$		1.0	-		
			All peripheral	ICLK $=48 \mathrm{MHz}$		10.4	-		
				ICLK $=32 \mathrm{MHz}$		8.9	-		
				ICLK $=16 \mathrm{MHz}$		4.9	-		
				ICLK $=8 \mathrm{MHz}$		2.9	-		
			All peripheral operation: Max.*3	$\mathrm{ICLK}=48 \mathrm{MHz}$		-	22.8		
		Sleep mode	No peripheral	ICLK $=48 \mathrm{MHz}$		1.4	-		
				ICLK $=32 \mathrm{MHz}$		1.1	-		
				ICLK $=16 \mathrm{MHz}$		0.8	-		
				ICLK $=8 \mathrm{MHz}$		0.7	-		
			All peripheral	ICLK $=48 \mathrm{MHz}$		4.7	-		
			operation: Norma\| ${ }^{* 3}$	ICLK $=32 \mathrm{MHz}$		4.9	-		
				ICLK $=16 \mathrm{MHz}$		2.8	-		
				ICLK $=8 \mathrm{MHz}$		1.7	-		
		Deep sleep	No peripheral	$\mathrm{ICLK}=48 \mathrm{MHz}$		1.0	-		
				ICLK $=32 \mathrm{MHz}$		0.8	-		
				ICLK $=16 \mathrm{MHz}$		0.7	-		
				ICLK $=8 \mathrm{MHz}$		0.6	-		
			All peripheral	$\mathrm{ICLK}=48 \mathrm{MHz}$		3.7	-		
			operation: Norma ${ }^{3}$	ICLK $=32 \mathrm{MHz}$		3.9	-		
				ICLK $=16 \mathrm{MHz}$		2.3	-		
				ICLK $=8 \mathrm{MHz}$		1.4	-		
		Increase during f	ash rewrite*5			2.1	-		
		Increase during	ncryption function ope	ration		-	3.9		
	Middle-speed operating mode	Normal operating mode	No peripheral operation*6	ICLK $=24 \mathrm{MHz}$		1.7	-		
				ICLK $=8 \mathrm{MHz}$		0.9	-		
				ICLK $=4 \mathrm{MHz}$		0.3	-		
				ICLK $=1 \mathrm{MHz}$		0.2	-		
			All peripheral operation: Normal*7	ICLK $=24 \mathrm{MHz}$		6.9	-		
				ICLK $=8 \mathrm{MHz}$		2.8	-		
				ICLK $=4 \mathrm{MHz}$		1.7	-		
				ICLK $=1 \mathrm{MHz}$		0.9	-		
			All peripheral operation: Max.*7	ICLK $=24 \mathrm{MHz}$		-	15.4		
		Sleep mode	No peripheral operation*6	ICLK $=24 \mathrm{MHz}$		1.1	-		
				ICLK $=8 \mathrm{MHz}$		0.7	-		
				ICLK $=4 \mathrm{MHz}$		0.2	-		
				ICLK $=1 \mathrm{MHz}$		0.2	-		

Item					Symbol	Typ. *4	Max.	Unit	Test
Supply current*1	Middle-speed operating mode	Sleep mode	All peripheral operation: Normal*7	ICLK $=24 \mathrm{MHz}$	I_{CC}	4.0	-	mA	
				ICLK $=8 \mathrm{MHz}$		1.8	-		
				ICLK $=4 \mathrm{MHz}$		1.2	-		
				ICLK = 1 MHz		0.8	-		
		Deep sleep mode	No peripheral operation*6	ICLK $=24 \mathrm{MHz}$		0.8	-		
				ICLK $=8 \mathrm{MHz}$		0.6	-		
				ICLK $=4 \mathrm{MHz}$		0.1	-		
				ICLK $=1 \mathrm{MHz}$		0.1	-		
			All peripheral operation: Normal*7	ICLK $=24 \mathrm{MHz}$		3.2	-		
				ICLK $=8 \mathrm{MHz}$		1.5	-		
				ICLK $=4 \mathrm{MHz}$		1.0	-		
				ICLK $=1 \mathrm{MHz}$		0.7	-		
		Increase during flash rewrite*5				2.1	-		
	Middle-speed operating mode 2	Normal operating mode	No peripheral operation*8	ICLK $=1 \mathrm{MHz}$		0.1	-		
			All peripheral operation: Normal*9	$\mathrm{ICLK}=1 \mathrm{MHz}$		0.9	-		
			All peripheral operation: Max.*9	$\mathrm{ICLK}=1 \mathrm{MHz}$		-	3.3		
		Sleep mode	No peripheral operation*8	ICLK $=1 \mathrm{MHz}$		0.1	-		
			All peripheral operation: Normal*9	ICLK $=1 \mathrm{MHz}$		0.7	-		
		Deep sleep mode	No peripheral operation*8	$\mathrm{ICLK}=1 \mathrm{MHz}$		0.1	-		
			All peripheral operation: Norma\|*9	ICLK $=1 \mathrm{MHz}$		0.7	-		
		Increase during flash rewrite*5				1.4	-		
	Low-speed operating mode	Normal operating mode	No peripheral operation*10	ICLK $=32.768 \mathrm{kHz}$		2.6	-	$\mu \mathrm{A}$	
			All peripheral operation: Normal*11, *12	ICLK $=32.768 \mathrm{kHz}$		9.4	-		
			All peripheral operation: Max. *11, *12	ICLK $=32.768 \mathrm{kHz}$		-	175.4		
		Sleep mode	No peripheral operation*10	ICLK $=32.768 \mathrm{kHz}$		1.5	-		
			All peripheral operation: Normal*11	ICLK $=32.768 \mathrm{kHz}$		5.1	-		
		Deep sleep mode	No peripheral operation*10	ICLK $=32.768 \mathrm{kHz}$		1.3	-		
			All peripheral operation: Normal*11	ICLK $=32.768 \mathrm{kHz}$		4.1	-		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.
Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.
Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK is set to the same frequency as ICLK and PCLK is set to divided by 2 when ICLK is 48 MHz . FCLK and PCLK are set to the same frequency as ICLK when ICLK is 32 MHz or less.
Note 4. Values when VCC $=3.3 \mathrm{~V}$.

Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.
Note 6. Clock supply to the peripheral function is stopped. The clock source is PLL when ICLK is 24 MHz , HOCO when ICLK is 8 MHz , and LOCO otherwise. FCLK and PCLK are set to divided by 64.
Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK is $24 \mathrm{MHz}, \mathrm{HOCO}$ when ICLK is (MHz, and LOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.
Note 8. Clock supply to the peripheral function is stopped. The clock source is LOCO when ICLK is 1 MHz , FCLK and PCLK are set to divided by 64.
Note 9. Clocks are supplied to the peripheral functions. The clock source is LOCO when ICLK is 1 MHz , FCLK and PCLK are set to the same frequency as ICLK.
Note 10. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.
Note 11. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.
Note 12. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

$$
\begin{aligned}
& \longrightarrow \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \text { ICLK }=48 \mathrm{MHz}^{* 1} \text { 드․․․․․․․․․․ } \mathrm{T}_{\mathrm{a}}=105^{\circ} \mathrm{C}, \text { ICLK }=48 \mathrm{MHz}^{* 2} \\
& \longrightarrow \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \text { ICLK }=32 \mathrm{MHz}^{* 1} \quad \mathrm{man}=\mathrm{T}_{\mathrm{a}}=105^{\circ} \mathrm{C} \text {, ICLK }=32 \mathrm{MHz}{ }^{* 2}
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \text { ICLK }=8 \mathrm{MHz}^{* 1}-\square-m=-\mathrm{T}_{\mathrm{a}}=105^{\circ} \mathrm{C}, \text { ICLK }=8 \mathrm{MHz}^{* 2}
\end{aligned}
$$

Note 1. All peripheral operation is normal. This does not include BGO operation. Average value of the tested middle samples during product evaluation.
Note 2. All peripheral operation is maximum. This does not include BGO operation. Average value of the tested upper-limit samples during product evaluation.

Figure 2.5 Voltage Dependency in High-Speed Operating Mode (Reference Data for Products with 128-Kbyte or Larger ROM)

Note 1. All peripheral operation is normal. This does not include BGO operation. Average value of the tested middle samples during product evaluation.
Note 2. All peripheral operation is maximum. This does not include BGO operation. Average value of the tested upper-limit samples during product evaluation.

Figure 2.6 Voltage Dependency in Middle-Speed Operating Mode (Reference Data for Products with 128Kbyte or Larger ROM)

Note 1. All peripheral operation is normal. This does not include BGO operation. Average value of the tested middle samples during product evaluation.
Note 2. All peripheral operation is maximum. This does not include BGO operation. Average value of the tested upper-limit samples during product evaluation.

Figure 2.7 Voltage Dependency in Middle-Speed Operating Mode 2 (Reference Data for Products with 128Kbyte or Larger ROM)

Note 1. All peripheral operation is normal. This does not include BGO operation. Average value of the tested middle samples during product evaluation.
Note 2. All peripheral operation is maximum. This does not include BGO operation. Average value of the tested upper-limit samples during product evaluation.

Figure 2.8 Voltage Dependency in Low-Speed Operating Mode (Reference Data for Products with 128-Kbyte or Larger ROM)
[Products with 64-Kbyte ROM]
Table 2.10 DC Characteristics (6)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item			Symbol	Typ.*3	Max.	Unit	Test Conditions
Supply current*1	Software standby mode*2	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	I_{CC}	0.25	1.56	$\mu \mathrm{A}$	
		$\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$		0.54	4.66		
		$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$		1.86	18.09		
		$\mathrm{T}_{\mathrm{a}}=105^{\circ} \mathrm{C}$		4.72	43.74		
	Increment for RTC operation*4			0.97	-		SOMCR.SODRV[1:0] set to drive capacity for standard CL
			0.52	-	SOMCR.SODRV[1:0] set to high drive capacity for low CL		
			0.27	-	SOMCR.SODRV[1:0] set to middle drive capacity for low CL		
			0.17	-	SOMCR.SODRV[1:0] set to low drive capacity for low CL		
	Increment for low-power timer operation			0.28	-		LPTCR1.LPCNTCKSEL set to IWDTdedicated on-chip oscillator
			15.97	-	LPTCR1.LPCNTCKSEL 2 set to Low-speed on-chip oscillator		
	Increment for independent watchdog timer operation			0.26	-		

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
Note 2. The IWDT, LVD, and CMPB are stopped.
Note 3. $\mathrm{VCC}=3.3 \mathrm{~V}$.
Note 4. Includes the oscillation circuit.

Note 1. Average value of the tested middle samples during product evaluation.
Note 2. Average value of the tested upper-limit samples during product evaluation.

Figure 2.9 Voltage Dependency in Software Standby Mode (Reference Data for Products with 64-Kbyte ROM)

Figure $\mathbf{2 . 1 0}$ Temperature Dependency in Software Standby Mode (Reference Data for Products with 64-Kbyte ROM)
[Products with 128-Kbyte or larger ROM]
Table 2.11 DC Characteristics (6)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item			Symbol	Typ.*3	Max.		Test Conditions
Supply current*1	Software standby mode*2	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	I_{CC}	0.43	2.07	$\mu \mathrm{A}$	
		$\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$		1.00	8.46		
		$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$		3.30	31.14		
		$\mathrm{T}_{\mathrm{a}}=105^{\circ} \mathrm{C}$		7.76	71.36		
	Increment for RTC operation*4			0.99	-		SOMCR.SODRV[1:0] set to drive capacity for standard CL
			0.55	-	SOMCR.SODRV[1:0] set to high drive capacity for low CL		
			0.32	-	SOMCR.SODRV[1:0] set to middle drive capacity for low CL		
			0.22	-	SOMCR.SODRV[1:0] set to low drive capacity for low CL		
	Increment for low-power timer operation			0.33	-		LPTCR1.LPCNTCKSEL set to IWDTdedicated on-chip oscillator
			15.89	-	LPTCR1.LPCNTCKSEL 2 set to Low-speed on-chip oscillator		
	Increment for independent watchdog timer operation			0.32	-		

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
Note 2. The IWDT, LVD, and CMPB are stopped.
Note 3. VCC = 3.3 V.
Note 4. Includes the oscillation circuit.

Note 1. Average value of the tested middle samples during product evaluation.
Note 2. Average value of the tested upper-limit samples during product evaluation.
Figure $2.11 \quad$ Voltage Dependency in Software Standby Mode (Reference Data for Products with 128-Kbyte or Larger ROM)

Note 1. Average value of the tested middle samples during product evaluation. Note 2. Average value of the tested upper-limit samples during product evaluation.

Figure 2.12 Temperature Dependency in Software Standby Mode (Reference Data for Products with 128Kbyte or Larger ROM)

Table 2.12 DC Characteristics (7)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.*4	Max.	Unit	Test Conditions
Analog power supply current	During A/D conversion (at high-speed conversion)	$\mathrm{I}_{\text {AVCC }}$	-	0.6	1.3	mA	
	During A/D conversion (at low-speed conversion)		-	0.3	0.7		
	During D/A conversion (per channel)*1		-	-	0.5		
	Waiting for A/D and D/A conversion		-	-	2.0	$\mu \mathrm{A}$	
Reference power supply current	During A/D conversion (at high-speed conversion)	$\mathrm{I}_{\text {REFHO }}$	-	49.6	120	$\mu \mathrm{A}$	
	Waiting for A/D conversion		-	-	0.3	nA	
LVD0	-	$\mathrm{I}_{\text {LVD }}$	-	0.04	-	$\mu \mathrm{A}$	
LVD1, 2	Per channel		-	0.12	-	$\mu \mathrm{A}$	
Temperature sensor*3	-	$\mathrm{I}_{\text {TEMP }}$	-	120	-	$\mu \mathrm{A}$	
Comparator B operating current*3	Window function enabled	$\mathrm{I}_{\text {CMP }}{ }^{\text {*2 }}$	-	7.5	12.5	$\mu \mathrm{A}$	
	Comparator high-speed mode (per channel)		-	5.0	10.0	$\mu \mathrm{A}$	
	Comparator low-speed mode (per channel)		-	1.5	3.0	$\mu \mathrm{A}$	

Note 1. The value of the D/A converter is the value of the power supply current including the reference current.
Note 2. Current consumed only by the comparator B module.
Note 3. ICurrent consumed by the power supply (VCC).
Note 4. When VCC $=\mathrm{AVCCO}=3.3 \mathrm{~V}$.

