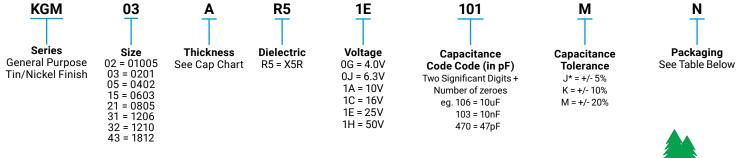
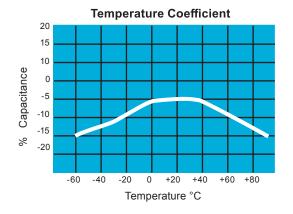
General Specifications

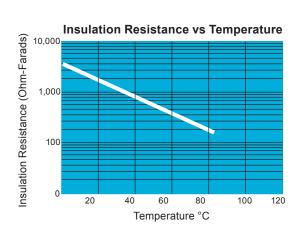


GENERAL DESCRIPTION

- · General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100µF)

HOW TO ORDER




NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

PACKAGING CODES

Code	EIA (inch)	IEC(mm)	7" Paper	7" Embossed	13" Paper	13" Embossed
02	01005	0402	Н	Р	N	
03	0201	0603	Н		N	
05	0402	1005	Н		N	
15	0603	1608	Т		М	
21	0805	2012		U		L
31	1206	3216		U		L
32	1210	3225	·	U		L
43	1812	4532		V		S

TYPICAL ELECTRICAL CHARACTERISTICS

KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Specifications and Test Methods

X5R	Specification Limits	X5R Specification Limits	Measuring Conditions (Complies with JIS C5101 / IEC60384)							
Operati	ng Temperature Range	-55°C to +85°C	Temperature Cycle Chamber							
	Capacitance	Within specified tolerance	Measure after heat treatment							
Dissi	pation Factor / Tanô	Refer to https://spicat.kyocera-avx.com for individual part number specification	Capacitance Frequency Volt C≤10µF Frequency : 1kHz±10% Volt : 1.0±0.2Vrms *0.5±0.2Vrms *:KGM02AR50J104, KGM02AR50J474, KGM03CR50J225, KGM03BR50J225 KGM03DR50J475, KGM03CR50J475,							
			KGM05CR50J106 C>10μF Frequency : 120Hz±10% Volt : 0.5±0.2Vrms The charge and discharge current of the capacitor must not exceed 50mA.							
Ins	ulation Resistance	Refer to https://spicat.kyocera-avx.com for individual part number specifiction	Apply the rated voltage for 1 minute, and measure it in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA.							
D	electric Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/ charge and discharge current limited to 50 mA (max) * KGM31AR52A225: 200% of rated voltage							
Е	ending Strength	No significant damage with 1mm bending	Glass epoxy PCB: Fulcrum spacing: 90mm, duration time 10 seconds.							
	Solderability	Solder coverage : 95% min.	Soaking condition Sn-3Ag-0.5Cu 245±5°C 3±0.5 sec.							
	Appearance	No problem observed	Take the initial value after heat treatment.							
	Capacitance Variation	≤ ±7.5%	Soak the sample in 260°C±5°C solder for 10±0.5 seconds and place in nor- mal temperature and humidity, and measure after							
Resistance to Solder	Dissipation Factor / Tanδ	Within specification	heat treatment. (Pre-heating conditions)							
Heat	Insulation Resistance	Within specification	Order Temperature Time 1 80 to 100°C 2 minutes 2 150 to 200°C 2 minutes							
	Withstanding Voltage / Dielectric Strength	Resist without problem	The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.							
	Appearance	No visual defects	Take the initial value after heat treatment.							
	Capacitance Variation	≤ ±7.5%	(Cycle) Room temperature (3 min.) ->							
Thermal Shock	Dissipation Factor	Within specification	Lowest operation temperature (30 min.) -> Room temperature (3 min.) ->							
	Insulation Resistance	Within specification	Highest operation temperature (30 min.)							
	Withstanding Voltage / Dielectric	Resist without problem	After 5 cycles, measure after heat treatment.							
	Strength		The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.							
	Appearance	No visual defects	Take the initial value after heat treatment. After applying *1.5 the rated voltage at the highest operation temperature for 1000+12/ -0 hours, and measure the sample							
Load Life	Capacitance Variation	≤±12.5%	after heat treatment in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA for IR measurement.							
	Dissipation Factor / Tanδ	≤ Initial Value x 2.0 (See Above)	*Apply 1.0 times when the rated voltage is 4V or less. Applied voltages for respective products are indicated							
	Insulation Resistance	Over 1000MΩ or 50MΩ\(\text{µF} \), whichever is less. *Exceptions Listed Below	in the chart below.							
	Appearance	No visual defects	Take the initial value after heat treatment.							
Load Humidity	Capacitance Variation	≤ ±12.5%	After applying rated voltage for 500+12/ -0 hours in the condition of 40°C±2°C and 90 to 95%RH, and place in normal							
	Dissipation Factor / Tanδ	Within specification	temperature and humidity, then measure the sample after heat treatment.							
	Insulation Resistance	Over 1000MΩ or 50MΩ · μF, whichever is less. *Exceptions Listed Below	The charge and discharge current of the capacitor must not exceed 50mA for IR measurement.							
	Appearance	No problem observed	Microscope							
Tei	mination Strength Appearance	No problem observed No problem observed	Apply a sideward force of 500g (5N) to a PCB-mounted sample. note : 2N for 0201 size, and 1N for 01005 size. Take the initial value after heat treatment. Vibration frequency: 10 to 55 (Hz)							
Vibration	Capacitance	Within tolerance	Amplitude: 1.5mm Sweeping condition: 10 -> 55 -> 10Hz/1 minute in X, Y and Z directions: 2							
	Tanδ	Within tolerance	hours each, 6 hours in total, and place in normal temperature and humidity, then measure the sample after heat treatment.							
	Heat treatment	Expose sample in the temperature of 150+0/ -10°C for 1 hour and leave the sample	I e in normal temperature and humidity for 24±2 hours.							