Table 2.13 DC Characteristics (8)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
RAM standby voltage	$\mathrm{V}_{\text {RAM }}$	1.8	-	-	V	

Table 2.14 DC Characteristics (9)
Conditions: $0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Power-on VCC rising gradient	At normal startup*1	SrVCC	0.02	-	20	ms / V	
	During fast startup time*2		0.02	-	2		
	Voltage monitoring 0 reset enabled at startup*3, *4		0.02	-	-		

Note 1. When OFS1.(FASTSTUP, LVDAS) $=11 \mathrm{~b}$.
Note 2. When OFS1.(FASTSTUP, LVDAS) $=01 \mathrm{~b}$.
Note 3. When OFS1.LVDAS $=0$.
Note 4. Turn on the power supply voltage according to the normal startup rising gradient because the register settings set by OFS1 are not read in boot mode.

Table 2.15 DC Characteristics (10)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
The ripple voltage must meet the allowable ripple frequency $f_{r}(V C C)$ within the range between the $V C C$ upper limit and lower limit. When VCC change exceeds VCC $\pm 10 \%$, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Allowable ripple frequency	$\mathrm{fr}_{\text {(} \mathrm{VCC}}$)	-	-	10	kHz	Figure 2.13 $\mathrm{V}_{\mathrm{r}(\mathrm{VCC})} \leq 0.2 \times \mathrm{VCC}$
		-	-	1	MHz	Figure 2.13 $\mathrm{V}_{\mathrm{r}(\mathrm{VCC})} \leq 0.08 \times \mathrm{VCC}$
		-	-	10	MHz	Figure 2.13 $\mathrm{V}_{\mathrm{r}(\mathrm{VCC})} \leq 0.06 \times \mathrm{VCC}$
Allowable voltage change rising/falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC $\pm 10 \%$

vcc

Figure 2.13
Ripple Waveform

Table 2.16 Permissible Output Currents (1)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$

Note: Do not exceed the permissible total supply current.

Table 2.17 Permissible Output Currents (2)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Max.	$\begin{gathered} \hline \text { Unit } \\ \hline \mathrm{mA} \end{gathered}$
Permissible output low current (average value per pin)	$\begin{aligned} & \text { P03 to P07, } \\ & \text { P40 to P47, PJ6, PJ7 } \end{aligned}$	I_{OL}	8.0	
	Ports other than above		8.0	
Permissible output low current (maximum value per pin)	$\begin{aligned} & \text { P03 to P07, } \\ & \text { P40 to P47, PJ6, PJ7 } \end{aligned}$		8.0	
	Ports other than above		8.0	
Permissible output low current	$\begin{aligned} & \text { Total of P03 to P07, } \\ & \text { P40 to P47, } \\ & \text { PJ6, PJ7 } \end{aligned}$	$\Sigma \mathrm{I}_{\mathrm{OL}}$	30	
	Total of P12 to P17, P20, P21, P26 to P27, P30 to P32, P34 to P37, PG7, PH2, PH3, PJ1		30	
	Total of P54, P55, PB0 to PB7, PC2 to PC7, PH0, PH1		30	
	$\begin{aligned} & \text { Total of PA0 to PA6, } \\ & \text { PD0 to PD2, } \\ & \text { PE0 to PE5 } \end{aligned}$		30	
	Total of all output pins		60	
Permissible output high current (average value per pin)	$\begin{aligned} & \text { P03 to P07, } \\ & \text { P40 to P47, PJ6, PJ7 } \end{aligned}$	IOH	-4.0	
	Ports other than above		-4.0	
Permissible output high current (maximum value per pin)	$\begin{aligned} & \text { P03 to P07, } \\ & \text { P40 to P47, PJ6, PJ7 } \end{aligned}$		-4.0	
	Ports other than above		-4.0	
Permissible output high current	$\begin{aligned} & \text { Total of P03 to P07, } \\ & \text { P40 to P47, } \\ & \text { PJ6, PJ7 } \end{aligned}$	$\Sigma \mathrm{l}_{\mathrm{OH}}$	-30	
	Total of P12 to P17, P20, P21, P26 to P27, P30 to P32, P34 to P37, PG7, PH2, PH3, PJ1		-30	
	Total of P54, P55, PB0 to PB7, PC2 to PC7, PH0, PH1		-30	
	Total of PA0 to PA6, PD0 to PD2, PE0 to PE5		-30	
	Total of all output pins		-60	

Note: Do not exceed the permissible total supply current.

Table 2.18 Output Values of Voltage (1)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC}<2.7 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO}<2.7 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item			Symbol	Min.	Max.	Unit	Test Conditions
Output low	All output ports (except for RIIC)		V_{OL}	-	0.3	V	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
Output high	All output ports	P03 to P07, P40 to P47, PJ6, PJ7	V_{OH}	AVCCO - 0.3	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
		Ports other than above		VCC - 0.3	-	V	

Table 2.19 Output Values of Voltage (2)
Conditions: $2.7 \mathrm{~V} \leq \mathrm{VCC}<4.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVCCO}<4.0 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item			Symbol	Min.	Max.	Unit	Test Conditions
Output low	All output ports (except for RIIC)		V_{OL}	-	0.5	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
	RIIC pins			-	0.6		$\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$
Output high	All output ports	P03 to P07, P40 to P47, PJ6, PJ7	V_{OH}	AVCCO - 0.5	-	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
		Ports other than above		VCC - 0.5	-		

Table 2.20 Output Values of Voltage (3)
Conditions: $4.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 4.0 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item			Symbol	Min.	Max.	Unit	Test Conditions
Output low	All output ports (except for RIIC)		V_{OL}	-	0.8	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$
	RIIC pins			-	0.6		$\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$
Output high	All output ports	P03 to P07, P40 to P47, PJ6, PJ7	V_{OH}	AVCCO - 0.8	-	V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
		Ports other than above		VCC - 0.8	-		

Table 2.21 Thermal Resistance Value (Reference Values)

Item	Package	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Thermal resistance	80-pin LFQFP (PLQP0080KB-B)	$\theta \mathrm{ja}$	-	-	52.60	${ }^{\circ} \mathrm{C} / \mathrm{W}$	JESD51-2 and JESD51-7 compliant
	64-pin LFQFP (PLQP0064KB-C)		-	-	54.70		
	64-pin LQFP (PLQP0064GA-A)		-	-	54.30		
	48-pin LFQFP (PLQP0048KB-B)		-	-	63.50		
	48-pin HWQFN (PWQN0048KC-A)		-	-	21.20*1		
	32-pin LQFP (PLQP0032GB-A)		-	-	62.20		
	32-pin HWQFN (PWQN0032KE-A)		-	-	23.60*1		
	80-pin LFQFP (PLQP0080KB-B)	$\Psi \mathrm{jt}$	-	-	1.54		
	64-pin LFQFP (PLQP0064KB-C)		-	-	2.29		
	64-pin LQFP (PLQP0064GA-A)		-	-	2.29		
	48-pin LFQFP (PLQP0048KB-B)		-	-	2.78		
	48-pin HWQFN (PWQN0048KC-A)		-	-	0.21*1		
	32-pin LQFP (PLQP0032GB-A)		-	-	2.78		
	32-pin HWQFN (PWQN0032KE-A)		-	-	0.23*1		

Note: The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the board. For details, refer to the JEDEC standards.
Note 1. This value applies when the exposed die pad for this purpose is connected to VSS.

2.4 Normal I/O Pin Output Characteristics

Table 2.22 Normal I/O Pin VOH Voltage Characteristics (Reference Values)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=2.0 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Output high level voltage	All output pins	V_{OH}	-	VCC - 0.05	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
			-	VCC - 0.09	-		$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
			-	VCC - 0.20	-		$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
			-	VCC - 0.49	-		$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

Table 2.23 Normal I/O Pin VOH Voltage Characteristics (Reference Values)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=3.3 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Output high level voltage	All output pins	V_{OH}	-	VCC - 0.02	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
			-	VCC - 0.05	-		$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
			-	VCC - 0.10	-		$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
			-	VCC-0.22	-		$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

Table 2.24 Normal I/O Pin VOH Voltage Characteristics (Reference Values)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=5.0 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Output high level voltage	All output pins	V_{OH}	-	VCC - 0.02	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
			-	VCC - 0.04	-		$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
			-	VCC - 0.08	-		$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
			-	VCC - 0.15	-		$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

Table 2.25 Normal I/O Pin VOH Voltage Characteristics (Reference Values)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=2.0 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Output low voltage	All output pins	V_{OL}	-	0.02	-	V	$\mathrm{l}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
			-	0.04	-		$\mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
			-	0.08	-		$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
			-	0.17	-		$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$
			-	0.43	-		$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$

Table 2.26 Normal I/O Pin VOH Voltage Characteristics (Reference Values)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=3.3 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Output low voltage	All output pins	V_{OL}	-	0.01	-	V	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
			-	0.02	-		$\mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
			-	0.04	-		$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
			-	0.08	-		$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$
			-	0.17	-		$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$

Table 2.27 Normal I/O Pin VOH Voltage Characteristics (Reference Values)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=5.0 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Output low voltage	All output pins	$\mathrm{V}_{\text {OL }}$	-	0.01	-	V	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
			-	0.01	-		$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
			-	0.03	-		$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
			-	0.06	-		$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$
			-	0.12	-		$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$

2.5 AC Characteristics

2.5.1 Clock Timing

Table 2.28 Operating Frequency Value (High-Speed Operating Mode)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit
Maximum operating frequency*4	System clock (ICLK)	f	-	-	48	MHz
	FlashIF clock (FCLK)*1, *2		-	-	48	
	Peripheral module clock (PCLKB)		-	-	32	
	Peripheral module clock (PCLKD)*3		-	-	48	

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK should be $\pm 3.5 \%$.
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.
Note 4. The maximum operating frequency does not include HOCO error or PLL jitter. See Table 2.35, HOCO Clock Timing (ROM capacity: product with 128 Kbytes or more) or Table 2.36, HOCO Clock Timing (ROM capacity: product with 64 Kbytes).

Table 2.29 Operating Frequency Value (Middle-Speed Operating Mode)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit
Maximum operating frequency*4	System clock (ICLK)	f	-	-	24	MHz
	FlashIF clock (FCLK)*1, *2		-	-	24	
	Peripheral module clock (PCLKB)		-	-	24	
	Peripheral module clock (PCLKD)*3		-	-	24	

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK should be $\pm 3.5 \%$.
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.
Note 4. The maximum operating frequency does not include HOCO error or PLL jitter. See Table 2.35, HOCO Clock Timing (ROM capacity: product with 128 Kbytes or more) or Table 2.36, HOCO Clock Timing (ROM capacity: product with 64 Kbytes).

Table 2.30 Operating Frequency Value (Middle-Speed Operating Mode 2)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit
Maximum operating frequency*4	System clock (ICLK)	f	-	-	1	MHz
	FlashIF clock (FCLK)*1, *2		-	-	1	
	Peripheral module clock (PCLKB)		-	-	1	
	Peripheral module clock (PCLKD)*3		-	-	1	

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory.
Note 2. The frequency accuracy of FCLK should be $\pm 3.5 \%$.
Note 3. The lower-limit frequency of PCLKD is 4 MHz when the A/D converter is in use.

Table 2.31 Operating Frequency Value (Low-Speed Operating Mode)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

	Item	Symbol	Min.	Typ.	Max.	Unit
Maximum operating frequency	System clock (ICLK)	f	-	-	32.768	kHz
	FlashlF clock (FCLK)*1		-	-	32.768	
	Peripheral module clock (PCLKB)		-	-	32.768	
	Peripheral module clock (PCLKD)*2		-	-	32.768	

Note 1. Programming and erasing the flash memory is impossible.
Note 2. The A/D converter cannot be used.

Table 2.32 EXTAL Clock Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
EXTAL external clock input cycle time	$\mathrm{t}_{\mathrm{Xcyc}}$	50	-	-	ns	Figure 2.14
EXTAL external clock input high pulse width	t_{XH}	20	-	-	ns	
EXTAL external clock input low pulse width	t_{XL}	20	-	-	ns	
EXTAL external clock rise time	t_{Xr}	-	-	5	ns	
EXTAL external clock fall time	t_{Xf}	-	-	5	ns	
EXTAL external clock input wait time*1	$\mathrm{t}_{\mathrm{XWT}}$	0.5	-	-	$\mu \mathrm{ns}$	

Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating).

Figure 2.14 EXTAL External Clock Input Timing

Table 2.33 Main Clock Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Main clock oscillator oscillation frequency	$\mathrm{f}_{\text {MAIN }}$	1	-	20	MHz	
Main clock oscillation stabilization time (crystal)*1	$\mathrm{t}_{\text {MAINOSC }}$	-	3	-	ms	Figure 2.15
Main clock oscillation stabilization time (ceramic resonator)	$\mathrm{t}_{\text {MAINOSC }}$	-	50	-	$\mu \mathrm{s}$	

Note 1. Reference values when an $8-\mathrm{MHz}$ resonator is used.
When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the resonator-manufacturer-recommended value.
After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the OSCOVFSR.MOOVF flag to confirm that is has become 1, and then start using the main clock.