Voltage to be applied in the High Temperature Load (Applied voltage is the multiple of the rated voltage)

Rated Voltage		Products
	6.3V	KGM02AR50J224, KGM02AR50J474, KGM03BR50J225, KGM03CR50J225, KGM03DR50J475, KGM05CR50J106, KGM05BR50J156, KGM05DR50J226, KGM21AR50J476
	10V	KGM02AR51A104, KGM03CR51A225, KGM15CR51A226
	16V	KGM03CR51C105, KGM05AR51C225, KGM05CR51C475, KGM15CR51C226
×1.0	25V	KGM05AR51E105, KGM05AR51E225, KGM05CR51E225, KGM05CR51E475, KGM15CR51E475, KGM15CR51E106, KGM21AR51E226
	35V	KGM05AR51V105, KGM15CR51V475, KGM15CR51V106
	100V	KGM31AR52A225
×1.2	6.3V	KGM03BR50J105
	6.3V	KGM02AR50J153-104, KGM03AR50J474
×1.3	10V	KGM03AR51A223-224, KGM05AR51A105-225
	16V	KGM05AR51C105

<Load Life / Load Humidity>Insulation Resistance : Over $10M\Omega \cdot \mu F$

X5R / R5	03	KGM03BR51A105, KGM03CR51C224, KGM03CR51E224
ASR / RS	05	KGM05BR51A475, KGM05CR51A106, KGM05CR51V225

Capacitance Range

	Case Size			01005				0201						0402							0603							0805				
	Soldering		Re	eflow Or	nly		Re	eflow O	nly				Re	flow/W	ave					Ret	flow/W	ave			Reflow/Wave							
	Packaging		Pape	r/Embo	ssed		-	All Pape	er				-	All Pape	er					F	All Pape	r			All Embossed							
(L) Length		mm (in.)		.40 ± 0.0 16 ± 0.0				.60 ± 0. 124 ± 0.						.00 ± 0. 140 ± 0.							60 ± 0.: 63 ± 0.				2.01 ± 0.20 (0.079 ± 0.008)							
W) Width		mm (in.)		.20 ± 0.0 08 ± 0.0				.30 ± 0. 11 ± 0.						.50 ± 0. 120 ± 0.							80 ± 0.: 31 ± 0.							25 ± 0.: 49 ± 0.				
(t) Terminal		mm (in.)		.10 ± 0.0 04 ± 0.0				.15 ± 0. 106 ± 0.						.25 ± 0. 110 ± 0.							35 ± 0.1 14 ± 0.1							50 ± 0.: 20 ± 0.:				
	Voltage:		6.3	10	16	4	6.3	10	16	25	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	
Cap (pF)	100	101		Α	Α					Α																						
	150	151		Α	Α					Α																	-1	~	~	-W	_	
	220	221		Α	Α					Α							Α										4	<	$\overline{}$	\bigcap	`	
	330	331		Α	Α					Α							Α											$\overline{}$	/ (100	_	
	470	471		Α	Α					Α							Α											\sim				
	680	681		Α	Α					Α							Α											*t	1		. —	
	1000	102		Α	Α				Α	Α							Α															
	1500	152	Α	Α	Α				Α	Α							Α									İ						
	2200	222	Α	Α	Α			Α	Α	Α							Α															
	3300	332	Α	Α	Α			Α	Α	Α							Α															
	4700	472	Α	Α	Α			Α	Α	Α					Α									Α								
	6800	682	Α	Α	Α			Α	Α	Α					Α									Α								
Cap (µF)	0.010	103	Α	Α	Α			Α	Α	Α					Α							Α	Α	Α								
	0.015	153	Α												Α							Α	Α	Α								
	0.022	223	Α				Α	Α	Α	Α				Α	Α							Α	Α	Α							К	
	0.033	333	Α					Α						Α								Α	Α	Α							К	
	0.047	473	Α				Α	Α	Α	Α				Α	Α							Α	Α	Α							К	
	0.068	683	Α					Α						Α								Α		Α							К	
	0.10	104	Α	Α			Α	Α	Α	В			Α	Α	Α		Α					Α	Α	Α					К	К	К	
	0.15	154																				Α							К	К		
	0.22	224	Α			Α	Α	Α	С	С		Α	Α	Α	Α		Α	В	В	В	В	В	В	В					К	К	К	
	0.33	334																В	В	В	В	В							Α			
	0.47	474	Α			Α	Α				Α	Α	Α	Н	Α		Н	В	В	В	В	В	В	В					Α	Α	Α	
	0.68	684																В	В	В	В	В							Α	Α	Α	
	1	105				В	В	B/C	С		Α	Α	Α	Α	Α	Α		В	В	В	В	В	В	В				Α	Α	Α	Α	
	2.2	225				С	B/C	С			Α	Α	Α	Α	A/C	С		В	В	В	В	В	С	С			Α	Α	Α	Α	Α	
	4.7	475				С	D				Н	Н	B/C	С	С			В	В	В	В	С	С		Α	Α	Α	Α	Α	Α	Α	
	10	106									С	С	С					С	С	С	С	С	С		Α	Α	Α	Α	Α			
	15	156									В	В																				
	22	226							İ		С	D						С	С	С	С	İ			Α	Α	Α	Α	Α			
	47	476																С	С						Α	Α	Α					
	100	107							İ																Ì	Α						
	Voltage:		6.3	10	16	4	6.3	10	16	25	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	
	Case Size			01005				0201						0402							0603							0805				