Figure 2.15
Main Clock Oscillation Start Timing

Table 2.34 LOCO and IWDT-Dedicated Low-Speed Clock Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
LOCO clock oscillation frequency	$\mathrm{f}_{\text {LOCO }}$	3.44	4.0	4.56	MHz	
LOCO clock oscillation frequency error	$\Delta \mathrm{f}_{\text {LOCO }}$	-	-	± 14	$\%$	
LOCO clock oscillation stabilization time	$\mathrm{t}_{\text {LOCO }}$	-	-	0.5	$\mu \mathrm{~s}$	Figure 2.16
IWDT-dedicated clock oscillation frequency	$\mathrm{f}_{\text {ILOCO }}$	12.75	15	17.25	kHz	
IWDT-dedicated clock oscillation frequency error	$\Delta \mathrm{f}_{\text {ILOCO }}$	-	-	± 15	$\%$	
IWDT-dedicated clock oscillation stabilization time	$\mathrm{t}_{\text {ILOCO }}$	-	-	80	$\mu \mathrm{~s}$	Figure 2.17

Figure 2.16 LOCO Clock Oscillation Start Timing

Figure 2.17 IWDT-Dedicated Clock Oscillation Start Timing

Table 2.35 HOCO Clock Timing (ROM capacity: product with $\mathbf{1 2 8}$ Kbytes or more)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
HOCO clock oscillation frequency*1	$\mathrm{f}_{\mathrm{HOCO}}$	23.76	24	24.24	MHz	$\mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
		31.68	32	32.32		
		47.52	48	48.48		
HOCO oscillation frequency error*1	$\Delta \mathrm{f}_{\mathrm{HOCO}}$	-	-	± 1.0	\%	$\mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
HOCO clock oscillation stabilization time	$\mathrm{t}_{\mathrm{HOCO}}$	-	-	4.95	$\mu \mathrm{s}$	Figure 2.19

Note 1. Accuracy at production test.
Table 2.36 HOCO Clock Timing (ROM capacity: product with 64 Kbytes)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
HOCO clock oscillation frequency*1	$\mathrm{f}_{\mathrm{HOCO}}$	23.64	24	24.36	MHz	$\mathrm{T}_{\mathrm{a}}=-40$ to $-20^{\circ} \mathrm{C}$
		23.76		24.24		$\mathrm{T}_{\mathrm{a}}=-20$ to $+85^{\circ} \mathrm{C}$
		23.52		24.48		$\mathrm{T}_{\mathrm{a}}=+85$ to $+105^{\circ} \mathrm{C}$
		31.52	32	32.48	MHz	$\mathrm{T}_{\mathrm{a}}=-40$ to $-20^{\circ} \mathrm{C}$
		31.68		32.32		$\mathrm{T}_{\mathrm{a}}=-20$ to $+85^{\circ} \mathrm{C}$
		31.36		32.64		$\mathrm{T}_{\mathrm{a}}=+85$ to $+105^{\circ} \mathrm{C}$
		47.28	48	48.72	MHz	$\mathrm{T}_{\mathrm{a}}=-40$ to $-20^{\circ} \mathrm{C}$
		47.52		48.48		$\mathrm{T}_{\mathrm{a}}=-20$ to $+85^{\circ} \mathrm{C}$
		47.04		48.96		$\mathrm{T}_{\mathrm{a}}=+85$ to $+105^{\circ} \mathrm{C}$
HOCO oscillation frequency error*1	$\Delta \mathrm{f}_{\mathrm{HOCO}}$	-	-	± 1.5	\%	$\mathrm{T}_{\mathrm{a}}=-40$ to $-20^{\circ} \mathrm{C}$
		-	-	± 1.0		$\mathrm{T}_{\mathrm{a}}=-20$ to $+85^{\circ} \mathrm{C}$
		-	-	± 2.0		$\mathrm{T}_{\mathrm{a}}=+85$ to $+105^{\circ} \mathrm{C}$
HOCO clock oscillation stabilization time	$\mathrm{t}_{\mathrm{HOCO}}$	-	-	4.95	$\mu \mathrm{s}$	Figure 2.19

Note 1. Accuracy at production test.

Figure 2.18
HOCO Clock Oscillation Start Timing (After Reset is Canceled by Setting OFS1.HOCOEN Bit to 0)

Figure 2.19
HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit)

Table 2.37 PLL Clock Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
PLL input frequency	$\mathrm{f}_{\text {PLLIN }}$	4	-	12	MHz	
PLL circuit oscillation frequency	$\mathrm{f}_{\mathrm{PLL}}$	24	-	48	MHz	
PLL clock oscillation stabilization time	$\mathrm{t}_{\text {PLL }}$	-	-	81.4	$\mu \mathrm{~s}$	Figure 2.20
PLL free-running oscillation frequency	$\mathrm{f}_{\text {PLLFR }}$	-	9	-	MHz	

Figure 2.20
PLL Clock Oscillation Start Timing (PLL is Operated after Main Clock Oscillation Has Settled)

Table 2.38 Sub-Clock Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Sub-clock oscillator oscillation frequency*2	$\mathrm{f}_{\text {SUB }}$	-	32.768	-	kHz	
Sub-clock oscillation stabilization time ${ }^{\star 1}$	$\mathrm{t}_{\text {SUBOSC }}$	-	0.5	-	s	Figure 2.21

Note 1. Reference value when a $32.768-\mathrm{kHz}$ resonator is used.
After changing the setting of the SOSCCR.SOSTP bit so that the sub-clock oscillator operates, only start using the sub-clock after the sub-clock oscillation stabilization wait time that is equal to or greater than the oscillator-manufacturer-recommended value has elapsed.
Note 2. Only $32.768-\mathrm{kHz}$ can be used.

Figure 2.21 Sub-Clock Oscillation Start Timing

2.5.2 Reset Timing

Table 2.39 Reset Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
RES\# pulse width	At power-on	$\mathrm{t}_{\text {RESWP }}$	10.5	-	-	ms	Figure 2.22
	Other than above	$t_{\text {RES }}$	30	-	-	$\mu \mathrm{s}$	Figure 2.23
Wait time after RES\# cancellation (at power-on)	At normal startup*1	$\mathrm{t}_{\text {RESWT }}$	-	8.5	-	ms	Figure 2.22
	During fast startup time*2	$\mathrm{t}_{\text {RESWT }}$	-	850	-	$\mu \mathrm{s}$	
Wait time after RES\# cancellation (during powered-on state)	LVD0 disabled*3	$\mathrm{t}_{\text {RESWT }}$	-	120	-	$\mu \mathrm{s}$	Figure 2.23
	LVD0 enabled*4		-	850	-	$\mu \mathrm{s}$	
Internal reset time (independent watchdog timer reset, software reset)	LVD0 disabled*3	$\mathrm{t}_{\text {RESWT2 }}$	-	190	-	$\mu \mathrm{s}$	
	LVD0 enabled*4		-	890	-	$\mu \mathrm{s}$	

Note 1. When OFS1.(LVDAS, FASTSTUP) $=11 \mathrm{~b}$.
Note 2. When OFS1.(LVDAS, FASTSTUP) $=\mathrm{a}$ value other than 11 b.
Note 3. When OFS1.LVDAS $=1 \mathrm{~b}$.
Note 4. When OFS1.LVDAS $=0 \mathrm{~b}$.

Figure 2.22 Reset Input Timing at Power-On

Figure 2.23 Reset Input Timing (1)

2.5.3 Timing of Recovery from Low Power Consumption Modes

Table 2.40 Timing of Recovery from Low Power Consumption Modes (1)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item				Symbol	Min.	Typ.	Max.		Unit	Test Conditions	
				$\mathrm{t}_{\text {SBYOSCWT }}{ }^{* 2}$			$t_{\text {SBYSEQ }}{ }^{* 3}$				
Recovery time from software standby mode*1	High-speed operating mode/ Middle-speed operating mode	Main clock oscillator operating	Main clock oscillator operating		${ }^{\text {S }}$ SBYMC	-	-	$\mathrm{t}_{\text {LOCO }}+(16+$ Number of cycles specified in MOSCWTCR)/ $\mathrm{f}_{\mathrm{LOCO}}+2 / \mathrm{f}_{\text {MOSC }}$ $+4 / \mathrm{fICLK}$	$\begin{gathered} 4 / \mathrm{f}_{\text {LOCO }}+11 / \\ \mathrm{f}_{\text {ICLK }}^{+}+3 / \mathrm{fPCLKB} \\ +3 \mathrm{n} / \mathrm{f}_{\text {source clock }} \end{gathered}$	$\mu \mathrm{s}$	Figure 2.24
			Main clock oscillator and PLL circuit operating	$\mathrm{t}_{\text {SBYPC }}$	$\mathrm{t}_{\text {LOCO }}+(288+$ Number of cycles specified in MOSCWTCR)/ $\mathrm{f}_{\mathrm{LOCO}}+2 / \mathrm{f}_{\mathrm{PLL}}+$ 4 / ficLK						
		Sub-clock oscillator operating		$\mathrm{t}_{\text {SBYSC }}$	$3 / \mathrm{f}_{\substack{\text { fosc } \\ \mathrm{f}_{\text {ICLK }}}}$						
		HOCO clock oscillator operating		$\mathrm{t}_{\text {SBYHO }}$	$\begin{gathered} \mathrm{t}_{\mathrm{LOCO}}+16 / \mathrm{f}_{\mathrm{LOCO}} \\ +2 / \mathrm{f}_{\mathrm{HOCO}}+4 / \\ \mathrm{f}_{\mathrm{ICLK}} \end{gathered}$						
		Low-speed on-chip oscillator		$\mathrm{t}_{\text {SBYLO }}$	$\mathrm{t}_{\text {LOCO }}+1 / \mathrm{fICLK}$						

Note 1. The time for recovery from software standby mode is determined by the value obtained by adding the oscillation stabilization waiting time ($t_{\text {SBYOSCWT }}$) and the time required for operations by the software standby release sequencer ($\mathrm{t}_{\text {SBYSEQ }}$).
Note 2. When several oscillators were running before the transition to software standby, the greatest value of the oscillation stabilization waiting time $\mathrm{t}_{\mathrm{SBYOSCWT}}$ is selected.
Note 3. For n , the greatest value is selected from among the internal clock division settings.

Table 2.41 Timing of Recovery from Low Power Consumption Modes (2)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item				Symbol	Min.	Typ.	Max.		Unit	Test Conditions	
				$\mathrm{t}_{\text {SBYoscwt }}{ }^{* 2}$			$\mathrm{t}_{\text {SBYSEQ }}{ }^{* 3}$				
Recovery time from software standby mode*1	Middle-speed operating mode 2/Low-speed operating mode	Main clock oscillator operating	Main clock oscillator operating		${ }^{\text {S }}$ SBYMC	-	-	$t_{\text {LOCO }}+(16+$ Number of cycles specified in MOSCWTCR)/ $\mathrm{f}_{\mathrm{LOCO}}+2 / \mathrm{f}_{\mathrm{MOSC}}$ $+4 /$ ficLK	$\begin{aligned} & 9 / \mathrm{f}_{\mathrm{CLLK}}+3 / \\ & \mathrm{f}_{\mathrm{PCLKB}}+3 \mathrm{n} / \\ & \mathrm{f}_{\text {source clock }} \end{aligned}$	$\mu \mathrm{s}$	Figure 2.24
			Main clock oscillator and PLL circuit operating	$\mathrm{t}_{\text {SBYPC }}$	$t_{\text {LOCO }}+(288+$ Number of cycles specified in MOSCWTCR) / $\mathrm{f}_{\mathrm{LOCO}}+2 / \mathrm{f}_{\mathrm{PLL}}+$ $4 /$ IICLK						
		Sub-clock oscillator operating		$\mathrm{t}_{\text {SBYSC }}$	$\begin{gathered} 3 / \mathrm{f}_{\substack{\text { fosc } \\ \mathrm{f}_{\text {ICLK }}}}+1 / \\ \hline \end{gathered}$						
		HOCO clock oscillator operating		$\mathrm{t}_{\text {SBYHO }}$	$\begin{gathered} \mathrm{t}_{\mathrm{LOCO}}+16 / \mathrm{f}_{\mathrm{LOCO}} \\ +2 / \mathrm{f}_{\mathrm{HOCO}}+4 / \\ \mathrm{f}_{\mathrm{ICLK}} \end{gathered}$						
		Low-speed on-chip oscillator		$\mathrm{t}_{\text {SBYLO }}$	$\mathrm{t}_{\text {LOCO }}+1 / \mathrm{f}_{\text {ICLK }}$						

Note 1. The time for recovery from software standby mode is determined by the value obtained by adding the oscillation stabilization waiting time ($\mathrm{t}_{\mathrm{SBYOSCWT}}$) and the time required for operations by the software standby release sequencer ($\mathrm{t}_{\mathrm{SBYSEQ}}$).
Note 2. When several oscillators were running before the transition to software standby, the greatest value of the oscillation stabilization waiting time $\mathrm{t}_{\text {SBYOSCWT }}$ is selected.
Note 3. For n , the greatest value is selected from among the internal clock division settings.

Figure 2.24 Software Standby Mode Recovery Timing

Table 2.42 Timing of Recovery from Low Power Consumption Modes (3)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item			Symbol	Min.	Typ.	Max.		Unit	Test Conditions	
			$\mathrm{t}_{\text {SBYOSCWT }}{ }^{* 2}$			$\mathrm{t}_{\text {SBYSEQ }}{ }^{* 3}$				
Time to shift to the snooze mode from the software standby mode*1	Main clock oscillator operating	Main clock oscillator operating		${ }^{\text {t }}$ SNZ	-	-	$\mathrm{t}_{\text {LOCO }}+(16+$ Number of cycles specified in MOSCWTCR) / $\mathrm{f}_{\mathrm{LOCO}}+2 / \mathrm{f}_{\text {MOSC }}$ $+4 / \mathrm{fICLK}$	$\begin{aligned} & 3 / \mathrm{fICLK}+2 \mathrm{n} / \\ & \mathrm{f}_{\text {source clock }} \end{aligned}$	$\mu \mathrm{s}$	Figure 2.25
		Main clock oscillator and PLL circuit operating	$\mathrm{t}_{\text {LOCO }}+(288+$ Number of cycles specified in MOSCWTCR) / $\mathrm{f}_{\mathrm{LOCO}}+2 / \mathrm{fPLL}^{+}$ 4 / ficLK							
	Sub-clock oscillator operating		$\underset{\substack{\text { flCLK }}}{3 / \mathrm{f}_{\text {IOSC }}+1 /}$							
	HOCO clock oscillator operating		$\begin{gathered} \mathrm{t}_{\mathrm{LOCO}}+16 / \mathrm{f}_{\mathrm{LOCO}} \\ +2 / \mathrm{f}_{\mathrm{HOCO}}+4 / \\ \mathrm{f}_{\mathrm{ICLK}} \end{gathered}$							
	Low-speed on-chip oscillator		$\mathrm{t}_{\text {LOCO }}+1 / \mathrm{fICLK}$							

Note 1. The time for recovery from software standby mode is determined by the value obtained by adding the oscillation stabilization waiting time ($\mathrm{t}_{\text {SBYOSCWT }}$) and the time required for operations by the software standby release sequencer ($\mathrm{t}_{\text {SBYSEQ }}$).
Note 2. When several oscillators were running before the transition to software standby, the greatest value of the oscillation stabilization waiting time $t_{\text {SBYOSCWT }}$ is selected.
Note 3. For n , the greatest value is selected from among the internal clock division settings.

Figure 2.25 Timing to shift to the Snooze Mode from the Software Standby Mode

Table 2.43 Timing of Recovery from Low Power Consumption Modes (4)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.*2	Unit	Test Conditions
Recovery time from deep sleep mode*1	High-speed operating mode	${ }^{\text {t }}$ SLP	-	-	$4 / \mathrm{f}_{\mathrm{LOCO}_{\text {source clock }}}+10 / \mathrm{f}_{\mathrm{ICLK}}+3 \mathrm{n} /$	$\mu \mathrm{S}$	Figure 2.26
	Middle-speed operating mode				$4 / \mathrm{f}_{\mathrm{LOCO}_{\text {source clock }}}+10 / \mathrm{f}$		
	Middle-speed operating mode 2				$8 / \mathrm{f}_{\text {ICLK }}+3 \mathrm{n} / \mathrm{f}_{\text {source }}$ clock		
	Low-speed operating mode				$8 / \mathrm{f}_{\text {ICLK }}+3 \mathrm{n} / \mathrm{f}_{\text {source }}$ clock		

Note 1. Oscillators continue oscillating in deep sleep mode.
Note 2. n represents the largest frequency divisor among those for the internal clock signals.

Figure 2.26 Deep Sleep Mode Recovery Timing

Table 2.44 Operating Mode Transition Time
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Mode before Transition	Mode after Transition	ICLK Frequency	Transition Time			Unit
			Min.	Typ.	Max.	
High-speed operating mode	Middle-speed operating mode	24 MHz	-	$5 / f_{\substack{\text { ICLK } \\ \mathrm{f}_{\text {FCLK }}}}$	-	$\mu \mathrm{s}$
	Middle-speed operating mode 2	1 MHz	-	$\begin{gathered} 5 / \mathrm{f}_{\mathrm{ICLK}}+3 / \\ \mathrm{f}_{\mathrm{FCLK}} \end{gathered}$	-	
	Low-speed operating mode	32.768 kHz	-	$\begin{gathered} 3 / \mathrm{f}_{\mathrm{ICLK}}+2 / \\ \mathrm{f}_{\mathrm{FCLK}} \end{gathered}$	-	
Middle-speed operating mode	High-speed operating mode	24 MHz	-	$\begin{gathered} 5 / \mathrm{f}_{\text {ICLK }}+3 / \\ \mathrm{f}_{\mathrm{FCLK}} \end{gathered}$	-	
	Middle-speed operating mode 2	1 MHz	-	$\begin{gathered} 5 / f_{\text {ICLK }}+3 / \\ f_{\text {FCLK }} \end{gathered}$	-	
	Low-speed operating mode	32.768 kHz	-	$\begin{gathered} 3 / \mathrm{f}_{\text {ICLK }}+2 / \\ \mathrm{f}_{\mathrm{FCLK}} \end{gathered}$	-	
Middle-speed operating mode 2	High-speed operating mode	1 MHz	-	$\begin{gathered} 5 / \mathrm{f}_{\mathrm{ICLK}}+3 / \\ \mathrm{f}_{\mathrm{FCLK}} \end{gathered}$	-	
	Middle-speed operating mode	1 MHz	-	$\begin{gathered} 5 / \mathrm{f}_{\text {ICLK }}+3 / \\ \mathrm{f}_{\mathrm{FCLK}} \end{gathered}$	-	
	Low-speed operating mode	32.768 kHz	-	$\begin{gathered} 3 / \mathrm{f}_{\mathrm{ICLK}}+2 / \\ \mathrm{f}_{\mathrm{FCLK}} \end{gathered}$	-	
Low-speed operating mode	Middle-speed operating mode, high-speed operating mode	32.768 kHz	-	$\begin{gathered} 5 / \mathrm{f}_{\mathrm{ICLK}}+3 / \\ \mathrm{f}_{\mathrm{FCLK}} \end{gathered}$	-	
	Middle-speed operating mode	32.768 kHz	-	$\begin{gathered} 3 / \mathrm{f}_{\mathrm{ICLK}}+3 / \\ \mathrm{f}_{\text {FCLK }} \end{gathered}$	-	
	Middle-speed operating mode 2	32.768 kHz	-	$3 / \mathrm{f}_{\mathrm{ICLK}}+3 /$	-	

2.5.4 Control Signal Timing

Table 2.45 Control Signal Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	
NMI pulse width	$\mathrm{t}_{\text {NMIW }}$	200	-	-	ns	NMI digital filter disabled (NMIFLTE.NFLTEN $=0$)	$\mathrm{t}_{\text {Pcyc }} \times 2 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {Pcyc }} \times 2 * 1$	-	-			$\mathrm{t}_{\text {Pcyc }} \times 2>200 \mathrm{~ns}$
		200	-	-		NMI digital filter enabled (NMIFLTE.NFLTEN = 1)	$\mathrm{t}_{\text {NMICK }} \times 3 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {NMICK }} \times 3.5 * 2$	-	-			$\mathrm{t}_{\text {NMICK }} \times 3>200 \mathrm{~ns}$
IRQ pulse width	$\mathrm{t}_{\text {IRQW }}$	200	-	-	ns	IRQ digital filter disabled (IRQFLTEO.FLTENi $=0$)	$\mathrm{t}_{\text {Pcyc }} \times 2 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {Pcyc }} \times 2 * 1$	-	-			$\mathrm{t}_{\text {Pcyc }} \times 2>200 \mathrm{~ns}$
		200	-	-		IRQ digital filter enabled (IRQFLTEO.FLTENi $=1$)	$\mathrm{t}_{\text {IRQCK }} \times 3 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {IRQCK }} \times 3.5 * 3$	-	-			$\mathrm{t}_{\text {IRQCK }} \times 3>200 \mathrm{~ns}$

Note: 200 ns minimum in software standby mode.
Note 1. $\mathrm{t}_{\text {Pcyc }}$ indicates the cycle of PCLKB.
Note 2. $\mathrm{t}_{\text {NMICK }}$ indicates the cycle of the NMI digital filter sampling clock.
Note 3. $\quad \mathrm{t}_{\mathrm{IRQCK}}$ indicates the cycle of the IRQi digital filter sampling clock ($\mathrm{i}=0$ to 7).

Figure 2.27 NMI Interrupt Input Timing

Figure 2.28 IRQ Interrupt Input Timing

2.5.5 Timing of On-Chip Peripheral Modules

2.5.5.1 I/O Port Input Timing

Table $2.46 \quad \mathrm{I} / \mathrm{O}$ Port Input Timing

Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item	Symbol	Min.	Max.	Unit ${ }^{\prime} 1$	Test Conditions	
I/O ports	Input data pulse width	$\mathrm{t}_{\mathrm{PRW}}$	1.5	-	$\mathrm{t}_{\mathrm{Pcyc}}$	Figure 2.29

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle

PCLK

Port

Figure 2.29 I/O Port Input Timing

2.5.5.2 MTU2

Table 2.47 MTU2 Timing

Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item			Symbol	Min.	Max.	Unit *1	Test Conditions
MTU2	Input capture input pulse width	Single-edge setting	$\mathrm{t}_{\text {TICW }}$	1.5	-	$\mathrm{t}_{\text {Pcyc }}$	Figure 2.30
		Both-edge setting		2.5	-		
	Input capture input rise/fall time		$\mathrm{t}_{\mathrm{TICr}}$, $t_{\text {ticf }}$	-	0.1	$\mu \mathrm{s} / \mathrm{V}$	
	Timer clock pulse width	Single-edge setting	$\mathrm{t}_{\text {тскWh }}$, $t_{\text {TCKWL }}$	1.5	-	$t_{\text {Pcyc }}$	Figure 2.31
		Both-edge setting		2.5	-		
		Phase counting mode		2.5	-		
	Timer clock rise/fall time		$\mathrm{t}_{\mathrm{TCKr}}$, $t_{\text {TCKf }}$	-	0.1	$\mu \mathrm{s} / \mathrm{V}$	

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle

Figure 2.30 MTU2 Input/Output Timing

Figure 2.31 MTU2 Clock Input Timing

2.5.5.3 POE2

Table 2.48 POE2 Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item			Symbol	Min.	Max.	$\overline{\text { Unit }^{\prime}}$	Test Conditions
POE2	POE\# input pulse width		tpoew	1.5	-	$\mathrm{t}_{\text {Pcyc }}$	Figure 2.32
	POE\# input rise/fall time		$\mathrm{t}_{\text {Poer }}$, $t_{\text {poef }}$	-	0.1	$\mu \mathrm{s} / \mathrm{V}$	
	Output disable time	Transition of the POEn\# signal level	$\mathrm{t}_{\text {poedi }}$	-	$\begin{gathered} 5 t_{\text {pcyc }}+ \\ 0.24 \end{gathered}$	$\mu \mathrm{s}$	Figure 2.33 When detecting falling edges (ICSRm.PO EnM[3:0] = 0000 (m =1 2; $\mathrm{n}=0,1$, 2,3,8))
		Simultaneous conduction of output pins	$\mathrm{t}_{\text {Poedo }}$	-	$3 \mathrm{t}_{\text {pcyc }}+0.2$		Figure 2.34
		Register setting	$\mathrm{t}_{\text {Poeds }}$	-	$1 \mathrm{t}_{\text {pcyc }}+0.2$		Figure 2.35 Time for access to the register is not included.
		Oscillation stop detection	$\mathrm{t}_{\text {POEDOS }}$	-	21		Figure 2.36

Note 1. $t_{\text {Pcyc }}$: PCLK cycle

Figure 2.32

Figure 2.33 Output Disable Time for POE in Response to Transition of the POEn\# Signal Level

Figure 2.34 Output Disable Time for POE in Response to the Simultaneous Conduction of Output Pins

Figure 2.35 Output Disable Time for POE in Response to the Register Setting

Figure 2.36
Output Disable Time for POE in Response to the Oscillation Stop Detection

2.5.5.4 TMR

Table 2.49 TMR Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item			Symbol	Min.	Max.	$\begin{gathered} \text { Unit } \\ { }^{\prime} \end{gathered}$	Test Conditions
TMR	Timer clock pulse width	Single-edge setting	$\mathrm{t}_{\text {TMCWH, }}$, $\mathrm{t}_{\text {TMCWL }}$	1.5	-	$\mathrm{t}_{\text {Pcyc }}$	Figure 2.37
		Both-edge setting		2.5	-		
	Timer clock rise/fall time		$\mathrm{t}_{\mathrm{TMCr}}$, $\mathrm{t}_{\text {TMCf }}$	-	0.1	$\mu \mathrm{s} / \mathrm{V}$	

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle

Figure 2.37 TMR Clock Input Timing

2.5.5.5 SCI

Table 2.50 SCI Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.5 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.5 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item					Symbol	Min.	Max.	$\begin{gathered} \text { Unit } \\ \star_{1} \end{gathered}$	Test Conditions	
SCl (channel 1, 5)	Input clock cycle time			Asynchronous	${ }^{\text {tscyc }}$	4	-	$\mathrm{t}_{\text {Pcyc }}$	Figure 2.38	
				Clock synchronous		6	-			
	Input clock pulse width				$\mathrm{t}_{\text {SCKW }}$	0.4	0.6	$\mathrm{t}_{\text {Scyc }}$		
	Input clock rise time				$\mathrm{t}_{\text {SCKr }}$	-	20	ns		
	Input clock fall time				$\mathrm{t}_{\text {SCKf }}$	-	20	ns		
	Output clock cycle time	Asynchronous			${ }^{\text {tscyc }}$	6	-	$t_{\text {Pcyc }}$	Figure 2.39	
		Clock synchronous	$2.4 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$			4	-			
			$1.8 \mathrm{~V} \leq \mathrm{VCC}<2.4 \mathrm{~V}$	$24 \mathrm{MHz}<$ PCLKB $\leq 32 \mathrm{MHz}$		8	-			
				PCLKB $\leq 24 \mathrm{MHz}$		4	-			
	Output clock pulse width				$\mathrm{t}_{\text {SCKW }}$	0.4	0.6	$\mathrm{t}_{\text {Scyc }}$		
	Output clock rise time				$\mathrm{t}_{\text {SCKr }}$	-	20	ns		
	Output clock fall time				$\mathrm{t}_{\text {SCKf }}$	-	20	ns		
	Transmit data delay time (master)		Clock synchronous		$\mathrm{t}_{\mathrm{TXD}}$	-	40	ns		
	Transmit data delay time (slave)		Clock synchronous	2.7 V or above		-	55	ns		
			2.4 V or above	-		60	ns			
			1.8 V or above	-		100	ns			
	Receive data setup time (master)			Clock synchronous	2.7 V or above	$\mathrm{t}_{\mathrm{RXS}}$	45	-		ns
			2.4 V or above		55		-	ns		
			1.8 V or above		90		-	ns		
	Receive data setup time (slave)			Clock synchronous			40	-		ns
	Receive data hold time		Clock synchronous		$\mathrm{t}_{\mathrm{RXH}}$	40	-	ns		
SCI (channel $6,8,9,12)$	Input clock cycle time			Asynchronous	${ }^{\text {tscyc }}$	4	-	$t_{\text {Pcyc }}$	Figure 2.38	
				Clock synchronous		6	-			
	Input clock pulse width				tsckw	0.4	0.6	$\mathrm{t}_{\text {Scyc }}$		
	Input clock rise time				$\mathrm{t}_{\text {SCKr }}$	-	20	ns		
	Input clock fall time				$\mathrm{t}_{\text {SCKf }}$	-	20	ns		
	Output clock cycle time	Asynchronous			$\mathrm{t}_{\text {Scyc }}$	16	-	$\mathrm{t}_{\text {Pcyc }}$	Figure 2.39	
		Clock synchronous	$2.4 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$			4	-			
			$1.8 \mathrm{~V} \leq \mathrm{VCC}<2.4 \mathrm{~V}$	$24 \mathrm{MHz}<$ PCLKB $\leq 32 \mathrm{MHz}$		8	-			
				PCLKB $\leq 24 \mathrm{MHz}$		4	-			
	Output clock pulse width				$\mathrm{t}_{\text {SCKW }}$	0.4	0.6	$\mathrm{t}_{\text {scyc }}$		
	Output clock rise time				$\mathrm{t}_{\text {SCKr }}$	-	20	ns		
	Output clock fall time				${ }^{\text {t SCKf }}$	-	20	ns		
	Transmit data delay time (master)		Clock synchronous		$\mathrm{t}_{\text {TXD }}$	-	40	ns		
	Transmit data delay time (slave)		Clock synchronous	2.7 V or above		-	65	ns		
			1.8 V or above	-		100	ns			
	Receive data setup time (master)			Clock synchronous	2.7 V or above	$\mathrm{t}_{\mathrm{RXS}}$	65	-	ns	
			1.8 V or above		90		-	ns		
	Receive data setup time (slave)		Clock synchronous		40		-	ns		
	Receive data hold time		Clock synchronous		$\mathrm{t}_{\mathrm{RXH}}$	40	-	ns		

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle

$\mathrm{n}=1,5,6,8,9,12$

Figure 2.38 SCK Clock Input Timing

$\mathrm{n}=1,5,6,8,9,12$

Figure 2.39
SCI Input/Output Timing: Clock Synchronous Mode

Table 2.51 Simple $I^{2} \mathrm{C}$ Timing
Conditions: $2.7 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item		Symbol	Min.	Max.	Unit	Test Conditions
Simple ${ }^{2}{ }^{2} \mathrm{C}$ (standard mode)	SDA rise time	$\mathrm{t}_{\text {Sr }}$	-	1000	ns	Figure 2.40
	SDA fall time	t_{Sf}	-	300	ns	
	SDA spike pulse removal time	$t_{\text {SP }}$	0	$4 \times \mathrm{t}_{\text {Pcyc }}$	ns	
	Data setup time	$\mathrm{t}_{\text {SDAS }}$	250	-	ns	
	Data hold time	$\mathrm{t}_{\text {SDAH }}$	0	-	ns	
	SCL, SDA capacitive load	$\mathrm{C}_{\mathrm{b}}{ }^{\text {1 }}$	-	400	pF	
Simple ${ }^{2}{ }^{2} \mathrm{C}$ (fast mode)	SDA rise time	t_{Sr}	-	300	ns	Figure 2.40
	SDA fall time	$\mathrm{t}_{\text {Sf }}$	-	300	ns	
	SDA spike pulse removal time	t_{SP}	0	$4 \times \mathrm{t}_{\text {Pcyc }}$	ns	
	Data setup time	$\mathrm{t}_{\text {SDAS }}$	100	-	ns	
	Data hold time	$\mathrm{t}_{\text {SDAH }}$	0	-	ns	
	SCL, SDA capacitive load	$\mathrm{C}_{\mathrm{b}}{ }^{\text {¹ }}$	-	400	pF	

Note: $\quad{ }_{\text {Pcyc }}$: PCLK cycle
Note 1. $\quad \mathrm{C}_{\mathrm{b}}$ is the total capacitance of the bus lines.