Case Size	01005 (KGM 02)		0201 (k	(GM03)			04	02 (KGM0	15)			0603 (F	0805 (KGM21)			
Thickness Letter	Α	Α	В	С	D	Α	В	С	Н	D	Α	В	С	D	K	Α
Max Thickness (mm)	0.22	0.33	0.35	0.39	0.55	0.55	0.65	0.70	0.75	0.8	0.90	0.95	1	1.02	1.40	1.45
Carrier Tape	PAPER		PAF	PER				PAPER		PAPER						ИΒ
Packaging Code 7"reel	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	T	T	T	T	U	U
Packaging Code 13"reel	P	N	N	N	N	N	N	N	N	N	М	М	М	М	L	L
				PA	PER				EME	BOSSED (E	MB)					

Capacitance Range

PREFERRED SIZES ARE SHADED

Case Size					12	206							1210				1812									
Soldering						v/Wave						R	eflow Or	nlv			Reflow Only									
Packaging						bossed							Emboss				All Embossed									
	mm					± 0.40							.20 ± 0.4				4.50 ± 0.30									
(L) Length	(in.)	(0.126 ± 0.016)									(0.126 ± 0.016)								(0.177 ± 0.012)							
W) Width	mm (in.)				1.60 (0.063	± 0.30 ± 0.012)						.50 ± 0.3 098 ± 0.0				3.20 ± 0.20 (0.126 ± 0.008)									
(t) Terminal	mm (in.)				0.50	± 0.25 ± 0.010						0	.50 ± 0.2 020 ± 0.0	25			0.61 ± 0.36 (0.024 ± 0.014)									
Voltage:	()	4	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50			
Cap (pF) 100	101																									
150	151.0																									
220	221																									
330	331																									
470	471																									
680	681																									
1000	102																									
1500	152																									
2200	222																									
3300	332																									
3900	392																									
4700	472																									
Cap (μF) 5600	562																									
6800	682																									
0.01	103																									
0.012	123																									
0.015	153																									
0.018	183																									
0.022	223																						\vdash			
0.027	273																						\vdash			
0.033	333																	-					\vdash			
0.039	393																						\vdash			
0.047	473																						\vdash			
0.068	683																	-					$\vdash\vdash\vdash$			
0.082	823																						\vdash			
0.10	104																						\vdash			
0.12	124																-						$\vdash\vdash\vdash$			
0.15	154 224				-												-	-					$\vdash\vdash\vdash$			
0.22	334																						\vdash			
0.33	474	М	М	М	М	М	М	М			-				С	С	_	-					$\vdash\vdash\vdash$			
0.47	684	IVI	IVI	IVI	IVI	IVI	IVI	IVI										-					$\vdash\vdash\vdash$			
1	105	Н	Н	Н	Н	Н	Н	Н		E	Е	Е	Е	Е	Е	Е							$\vdash\vdash\vdash$			
2.2	225	н	н	н	н	Н	н	н	A	L	L	L	L	L	L	L							\vdash			
4.7	475	Н	Н	Н	Н	H	H	A	_^_	J	J	J	J	J	A	A	\vdash						$\vdash\vdash\vdash$			
10	106	Н	Н	Н	Н	A	Н	Н		J	J	J	J	J	A	A	\vdash				J		\vdash			
22	226	Н	Н	Н	A	Н				A	A	A	A	A			J	J	J				\Box			
47	476	Н	Н	Н	Н					L	L	L	L	L									\Box			
100	107	Н	Н							L	L												\Box			
Voltage:		4	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50			
Case Size					12	206							1210							1812						

Case Size	12	06 (KGM 3	31)		1812 (KGM 43)							
Thickness Letter	М	Α	Н	С	Е	J	Α	L	J			
Max Thickness (mm)	1.25	1.8	1.9	1.27	1.45	2.21	2.7	2.80	2.80			
Carrier Tape	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB			
Packaging Code 7"reel	U	U	U	U	U	U	U	U	V			
Packaging Code 13"reel	L	L	L	L	L	L	L	L	S			
	EMBOSSED (EMB)											