Figure 2.40 Output Timing and Simple $I^{2} \mathrm{C}$ Bus Interface Input/Output Timing

Table 2.52 Simple SPI Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item				Symbol	Min.	Max.	Uni**1	Test Conditions
Simple SPI	SCK clock cycle output (master)	$2.4 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$		${ }^{\text {SPcyc }}$	4	65536	$\mathrm{t}_{\text {pcyc }}$	Figure 2.41
		$1.8 \mathrm{~V} \leq \mathrm{VCC}<2.4 \mathrm{~V}$	24 MHz < PCLKB $\leq 32 \mathrm{MHz}$		8	65536		
			PCLKB $\leq 24 \mathrm{MHz}$		4	65536		
	SCK clock cycle input (slave)				6	-	$\mathrm{t}_{\text {Pcyc }}$	
	SCK clock high pulse width			$\mathrm{t}_{\text {SPCKWH }}$	0.4	0.6	$\mathrm{t}_{\text {SPcyc }}$	
	SCK clock low pulse width			$\mathrm{t}_{\text {SPCKWL }}$	0.4	0.6	$\mathrm{t}_{\text {SPcyc }}$	
	SCK clock rise/fall time			$\mathrm{t}_{\text {SPCKr }}, \mathrm{t}_{\text {SPCKf }}$	-	20	ns	
	Data input setup time (master)		2.7 V or above	t_{SU}	45	-	ns	Figure 2.42, Figure 2.43
			2.4 V or above		55	-		
			1.8 V or above		80	-		
	Data input setup time (slave)				40	-		
	Data input hold time			t_{H}	40	-	ns	
	SSL input setup time			$\mathrm{t}_{\text {LEAD }}$	1	-	$\mathrm{t}_{\text {SPcyc }}$	
	SSL input hold time			$\mathrm{t}_{\text {LAG }}$	1	-	$\mathrm{t}_{\text {SPcyc }}$	
	Data output delay time (master)			${ }_{\text {tod }}$	-	40	ns	
	Data output delay time (slave)		2.7 V or above		-	65		
			1.8 V or above		-	100		
	Data output hold time (master)		2.7 V or above	t_{OH}	-10	-	ns	
			1.8 V or above		-20	-		
	Data output hold time (slave)				-10	-		
	Data rise/fall time			$\mathrm{t}_{\mathrm{Dr}}, \mathrm{t}_{\mathrm{Df}}$	-	20	ns	
	SSL input rise/fall time			$\mathrm{t}_{\text {SSLr }}, \mathrm{t}_{\text {SSLf }}$	-	20	ns	
	Slave access time	$2.4 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$		$\mathrm{t}_{\text {S }}$	-	6	$t_{\text {pcyc }}$	Figure 2.44, Figure 2.45
		$1.8 \mathrm{~V} \leq \mathrm{VCC}<2.4 \mathrm{~V}$	24 MHz < PCLKB $\leq 32 \mathrm{MHz}$		-	7		
			PCLKB $\leq 24 \mathrm{MHz}$		-	6		
	Slave output release time	$2.4 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$		$\mathrm{t}_{\text {REL }}$	-	6	$\mathrm{t}_{\text {Pcyc }}$	
		$1.8 \mathrm{~V} \leq \mathrm{VCC}<2.4 \mathrm{~V}$	$24 \mathrm{MHz}<$ PCLKB $\leq 32 \mathrm{MHz}$		-	7		
			PCLKB $\leq 24 \mathrm{MHz}$		-	6		

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle

SCKn output (master)

SCKn input (slave)

$\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{IH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{IL}}=0.3 \times \mathrm{VCC}$

Figure 2.41 Simple SPI Clock Timing

$\mathrm{n}=1,5,6,8,9,12$

Figure 2.42 Simple SPI Clock Timing (Master, CKPH = 1)

$\mathrm{n}=1,5,6,8,9,12$

Figure 2.43
Simple SPI Clock Timing (Master, CKPH = 0)

Figure 2.44 Simple SPI Clock Timing (Slave, CKPH = 1)

Figure 2.45 Simple SPI Clock Timing (Slave, CKPH = 0)

2.5.5.6 RIIC

Table 2.53 RIIC Timing
Conditions: $2.7 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item		Symbol	Min.*1	Max.	Unit	Test Conditions
RIIC (standard mode, SMBus)	SCL cycle time	$\mathrm{t}_{\text {SCL }}$	$6(12) \times t_{I I C c y c}+1300$	-	ns	Figure 2.46
	SCL high pulse width	$\mathrm{t}_{\text {SCLH }}$	$3(6) \times t_{1 I C c y c}+300$	-	ns	
	SCL low pulse width	$\mathrm{t}_{\text {SCLL }}$	$3(6) \times \mathrm{t}_{11 \mathrm{ccyc}}+300$	-	ns	
	SCL, SDA rise time	t_{Sr}	-	1000	ns	
	SCL, SDA fall time	$\mathrm{t}_{\text {Sf }}$	-	300	ns	
	SCL, SDA spike pulse removal time	t_{SP}	0	$1(4) \times t_{I I C c y c}$	ns	
	SDA bus free time	$\mathrm{t}_{\text {BUF }}$	$3(6) \times t_{1 I C c y c}+300$	-	ns	
	START condition hold time	$\mathrm{t}_{\text {STAH }}$	$\mathrm{t}_{\text {ICcyc }}+300$	-	ns	
	Repeated START condition setup time	$\mathrm{t}_{\text {Stas }}$	1000	-	ns	
	STOP condition setup time	$\mathrm{t}_{\text {Stos }}$	1000	-	ns	
	Data setup time	$t_{\text {SDAS }}$	$\mathrm{t}_{\text {IICcyc }}+50$	-	ns	
	Data hold time	$\mathrm{t}_{\text {SDAH }}$	0	-	ns	
	SCL, SDA capacitive load	$\mathrm{C}_{\mathrm{b}}{ }^{\text {2 }}$	-	400	pF	
RIIC (fast mode)	SCL cycle time	$\mathrm{t}_{\text {SCL }}$	$6(12) \times t_{\text {IICcyc }}+600$	-	ns	Figure 2.46
	SCL high pulse width	$\mathrm{t}_{\text {SCLH }}$	3 (6) $\times \mathrm{t}_{11 \mathrm{ccyc}}+300$	-	ns	
	SCL low pulse width	${ }^{\text {t SCLL }}$	$3(6) \times t_{116 c y c}+300$	-	ns	
	SCL, SDA rise time	t_{Sr}	-	300	ns	
	SCL, SDA fall time	t_{Sf}	-	300	ns	
	SCL, SDA spike pulse removal time	t_{SP}	0	$1(4) \times t_{\text {IICcyc }}$	ns	
	SDA bus free time	$\mathrm{t}_{\text {BUF }}$	$3(6) \times t_{116 c y c}+300$	-	ns	
	START condition hold time	$\mathrm{t}_{\text {STAH }}$	$\mathrm{t}_{\text {IIcıус }}+300$	-	ns	
	Repeated START condition setup time	$t_{\text {STAS }}$	300	-	ns	
	STOP condition setup time	$\mathrm{t}_{\text {Stos }}$	300	-	ns	
	Data setup time	$\mathrm{t}_{\text {SDAS }}$	$\mathrm{t}_{\text {IICcyc }}+50$	-	ns	
	Data hold time	$t_{\text {SDAH }}$	0	-	ns	
	SCL, SDA capacitive load	$\mathrm{C}_{\mathrm{b}}{ }^{\text {2 }}$	-	400	pF	

Note: $\quad t_{\text {IICcyc }}$: RIIC internal reference count clock (IIC φ) cycle
Note 1. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11 b while a digital filter is enabled with the ICFER.NFE bit $=1$.
Note 2. $\quad C_{b}$ is the total capacitance of the bus lines.

Note 1. S, P, and Sr indicate the following conditions, respectively.
Test conditions
S: START condition
P: STOP condition
Sr: Repeated START condition

Figure 2.46
RIIC Bus Interface Input/Output Timing

2.5.5.7 RSPI

Table 2.54 RSPI Timing (1/2)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{C}=30 \mathrm{pF}$ Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item				Symbol	Min.	Max.	Unit	Test Conditions
$\overline{\text { RSPI }}$	RSPCK clock cycle	Master		${ }^{\text {SPcyc }}$	2	4096	$\mathrm{t}_{\text {Pcyc }}{ }^{* 1}$	Figure 2.47
		Slave			4	-		
	RSPCK clock high pulse width	Master		$\mathrm{t}_{\text {SPCKWH }}$	$\begin{gathered} \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\right. \\ \left.\mathrm{t}_{\mathrm{SPCKf}}\right) / 2-3 \end{gathered}$	-	ns	
		Slave			$\begin{gathered} \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\right. \\ \left.\mathrm{t}_{\mathrm{SPCKf}}\right) / 2 \end{gathered}$	-		
	RSPCK clock low pulse width	Master		$\mathrm{t}_{\text {SPCKWL }}$	$\begin{gathered} \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\right. \\ \left.\mathrm{t}_{\mathrm{SPCKf}}\right) / 2-3 \end{gathered}$	-	ns	
		Slave			$\begin{gathered} \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\right. \\ \left.\mathrm{t}_{\mathrm{SPCKf}}\right) / 2 \end{gathered}$	-		
	RSPCK clock rise/ fall time	Output	2.7 V or above	$\mathrm{t}_{\mathrm{SPCKr}}$, tsPCKf	-	10	ns	
			2.4 V or above		-	15		
			1.8 V or above		-	20		
		Input			-	0.1	$\mu \mathrm{s} / \mathrm{V}$	
	Data input setup time	Master	2.7 V or above	t_{SU}	10	-	ns	Figure 2.48 to Figure 2.51
			1.8 V or above		30	-		
		Slave	2.7 V or above		10	-		
			1.8 V or above		15	-		
	Data input hold time	Master	RSPCK set to a division ratio other than PCLKB divided by 2	t_{H}	$\mathrm{t}_{\text {Pcyc }}$	-	ns	
			RSPCK set to PCLKB divided by 2	t_{HF}	0	-		
		Slave		t_{H}	20	-		
	SSL setup time	Master		$\mathrm{t}_{\text {LEAD }}$	$-30+{ }^{* 2} \times \mathrm{t}_{\text {SPcyc }}$	-	ns	
		Slave			6	-	$t_{\text {Pcyc }}$	
	SSL hold time	Master		$\mathrm{t}_{\text {LAG }}$	$-30+{ }^{* 3} \times \mathrm{t}_{\text {SPcyc }}$	-	ns	
		Slave			6	-	$\mathrm{t}_{\text {Pcyc }}$	
	Data output delay time	Master	2.7 V or above	t_{OD}	-	14	ns	
			2.4 V or above		-	20		
			1.8 V or above		-	25		
		Slave	2.7 V or above		-	50		
			2.4 V or above		-	60		
			1.8 V or above		-	85		
	Data output hold time	Master		t_{OH}	0	-	ns	
		Slave			0	-		
	Successive transmissio n delay time	Master		$\mathrm{t}_{\text {TD }}$	$\mathrm{t}_{\text {SPcyc }}+2 \times \mathrm{t}_{\text {Pcyc }}$	$\underset{\mathrm{t}_{\mathrm{Pcyc}}}{8 \times \mathrm{t}_{\mathrm{SPcyc}}+2 \times}$	ns	
		Slave			$6 \times \mathrm{t}_{\text {Pcyc }}$	-		
	MOSI and MISO rise/ fall time	Output	2.7 V or above	$\mathrm{t}_{\mathrm{Dr}}, \mathrm{t}_{\mathrm{Df}}$	-	10	ns	
			2.4 V or above		-	15		
			1.8 V or above		-	20		
		Input			-	1	$\mu \mathrm{s}$	

Table 2.54 RSPI Timing (2/2)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{C}=30 \mathrm{pF}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

			Item	Symbol	Min.	Max.	Unit	Test Conditions
RSPI	SSL rise/fall time	Output	2.7 V or above	$\begin{aligned} & \mathrm{t}_{\mathrm{SSLr}}, \\ & \mathrm{t}_{\mathrm{SSLLf}} \end{aligned}$	-	10	ns	Figure 2.48 to Figure 2.51
			2.4 V or above		-	15	ns	
			1.8 V or above		-	20	ns	
		Input			-	1	$\mu \mathrm{s}$	
	Slave access time		2.4 V or above	$\mathrm{t}_{\text {SA }}$	-	$2 \times t_{\text {Pcyc }}+100$	ns	Figure 2.50, Figure 2.51
			1.8 V or above		-	$2 \times \mathrm{t}_{\text {Pcyc }}+140$	ns	
	Slave output release time		2.4 V or above	$\mathrm{t}_{\text {REL }}$	-	$2 \times \mathrm{t}_{\text {Pcyc }}+100$	ns	
			1.8 V or above		-	$2 \times \mathrm{t}_{\text {Pcyc }}+140$	ns	

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle
Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD)
Note 3. N : An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)

$$
\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{~V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{~V}_{\mathrm{IH}}=0.7 \times \mathrm{VCC}, \mathrm{~V}_{\mathrm{IL}}=0.3 \times \mathrm{VCC}
$$

Figure 2.47
RSPI Clock Timing

Figure 2.48
RSPI Timing (Master, CPHA = 0)

Figure 2.49 RSPI Timing (Master, CPHA = 1)

Figure 2.50
RSPI Timing (Slave, CPHA = 0)

Figure 2.51
RSPI Timing (Slave, CPHA = 1)

2.5.5.8 A/D Converter Trigger

Table 2.55 A/D Converter Trigger Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item	Symbol	Min.	Max.	Unit \star_{1}	Test Conditions	
A/D converter	Trigger input pulse width	$\mathrm{t}_{\text {TRGW }}$	1.5	-	$\mathrm{t}_{\text {Pcyc }}$	Figure 2.52

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle

ADTRGO\#

Figure 2.52 A/D Converter External Trigger Input Timing

2.5.5.9 CAC

Table $2.56 \quad$ CAC Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item			Symbol	Min.	Max.	$\begin{gathered} \text { Unit } \\ { }_{* 1} \end{gathered}$	Test Conditions
CAC	CACREF input pulse width	$\mathrm{t}_{\text {Pcyc }} \leq \mathrm{t}_{\text {cac }}{ }^{*}{ }^{\text {2 }}$	$\mathrm{t}_{\text {CACREF }}$	$4.5 \mathrm{t}_{\mathrm{cac}}+3 \mathrm{t}_{\text {Pcyc }}$	-	ns	
		$\mathrm{t}_{\text {Pcyc }}>\mathrm{t}_{\text {cac }}{ }^{*}{ }^{2}$		$5 \mathrm{t}_{\mathrm{cac}}+6.5 \mathrm{t}_{\text {Pcyc }}$			
	CACREF input rise/fall time		$t_{\text {CACREFr }}$, tcaCREFf	-	0.1	$\mu \mathrm{s} / \mathrm{V}$	

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle
Note 2. $\mathrm{t}_{\mathrm{cac}}$: CAC count clock source cycle

2.5.5.10 CLKOUT

Table 2.57 CLKOUT Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
Output load conditions: $\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{C}=30 \mathrm{pF}$

Item			Symbol	Min.	Max.	Unit	Test Conditions
CLKOUT	CLKOUT pin output cycle*2	$\mathrm{VCC}=2.7 \mathrm{~V}$ or above	${ }_{\text {tcyc }}$	62.5	-	ns	Figure 2.53
		VCC $=1.8 \mathrm{~V}$ or above		125			
	CLKOUT pin high pulse width*1	VCC $=2.7 \mathrm{~V}$ or above	${ }^{\text {t }}$ H	15	-	ns	
		$\mathrm{VCC}=1.8 \mathrm{~V}$ or above		30			
	CLKOUT pin low pulse width*1	$\mathrm{VCC}=2.7 \mathrm{~V}$ or above	t_{CL}	15	-	ns	
		VCC $=1.8 \mathrm{~V}$ or above		30			
	CLKOUT pin output rise time	$\mathrm{VCC}=2.7 \mathrm{~V}$ or above	t_{Cr}	-	12	ns	
		$\mathrm{VCC}=1.8 \mathrm{~V}$ or above			25		
	CLKOUT pin output fall time	$\mathrm{VCC}=2.7 \mathrm{~V}$ or above	t_{Cf}	-	12	ns	
		$\mathrm{VCC}=1.8 \mathrm{~V}$ or above			25		

Note 1. When the LOCO is selected as the clock output source (CKOCR.CKOSEL[3:0] bits $=0000 \mathrm{~b}$), set the clock output division ratio selection to divided by 2 (CKOCR.CKODIV[2:0] bits = 001b).
Note 2. When the XTAL external clock input or an oscillator is used with divided by 1 (CKOCR.CKOSEL[3:0] bits $=010 \mathrm{~b}$ and CKOCR.CKODIV[2:0] bits = 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Figure 2.53 CLKOUT Output Timing

2.6 A/D Conversion Characteristics

Table 2.58 A/D Conversion Characteristics (1)
Conditions: $2.7 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{VREFHO}=\mathrm{AVCCO} \leq 5.5 \mathrm{~V} * 1$, $\mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, signal source impedance $=0.3 \mathrm{k} \Omega$
Reference voltage $=$ VREFHO

Item	Min.	Typ.	Max.	Unit	Test Conditions
Frequency	1	-	48	MHz	
Resolution	-	-	12	Bit	
Conversion time*2 (operation at PCLKD $=48 \mathrm{MHz}$)	$\begin{gathered} 0.67 \\ (0.208)^{\star 3} \end{gathered}$	-	-	$\mu \mathrm{s}$	High-precision channel ADCSR.ADHSC bit $=0$ ADSSTRn $=0 A h$ ADCCR.CCS = 1
	$\begin{gathered} 1.29 \\ (0.833)^{\star 3} \end{gathered}$	-	-	$\mu \mathrm{s}$	Normal-precision channel ADCSR.ADHSC bit $=0$ ADSSTRn $=28 \mathrm{~h}$ ADCCR.CCS = 1
Analog input capacitance	-	-	9*4	pF	High-precision channel
	-	-	10*4		Normal-precision channel
Analog input resistance \quad Rs	-	-	$1.9 * 4$	k Ω	High-precision channel
	-	-	6.0*4		Normal-precision channel
Analog input effective range	0	-	VREFHO	V	
Offset error	-	± 1.0	± 4.5	LSB	High-precision channel
			± 6.0	LSB	Other than above
Full-scale error	-	± 1.0	± 4.5	LSB	High-precision channel
			± 6.0	LSB	Other than above
Quantization error	-	± 0.5	-	LSB	
Absolute accuracy	-	± 2.5	± 5.5	LSB	High-precision channel
			± 8.5	LSB	Other than above
DNL differential nonlinearity error	-	± 1.0	-	LSB	
INL integral nonlinearity error	-	± 1.5	± 3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
Note 1. For 32-pin products, VREFHO = AVCCO.
Note 2. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
Note 3. The values in () show the sampling times.
Note 4. The values are reference values.

Table 2.59 A/D Conversion Characteristics (2)
Conditions: $2.4 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VREFHO}=\mathrm{AVCCO} \leq 5.5 \mathrm{~V} * 1$, VSS $=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, signal source impedance $=1.3 \mathrm{k} \Omega$
Reference voltage $=$ VREFHO

Item		Min.	Typ.	Max.	Unit	Test Conditions	
Frequency		1	-	32	MHz		
Resolution		-	-	12	Bit		
Conversion time*2 (Operation at PCLKD $=32 \mathrm{MHz}$)		$\begin{gathered} 1.00 \\ (0.313)^{* 3} \end{gathered}$	-	-	$\mu \mathrm{s}$	High-precision channel ADCSR.ADHSC bit $=0$ ADSSTRn $=0 \mathrm{Ah}$ ADCCR.CCS = 1	
		$\begin{gathered} 1.94 \\ (1.250) * 3 \end{gathered}$	-	-	$\mu \mathrm{s}$	Normal-precision channel ADCSR.ADHSC bit $=0$ ADSSTRn $=28 \mathrm{~h}$ ADCCR.CCS = 1	
Analog input capacitance	Cs	-	-	9*4	pF	High-precision channel	
		-	-	$10^{* 4}$		Normal-precision channel	
Analog input resistance	Rs	-	-	$2.2 * 4$	k Ω	High-precision channel	
		-	-	7.0*4		Normal-precision channel	
Analog input effective range		0	-	VREFHO	V		
Offset error		-	± 1.0	± 4.5	LSB	High-precision channel	
		± 6.0		LSB	Other than above		
Full-scale error			-	± 1.0	± 4.5	LSB	High-precision channel
		± 6.0			LSB	Other than above	
Quantization error		-	± 0.5	-	LSB		
Absolute accuracy		-	± 2.5	± 5.5	LSB	High-precision channel	
		± 8.5		LSB	Other than above		
DNL differential nonlinearity error			-	± 1.0	-	LSB	
INL integral nonlinearity error		-	± 1.5	± 3.0	LSB		

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
Note 1. For 32-pin products, VREFHO = AVCCO.
Note 2. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
Note 3. The values in () show the sampling times.
Note 4. The values are reference values.

Table 2.60 A/D Conversion Characteristics (3)
Conditions: $2.7 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{VREFHO}=\mathrm{AVCCO} \leq 5.5 \mathrm{~V} * 1$, VSS $=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, signal source impedance $=1.1 \mathrm{k} \Omega$
Reference voltage $=$ VREFHO

Item		Min.	Typ.	Max.	Unit	Test Conditions	
Frequency		1	-	24	MHz		
Resolution		-	-	12	Bit		
Conversion time*2 (operation at PCLKD $=24 \mathrm{MHz}$)		$\begin{gathered} 1.58 \\ (0.417)^{* 3} \end{gathered}$	-	-	$\mu \mathrm{s}$	High-precision channel ADCSR.ADHSC bit $=1$ ADSSTRn $=0$ Ah ADCCR.CCS $=1$	
		$\begin{gathered} 2.00 \\ (0.833)^{* 3} \end{gathered}$	-	-		Normal-precision channel ADCSR.ADHSC bit $=1$ ADSSTRn $=14 \mathrm{~h}$ ADCCR.CCS = 1	
Analog input capacitance	Cs	-	-	9*4	pF	High-precision channel	
		-	-	10*4		Normal-precision channel	
Analog input resistance	Rs	-	-	1.9*4	$\mathrm{k} \Omega$	High-precision channel	
		-	-	6*4		Normal-precision channel	
Analog input effective range		0	-	VREFHO	V		
Offset error		-	± 1.25	± 4.5	LSB	High-precision channel	
		± 6.0		LSB	Other than above		
Full-scale error			-	± 1.0	± 4.5	LSB	High-precision channel
		± 6.0			LSB	Other than above	
Quantization error		-	± 0.5	-	LSB		
Absolute accuracy		-	± 2.5	± 5.5	LSB	High-precision channel	
		± 8.5		LSB	Other than above		
DNL differential nonlinearity error			-	± 1.0	-	LSB	
INL integral nonlinearity error		-	± 1.5	± 3.0	LSB		

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
Note 1. For 32-pin products, VREFHO = AVCCO.
Note 2. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
Note 3. The values in () show the sampling times.
Note 4. The values are reference values.

Table 2.61 A/D Conversion Characteristics (4)
Conditions: $2.4 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VREFHO}=\mathrm{AVCCO} \leq 5.5 \mathrm{~V} * 1, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, signal source impedance $=2.2 \mathrm{k} \Omega$
Reference voltage $=$ VREFH0

Item		Min.	Typ.	Max.	Unit	Test Conditions	
Frequency		1	-	16	MHz		
Resolution		-	-	12	Bit		
Conversion time*2 (operation at PCLKD $=16 \mathrm{MHz}$)		$\begin{gathered} 2.38 \\ (0.625) \star 3 \end{gathered}$	-	-	$\mu \mathrm{s}$	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn $=0 A h$ ADCCR.CCS = 1	
		$\begin{gathered} 3.00 \\ (1.250) * 3 \end{gathered}$	-	-		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn $=14 \mathrm{~h}$ ADCCR.CCS = 1	
Analog input capacitance	Cs	-	-	9*4	pF	High-precision channel	
		-	-	10*4		Normal-precision channel	
Analog input resistance	Rs	-	-	$2.2 * 4$	$\mathrm{k} \Omega$	High-precision channel	
		-	-	7*4		Normal-precision channel	
Analog input effective range		0	-	VREFH0	V		
Offset error		-	± 1.25	± 4.5	LSB	High-precision channel	
		± 6.0		LSB	Other than above		
Full-scale error			-	± 1.0	± 4.5	LSB	High-precision channel
		± 6.0			LSB	Other than above	
Quantization error		-	± 0.5	-	LSB		
Absolute accuracy		-	± 2.5	± 5.5	LSB	High-precision channel	
		± 8.5		LSB	Other than above		
DNL differential nonlinearity error			-	± 1.0	-	LSB	
INL integral nonlinearity error		-	± 1.5	± 3.0	LSB		

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
Note 1. or 32-pin products, VREFHO = AVCCO.
Note 2. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
Note 3. The values in () show the sampling times.
Note 4. The values are reference values.

Table 2.62 A/D Conversion Characteristics (5)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{VREFHO}=\mathrm{AVCC} 0 \leq 5.5 \mathrm{~V} * 1$, VSS $=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$, signal source impedance $=5 \mathrm{k} \Omega$
Reference voltage $=$ VREFHO

Item		Min.	Typ.	Max.	Unit	Test Conditions	
Frequency		1	-	8	MHz		
Resolution		-	-	12	Bit		
Conversion time*2 (operation at PCLKD $=8 \mathrm{MHz}$)		$\begin{gathered} 4.75 \\ (1.250) * 3 \end{gathered}$	-	-	$\mu \mathrm{s}$	High-precision channel ADCSR.ADHSC bit $=1$ ADSSTRn $=0$ Ah ADCCR.CCS = 1	
		$\begin{gathered} 6.00 \\ (2.500) * 3 \end{gathered}$	-	-		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn $=14 \mathrm{~h}$ ADCCR.CCS = 1	
Analog input capacitance	Cs	-	-	9*4	pF	High-precision channel	
		-	-	$10^{* 4}$		Normal-precision channel	
Analog input resistance	Rs	-	-	$6 * 4$	k Ω	High-precision channel	
		-	-	$14^{* 4}$		Normal-precision channel	
Analog input effective range		0	-	VREFHO	V		
Offset error		-	± 1.25	± 7.5	LSB	High-precision channel	
		± 10.0		LSB	Other than above		
Full-scale error			-	± 1.5	± 7.5	LSB	High-precision channel
		± 10.0			LSB	Other than above	
Quantization error		-	± 0.5	-	LSB		
Absolute accuracy		-	± 3.0	± 8.0	LSB	High-precision channel	
		± 11.0		LSB	Other than above		
DNL differential nonlinearity error			-	± 1.25	-	LSB	
INL integral nonlinearity error		-	± 1.5	± 3.5	LSB		

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
Note 1. For 32-pin products, VREFHO = AVCCO.
Note 2. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
Note 3. The values in () show the sampling times.
Note 4. The values are reference values.

Table 2.63 AID Converter Channel Classification

Classification	Channel	Conditions	Remarks
High-precision channel	AN000 to AN007	AVCC0 $=1.8$ to 5.5 V	Pins AN000 to AN007 cannot be used as digital outputs when the A/D converter is in use.
Normal-precision channel	AN016 to ANO21, AN024 to AN026	AVCC0 $=1.8$ to 5.5 V	
Internal reference voltage input channel	Internal reference voltage	AVCC0 $=1.8$ to 5.5 V	
Temperature sensor input channel	Temperature sensor output	AN008	AVCC0 $=1.8$ to 5.5 V

Table 2.64 A/D Internal Reference Voltage Characteristics
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{VREFHO}=\mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Min.	Typ.	Max.	Unit	Test Conditions
Internal reference voltage input channel*1	1.42	1.48	1.54	V	

Note 1. The A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the A / D converter.

Figure 2.54 Equivalent Circuit

Figure 2.55
Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A / D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 $=3.072 \mathrm{~V}$), then 1 -LSB width becomes 0.75 mV , and $0 \mathrm{mV}, 0.75 \mathrm{mV}, 1.5 \mathrm{mV}, \ldots$ are used as analog input voltages.
If analog input voltage is 6 mV , absolute accuracy $= \pm 5 \mathrm{LSB}$ means that the actual A/D conversion result is in the range of 003 h to 00 Dh though an output code, 008 h , can be expected from the theoretical A / D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

2.7 D/A Conversion Characteristics

Table 2.65 D/A Conversion Characteristics (1)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Resolution		-	-	-	8	Bit	
Conversion time	$\mathrm{VCC}=1.8$ to 5.5 V	t ${ }_{\text {dconv }}$	-	-	3.0	$\mu \mathrm{s}$	35-pF capacitive load
Absolute accuracy	$\mathrm{VCC}=2.4$ to 5.5 V	-	-	-	± 3.0	LSB	2-M Ω resistive load
	$\mathrm{VCC}=1.8$ to 2.4 V	-	-	-	± 3.5		
	$\mathrm{VCC}=2.4$ to 5.5 V	-	-	-	± 2.0	LSB	4-M Ω resistive load
	$\mathrm{VCC}=1.8$ to 2.4 V	-	-	-	± 2.5		
RO output resistance		-	-	9.0	-	k Ω	

2.8 Temperature Sensor Characteristics

Table 2.66 Temperature Sensor Characteristics
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Relative accuracy	-	-	± 1.5	-	${ }^{\circ} \mathrm{C}$	2.4 V or above
		-	± 2.0	-		Below 2.4 V
Temperature slope	-	-	-3.3	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Output voltage ($25^{\circ} \mathrm{C}$)	-	-	1.05	-	V	$\mathrm{VCC}=3.3 \mathrm{~V}$
Temperature sensor start time	$\mathrm{t}_{\text {START }}$	-	-	5	$\mu \mathrm{s}$	
Sampling time	-	5	-	-	$\mu \mathrm{s}$	

2.9 Comparator Characteristics

Table 2.67 Comparator Characteristics
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
CVREFB0 to CVREFB1 input reference voltage		VREF	0	-	VCC - 1.4	V	
CMPB0 to CMPB1 input voltage		VI	0	-	VCC	V	
Internal reference voltage		-	1.34	1.44	1.54	V	
Offset	Comparator high-speed mode	-	-	-	50	mV	
	Comparator high-speed mode Window function enabled	-	-	-	60	mV	
	Comparator low-speed mode	-	-	-	40	mV	
Comparator output delay time	Comparator high-speed mode	Td	-	-	1.2	$\mu \mathrm{s}$	$V C C=3 V,$ input slew rate $\geq 50 \mathrm{mV} / \mu \mathrm{s}$
	Comparator high-speed mode Window function enabled	Tdw	-	-	2.0	$\mu \mathrm{s}$	
	Comparator low-speed mode	Td	-	-	9.0	$\mu \mathrm{s}$	
High-side reference voltage (comparator high-speed mode, window function enabled)		VRFH	-	$0.76 \times$ VCC	-	V	
Low-side reference voltage (comparator high-speed mode, window function enabled)		VRFL	-	$0.24 \times$ VCC	-	V	
Operation stabilization wait time		Tcmp	100	-	-	$\mu \mathrm{s}$	

Figure 2.56
Comparator Output Delay Time in Comparator High-Speed Mode and Low-Speed Mode

Figure 2.57
Comparator Output Delay Time in High-Speed Mode with Window Function Enabled

2.10 CTSU Characteristics

Table 2.68 CTSU Characteristics
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
External capacitance connected to TSCAP pin		$\mathrm{C}_{\text {tscap }}$	9	10	11	nF	
Permissible output high/low current	P12 to P17, P20, P21, P26, P27, P30 to P32, P34, P35, P54, P55, PB1 to PB7, PC2 to PC7, PH0 to PH3	$\begin{aligned} & \left\|\Sigma \mathrm{I}_{\mathrm{OH}}\right\| \\ & +\Sigma \mathrm{l}_{\mathrm{OL}} \end{aligned}$	-	-	24	mA	When VXSEL = 0
	PA0, PA1, PA3, PA4, PA6, PB0, PE0 to PE5		-	-	16	mA	[Products with 64 Kbytes of flash memory or less] When VXSEL = 0
	PA0 to PA6, PB0, PD0 to PD2, PE0 to PE5		-	-	16	mA	[Products with at least 128 Kbytes of flash memory] When VXSEL = 0

2.11 Power-On Reset Circuit and Voltage Detection Circuit Characteristics

Table 2.69 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	$\mathrm{V}_{\text {POR }}$	1.35	1.50	1.65	V	Figure 2.58, Figure 2.59
	Voltage detection circuit (LVD0)*1	$\mathrm{V}_{\text {det0_0 }}$	3.67	3.85	3.97	V	Figure 2.60 At falling edge VCC
		$\mathrm{V}_{\text {det0_1 }}$	2.70	2.85	3.00		
		$\mathrm{V}_{\text {det0_2 }}$	2.37	2.53	2.67		
		$\mathrm{V}_{\text {det0_3 }}$	1.80	1.90	1.99		
	Voltage detection circuit (LVD1)*2	$V_{\text {det1_0 }}$	4.12	4.29	4.42	V	
		$\mathrm{V}_{\text {det1_1 }}$	3.98	4.16	4.28		
		$V_{\text {det1_2 }}$	3.86	4.03	4.16		
		$\mathrm{V}_{\text {det1_3 }}$	3.68	3.86	3.98		
		$\mathrm{V}_{\text {det1_4 }}$	2.99	3.10	3.29		
		$V_{\text {det1_5 }}$	2.89	3.00	3.19		
		$\mathrm{V}_{\text {det1_6 }}$	2.79	2.90	3.09		
		$\mathrm{V}_{\text {det1_7 }}$	2.68	2.80	2.98		
		$\mathrm{V}_{\text {det1_8 }}$	2.57	2.68	2.87		
		$\mathrm{V}_{\text {det1_9 }}$	2.47	2.59	2.67		
		$V_{\text {det1_A }}$	2.37	2.48	2.57		
		$V_{\text {det1_B }}$	2.10	2.20	2.30		
		$V_{\text {det1_C }}$	1.86	1.96	2.06		
		$V_{\text {det1_D }}$	1.80	1.86	1.96		
Voltage detection level	Voltage detection circuit (LVD2)*3	$\mathrm{V}_{\text {det2_0 }}{ }^{* 4}$	4.08	4.32	4.48	V	Figure 2.61 At falling edge VCC Figure 2.62 At falling edge VCC
		$\mathrm{V}_{\text {det2_1 }}$	3.95	4.17	4.35		
		$\mathrm{V}_{\text {det2_2 }}$	3.82	4.03	4.22		
		$\mathrm{V}_{\text {det2_3 }}$	3.62	3.84	4.02		

Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

Note 1. n in the symbol Vdet0_n denotes the value of the LDSEL1[1:0] bits.
Note 2. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.
Note 3. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[1:0] bits.
Note 4. Vdet2_0 selection can be used only when the CMPA2 pin input voltage is selected, and cannot be used when the power supply voltage (VCC) is selected.

Table 2.70 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2)
Conditions: $1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Wait time after power-on reset cancellation	At normal startup*1	$\mathrm{t}_{\text {POR }}$	-	12.5	-	ms	Figure 2.59
	During fast startup time*2	$\mathrm{t}_{\text {POR }}$	-	5.0	-		
Wait time after voltage monitoring 0 reset cancellation		$\mathrm{t}_{\text {LVDO }}$	-	860	-	$\mu \mathrm{s}$	Figure 2.60
Wait time after voltage monitoring 1 reset cancellation	LVD0 disabled*4	$\mathrm{t}_{\text {LVD1 }}$	-	160	-	$\mu \mathrm{s}$	Figure 2.61
	LVD0 enabled*5		-	860	-	$\mu \mathrm{s}$	
Wait time after voltage monitoring 2 reset cancellation	LVD0 disabled*4	$t_{\text {LVD2 }}$	-	160	-	$\mu \mathrm{s}$	Figure 2.62
	LVD0 enabled*5		-	860	-	$\mu \mathrm{s}$	
PDR response delay time		$\mathrm{t}_{\text {det }}$	-	-	500	$\mu \mathrm{s}$	Figure 2.58
LVD0 response delay time			-	-	500	$\mu \mathrm{s}$	Figure 2.58
LVD1 response delay time			-	-	360	$\mu \mathrm{s}$	Figure 2.58
LVD2 response delay time			-	-	600	$\mu \mathrm{s}$	Figure 2.58
POR/LVD0 minimum VCC down time*3		$t_{\text {VOFF }}$	500	-	-	$\mu \mathrm{s}$	Figure $2.58, \mathrm{VCC}=1.0 \mathrm{~V}$ or above
LVD1 minimum VCC down time*3			300	-	-	$\mu \mathrm{s}$	Figure 2.58, VCC $=1.0 \mathrm{~V}$ or above
LVD2 minimum VCC down time*3			600	-	-	$\mu \mathrm{s}$	Figure 2.58, VCC $=1.0 \mathrm{~V}$ or above
Power-on reset enable time		${ }^{\text {W }}$ (POR)	1	-	-	ms	Figure $2.59, \mathrm{VCC}=$ below 1.0 V
LVD1 operation stabilization time (after LVD is enabled)		$\mathrm{t}_{\mathrm{d}(\mathrm{E}-\mathrm{A})}$	-	-	300	$\mu \mathrm{s}$	Figure 2.61
LVD2 operation stabilization time (after LVD is enabled)		$\mathrm{t}_{\mathrm{d}(\mathrm{E}-\mathrm{A})}$	-	-	1200	$\mu \mathrm{s}$	Figure 2.62
Hysteresis width (power-on rest (POR))		$\mathrm{V}_{\text {PORH }}$	-	110	-	mV	
Hysteresis width (LVD0, LVD1, and LVD2)		$\mathrm{V}_{\text {LVH }}$	-	60	-	mV	Vdet0_0 to Vdet0_3 selected
		-	110	-	Vdet1_0 to Vdet1_2 selected		
		-	70	-	Vdet1_3 to 9 selected		
		-	60	-	Vdet1_A to B selected		
		-	50	-	Vdet1_C to D selected		
		-	90	-	LVD2 selected		

Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.
Note 1. When OFS1.(LVDAS, FASTSTUP) $=11 \mathrm{~b}$.
Note 2. When OFS1.(LVDAS, FASTSTUP) $\neq 11$ b.
Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels $\mathrm{V}_{\mathrm{POR}}, \mathrm{V}_{\text {deto }}$, $V_{\text {det1 }}$, and $V_{\text {det2 }}$ for the POR/LVD.
Note 4. When OFS1.LVDAS = 1b.
Note 5. When OFS1.LVDAS $=0 \mathrm{~b}$.

Figure 2.58
Voltage Detection Reset Timing

Figure 2.59
Power-On Reset Timing

Figure 2.60 Voltage Detection Circuit Timing ($\mathrm{V}_{\text {deto }}$)

Figure 2.61 Voltage Detection Circuit Timing ($\mathrm{V}_{\text {det1 }}$)

Figure 2.62
Voltage Detection Circuit Timing ($\mathrm{V}_{\text {det2 }}$)

2.12 Oscillation Stop Detection Timing

Table 2.71 Oscillation Stop Detection Timing
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

	Item	Symbol	Min.	Typ.	Max.	Unit
Test Conditions						
Detection time	t_{dr}	-	-	1	ms	Figure 2.63

Figure 2.63 Oscillation Stop Detection Timing

2.13 ROM (Flash Memory for Code Storage) Characteristics

Table 2.72 ROM (Flash Memory for Code Storage) Characteristics (1)

Item	Symbol	Min.	Typ.	Max.	Unit	Conditions
Reprogramming/erasure cycle $* 1$	$\mathrm{~N}_{\text {PEC }}$	1 K	-	-	Times	
Data retention $* 2, * 3$	After 1 K times of $\mathrm{N}_{\text {PEC }}$	$\mathrm{t}_{\text {DRP }}$	20	-	-	Year

Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/ erase cycle is n times ($n=1 K$), erasing can be performed n times for each block. For instance, when 8 -byte programming is performed 256 times for different addresses in 2-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).
Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics. Note 3. This result is obtained from reliability testing.

Table 2.73 ROM (Flash Memory for Code Storage) Characteristics (2) High-Speed Operating Mode
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCC0} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}$
Temperature range for the programming/erasure operation: $\mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	FCLK $=1 \mathrm{MHz}$			FCLK $=32 \mathrm{MHz}$			FCLK $=48 \mathrm{MHz}$			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.			
Programming time	8-byte		$\mathrm{t}_{\mathrm{P} 8}$	-	94.0	843.5	-	45.4	448.7	-	45.1	446.0	$\mu \mathrm{s}$
Erasure time	2-Kbyte	$\mathrm{t}_{\mathrm{E} 2 \mathrm{~K}}$	-	8.3	282.0	-	5.4	220.4	-	5.4	220.1	ms	
	64-Kbyte	$\mathrm{t}_{\text {E64K }}$	-	105	2331	-	12.7	375.4	-	12.4	368.0	ms	
Blank check time	8-byte	$\mathrm{t}_{\mathrm{BC} 8}$	-	-	45.0	-	-	8.9	-	-	8.2	$\mu \mathrm{s}$	
	2-Kbyte	$\mathrm{t}_{\mathrm{BC} 2 \mathrm{~K}}$	-	-	1573	-	-	120	-	-	115	$\mu \mathrm{s}$	
Erase operation forcible stop time		$t_{\text {SED }}$	-	-	22.8	-	-	11.1	-	-	11.0	$\mu \mathrm{s}$	
Start-up area switching setting time		${ }^{\text {S SAS }}$	-	8.2	503.3	-	5.6	438.0	-	5.6	437.7	ms	
Access window setting time		$\mathrm{t}_{\text {AWS }}$	-	8.2	503.3	-	5.6	438.0	-	5.6	437.7	ms	
ROM mode transition wait time 1		$\mathrm{t}_{\text {DIS }}$	2	-	-	2	-	-	2	-	-	$\mu \mathrm{s}$	
ROM mode transition wait time 2		t_{MS}	15	-	-	15	-	-	15	-	-	$\mu \mathrm{s}$	

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note: The frequency accuracy of FCLK should be $\pm 3.5 \%$.

Table 2.74 ROM (Flash Memory for Code Storage) Characteristics (3) Middle-Speed Operating Mode
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}$
Temperature range for the programming/erasure operation: $T_{a}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	FCLK = 1 MHz			FCLK $=24 \mathrm{MHz}$			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
Programming time	8-byte		$\mathrm{t}_{\mathrm{P} 8}$	-	94.0	843.5	-	45.7	450.7	$\mu \mathrm{s}$
Erasure time	2-Kbyte	$\mathrm{t}_{\mathrm{E} 2 \mathrm{~K}}$	-	8.3	282.0	-	5.4	220.2	ms	
	64-Kbyte	$\mathrm{t}_{\mathrm{E} 64 \mathrm{~K}}$	-	105	2331	-	17.0	500.5	ms	
Blank check time	8-byte	$\mathrm{t}_{\mathrm{BC} 8}$	-	-	45	-	-	9	$\mu \mathrm{s}$	
	2-Kbyte	$\mathrm{t}_{\mathrm{BC} 2 \mathrm{~K}}$	-	-	1573	-	-	115	$\mu \mathrm{s}$	
Erase operation forcible stop time		$\mathrm{t}_{\text {SED }}$	-	-	22.8	-	-	11.2	$\mu \mathrm{s}$	
Start-up area switching setting time		$t_{\text {SAS }}$	-	8.2	503.3	-	5.6	437.7	ms	
Access window setting time		$\mathrm{t}_{\text {AWS }}$	-	8.2	503.3	-	5.6	437.7	ms	
ROM mode transition wait time 1		$\mathrm{t}_{\text {DIS }}$	2	-	-	2	-	-	$\mu \mathrm{s}$	
ROM mode transition wait time 2		t_{MS}	15	-	-	15	-	-	$\mu \mathrm{s}$	

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note: The frequency accuracy of FCLK should be $\pm 3.5 \%$.

Table 2.75 ROM (Flash Memory for Code Storage) Characteristics (4) Middle-Speed Operating Mode 2
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}$
Temperature range for the programming/erasure operation: $\mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	FCLK = 1 MHz			Unit	
		Min.	Typ.	Max.			
Programming time	8-byte		$\mathrm{t}_{\mathrm{P} 8}$	-	94.0	843.5	$\mu \mathrm{s}$
Erasure time	2-Kbyte	$\mathrm{t}_{\mathrm{E} 2 \mathrm{~K}}$	-	8.3	282.0	ms	
	64-Kbyte	$\mathrm{t}_{\mathrm{E} 64 \mathrm{~K}}$	-	105	2331	ms	
Blank check time	8-byte	$\mathrm{t}_{\mathrm{BC} 8}$	-	-	45	$\mu \mathrm{s}$	
	2-Kbyte	$\mathrm{t}_{\mathrm{BC} 2 \mathrm{~K}}$	-	-	1573	$\mu \mathrm{s}$	
Erase operation forcible stop time		$\mathrm{t}_{\text {SED }}$	-	-	22.8	$\mu \mathrm{s}$	
Start-up area switching setting time		$t_{\text {SAS }}$	-	8.2	503.3	ms	
Access window setting time		$\mathrm{t}_{\text {AWS }}$	-	8.2	503.3	ms	
ROM mode transition wait time 1		$\mathrm{t}_{\text {DIS }}$	2	-	-	$\mu \mathrm{s}$	
ROM mode transition wait time 2		t_{MS}	15	-	-	$\mu \mathrm{s}$	

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory.
Note: The frequency accuracy of FCLK should be $\pm 3.5 \%$.

2.14 E2 DataFlash Characteristics (Flash Memory for Data Storage)

Table 2.76 E2 DataFlash Characteristics (1)

Item		Symbol	Min.	Typ.	Max.	Unit	Conditions
Reprogramming/erasure cycle*1		$\mathrm{N}_{\text {DPEE }}$	100K	1000K	-	Times	
Data retention	After 10K times of $\mathrm{N}_{\text {DPEC }}$	$\mathrm{t}_{\text {DDRP }}$	$20 * 2, * 3$	-	-	Year	$\mathrm{T}_{\mathrm{a}}=+105^{\circ} \mathrm{C}$
	After 100K times of $\mathrm{N}_{\text {DPEC }}$		5*2, *3	-	-	Year	
	After 1000K times of $\mathrm{N}_{\text {DPEC }}$		-	1*2, *3	-	Year	$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$

Note 1. The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times ($n=100 K$), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 256 times for different addresses in 256 -byte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).
Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics. Note 3. These results are obtained from reliability testing.

Table 2.77 E2 DataFlash Characteristics (2) High-speed operating mode
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}$
Temperature range for the programming/erasure operation: $T_{a}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	FCLK $=1 \mathrm{MHz}$			FCLK $=32 \mathrm{MHz}$			FCLK $=48 \mathrm{MHz}$			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.			
Programming time	1-byte		$\mathrm{t}_{\mathrm{DP} 1}$	-	83.0	729.5	-	35.1	341.2	-	34.8	338.8	$\mu \mathrm{s}$
Erasure time	256-byte	$\mathrm{t}_{\text {DE256 }}$	-	8.3	282.0	-	5.4	220.4	-	5.4	220.1	ms	
	4-Kbyte	$\mathrm{t}_{\text {DE4K }}$	-	55.0	1273.7	-	9.0	295.4	-	8.8	291.7	ms	
Blank check time	1-byte	$\mathrm{t}_{\mathrm{DBC} 1}$	-	-	44.6	-	-	8.9	-	-	8.2	$\mu \mathrm{s}$	
	256-byte	$t_{\text {DBC256 }}$	-	-	1573	-	-	120	-	-	115	$\mu \mathrm{s}$	
Erase operation forcible stop time		${ }^{\text {t }}$ DSED	-	-	22.8	-	-	11.1	-	-	11.0	$\mu \mathrm{s}$	
DataFlash STOP time	ecovery	$t_{\text {DSTOP }}$	250	-	-	250	-	-	250	-	-	ns	

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note: \quad The frequency accuracy of FCLK should be $\pm 3.5 \%$.
Table 2.78 E2 DataFlash Characteristics (3) Middle-speed operating mode
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}$
Temperature range for the programming/erasure operation: $\mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	FCLK = 1 MHz			FCLK $=8 \mathrm{MHz}$			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
Programming time	1-byte		$\mathrm{t}_{\mathrm{DP} 1}$	-	83.0	729.5	-	35.3	343.2	$\mu \mathrm{s}$
Erasure time	256-byte	$\mathrm{t}_{\text {DE256 }}$	-	8.3	282.0	-	5.4	220.2	ms	
	4-Kbyte	$\mathrm{t}_{\text {DE4K }}$	-	55.0	1273.7	-	8.8	291.8	ms	
Blank check time	1-byte	$\mathrm{t}_{\text {DBC1 }}$	-	-	44.6	-	-	9.0	$\mu \mathrm{s}$	
	256-byte	$t_{\text {DBC256 }}$	-	-	1573	-	-	115	ms	
Erase operation forcible stop time		$\mathrm{t}_{\text {DSED }}$	-	-	22.8	-	-	11.2	$\mu \mathrm{s}$	
DataFlash STOP recover	y time	$\mathrm{t}_{\text {DSTOP }}$	250	-	-	250	-	-	ns	

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note: \quad The frequency accuracy of FCLK should be $\pm 3.5 \%$.

Table 2.79 E2 DataFlash Characteristics (4) Middle-speed operating mode 2
Conditions: $1.8 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVCCO} \leq 5.5 \mathrm{~V}$, VSS $=\mathrm{AVSSO}=0 \mathrm{~V}$
Temperature range for the programming/erasure operation: $\mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	FCLK $=1 \mathrm{MHz}$			Unit	
		Min.	Typ.	Max.			
Programming time	1-byte		$\mathrm{t}_{\mathrm{DP} 1}$	-	83.0	729.5	$\mu \mathrm{s}$
Erasure time	256-byte	$t_{\text {DE256 }}$	-	8.3	282.0	ms	
	4-Kbyte	$t_{\text {DE4K }}$	-	55.0	1273.7	ms	
Blank check time	1-byte	$\mathrm{t}_{\mathrm{DBC} 1}$	-	-	44.6	$\mu \mathrm{s}$	
	256-byte	$\mathrm{t}_{\text {DBC256 }}$	-	-	1573	ms	
Erase operation forcible stop time		$\mathrm{t}_{\text {DSED }}$	-	-	22.8	$\mu \mathrm{s}$	
DataFlash STOP re	y time	$\mathrm{t}_{\text {DSTOP }}$	250	-	-	ns	

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory.
Note: The frequency accuracy of FCLK should be $\pm 3.5 \%$.

2.15 Usage Notes

2.15.1 Connecting VCL Capacitor and Bypass Capacitors

This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU to adjust automatically to the optimum level. A 4.7- $\mu \mathrm{F}$ capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and VSS pin. Figure 2.64 to Figure 2.66 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor to the MCU power supply pins as close as possible. Use a recommended value of $0.1 \mu \mathrm{~F}$ as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User's Manual: Hardware. For the capacitors related to analog modules, also see section 35, 12-Bit A/D Converter (S12ADE) in the User's Manual: Hardware.
For notes on designing the printed circuit board, see the descriptions of the application note "Hardware Design Guide" (R01AN1411EJ). The latest version can be downloaded from Renesas Electronics Website.

Figure 2.64
Connecting Capacitors (80 Pins)

Note. Do not apply the power supply voltage to the VCL pin
Use a $4.7-\mu \mathrm{F}$ multilayer ceramic for the VCL pin and place it close to the pin. A recommended value is shown for the capacitance of the bypass capacitors.

Figure 2.65
Connecting Capacitors (64 Pins)

Figure 2.66
Connecting Capacitors (48 Pins)

Note. Do not apply the power supply voltage to the VCL pin.
Use a $4.7-\mu \mathrm{F}$ multilayer ceramic for the VCL pin and place it close to the pin.
A recommended value is shown for the capacitance of the bypass capacitors.

Figure 2.67
Connecting Capacitors (32 Pins)

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings has been displayed in "Packages" on Renesas Electronics Corporation website.

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-LFQFP80-12×12-0.50	PLQPO08OKB-B	-	0.5 g

NOTE)

1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH
2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL; SIZE MAY VARY.

Reference Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	11.9	12.0	12.1
E	11.9	12.0	12.1
A 2	-	1.4	-
HD	13.8	14.0	14.2
HE	13.8	14.0	14.2
A	-	-	1.7
A 1	0.05	-	0.15
bp	0.15	0.20	0.27
c	0.09	-	0.20
θ	0°	3.5°	8°
E	-	0.5	-
\times	-	-	0.08
y	-	-	0.08
Lp	0.45	0.6	0.75
L 1	-	1.0	-

Figure A 80-Pin LFQFP (PLQP0080KB-B)

Figure B 64-Pin LQFP (PLQP0064GA-A)

Figure C 64-Pin LFQFP (PLQP0064KB-C)

Figure D 48-Pin HWQFN (PWQN0048KC-A)

JElTA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-LFQFP48-7×7-0.50	PLQP0048KB-B	-	0.2 g

NOTE)

1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.
2. DIMENSION **3" DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA
4. CHAMFERS AT CORNERS ARE OPTIONAL; SIZE MAY VARY.

Referencel Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	6.9	7.0	7.1
E	6.9	7.0	7.1
A 2	-	1.4	-
HD	8.8	9.0	9.2
HE	8.8	9.0	9.2
A	-	-	1.7
A 1	0.05	-	0.15
bp	0.17	0.20	0.27
C	0.09	-	0.20
θ	0°	3.5°	8°
e	-	0.5	-
\times	-	-	0.08
y	-	-	0.08
Lp	0.45	0.6	0.75
L 1	-	1.0	-

Figure E 48-Pin LFQFP (PLQP0048KB-B)

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

detail of lead end

NOTE

1.Dimensions " $※ 1$ " and " $※ 2$ " do not include mold flash.
2.Dimension "※3" does not include trim offset.

	(UNIT:mm)
ITEM	DIMENSIONS
D	7.00 ± 0.10
E	7.00 ± 0.10
HD	9.00 ± 0.20
HE	9.00 ± 0.20
A	1.70 MAX.
A1	0.10 ± 0.10
A2	1.40
b	0.37 ± 0.05
c	0.145 ± 0.055
L	0.50 ± 0.20
θ	0° to 8°
e	0.80
x	0.20
y	0.10

Figure F 32-Pin LQFP (PLQP0032GB-A)

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN032-5x5-0.50	PWQN0032KE-A	0.06

Figure G 32-Pin HWQFN (PWQN0032KE-A)

REVISION HISTORY

RX140 Group Datasheet

Classifications

- Items with Technical Update document number: Changes according to the corresponding issued Technical Update - Items without Technical Update document number: Minor changes that do not require Technical Update to be issued

Rev.	Date		Description	Classification
		Page	Summary	
1.00	Aug 05, 2021	-	First edition, issued	
1.10	Apr 20, 2022	Features		
		1	■ Low power design and architecture, changed	TN-RX*-A0258A/E
		1. Overview		
		3	Table 1.1 Outline of Specifications (2/4), changed	
		7, 8	Table 1.3 List of Products, changed	
		9	Figure 1.1 How to Read the Product Part Number, changed	
		13	Table 1.4 Pin Functions (3/3), changed	
		14	Figure 1.3 Pin Assignments of the 80-Pin LFQFP, changed	
		15	Figure 1.4 Pin Assignments of the 64-Pin LFQFP, 64-Pin LQFP, changed	
		16	Figure 1.5 Pin Assignments of the 48-Pin LQFP, changed	
		16	Figure 1.6 Pin Assignments of the 48-Pin HWQFN, changed	
		18	Table 1.5 List of Pins and Pin Functions (80-Pin LFQFP) (1/2), changed	
		20	Table 1.6 List of Pins and Pin Functions (64-Pin LFQFP, 64-Pin LQFP) (1/2), changed	
		24	Table 1.8 List of Pins and Pin Functions (32-Pin LQFP, 32-Pin HWQFN), changed	
		2. Electrical Characteristics		
		All	Characteristics of PH7 and PH6, added	
		All	Characteristics of products with ROM capacity of 128 Kbytes or more, added	
		46	Table 2.14 DC Characteristics (9), changed	TN-RX*-A0258A/E
		49	Table 2.17 Permissible Output Currents (2), changed	
		50	Table 2.21 Thermal Resistance Value (Reference Values), Note 1, added	
		56	Table 2.36 HOCO Clock Timing (ROM capacity: product with 64 Kbytes) Note 1, added	TN-RX*-A0258A/E
		85	Table 2.59 A/D Conversion Characteristics (2), changed	
		88	Table 2.62 A/D Conversion Characteristics (5), changed	TN-RX*-A0258A/E
		102	Table 2.77 E2 DataFlash Characteristics (2): high-speed operating mode, changed	
		Appendix 1. Package Dimensions		
		114	Figure F 32-Pin LQFP (PLQP0032GB-A), added	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

